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The interactions between symbiotic bacterial consortia and their protist hosts in benthic
environments have attracted increasing interest in recent years. In the present study, we
investigated the diversity of potentially associated bacteria for an astomatous ciliate,
Kentrophoros flavus, collected in the intertidal zone of Yantai, China. For the first time, the
diversity of the associated bacteria in the species K. flavus was examined using 16S
rRNA-based techniques (clone libraries and PacBio sequencing) and the fluorescence in
situ hybridization (FISH) technique. The 16S rRNA-based sequencing revealed a higher
diversity of associated bacteria in K. flavus than previously expected. In addition to a
genus-typical thiotrophic symbiont, the “Candidatus Kentron” stain YE, we provide
evidence showing the consistent existence of one Muribaculaceae-like bacterium that
was secondarily abundant among the bacterial operational taxonomic units (OTUs).
Fluorescence in situ hybridization (FISH) with three specific probes and double-label
FISH experiments with “Candidatus Kentron” probes showed that the Muribaculaceae-
like bacterium was abundant and merged with the “Candidatus Kentron” stain YE on the
cell surface of the host. A phylogenetic analysis of the bacterial 16S rRNA gene showed
that the bacterium was a distinct branch in Muribaculaceae, members of which are
primarily reported from gut microbiome. The name “Muribaculaceae-like bacterium
associated with Kentrophoros flavus” (MLAKF) is proposed for the new bacterium. The
higher 16S rRNA diversity in K. flavus and the discovery of MLAKF on the cell surface both
suggest a potential bacterial consortium that interacts with the host K. flavus.

Keywords: Kentrophoros, symbiosis, bacterial diversity, ciliate, Muribaculaceae
in.org June 2022 | Volume 9 | Article 8793881

https://www.frontiersin.org/articles/10.3389/fmars.2022.879388/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.879388/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.879388/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.879388/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.879388/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.879388/full
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles
http://creativecommons.org/licenses/by/4.0/
mailto:daodeji@126.com
mailto:qqzhang@yic.ac.cn
https://doi.org/10.3389/fmars.2022.879388
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.879388
https://www.frontiersin.org/journals/marine-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.879388&domain=pdf&date_stamp=2022-06-06


Bi et al. Muribaculaceae-Like Bacteria on Kentrophoros flavus
INTRODUCTION

Ciliates are widespread unicellular organisms in marine benthic
environments (Choi et al., 2012; Cai et al., 2013) that include
some extreme habitats (Wilbert and Song, 2005; Lei and Xu,
2008). One important mechanism that makes ciliates thrive in
extreme environments (e.g., micro-aerobic/anoxic, sulfide-rich,
high-nitrate) or grow on inaccessible diets in the sediment is
harboring and interacting with symbiotic bacteria (Nowack and
Melkonian, 2010). Recently, studies of the diversity of symbiotic
bacteria associated with benthic ciliates have revealed novel
bacterial species that possess specialized physical or
biochemical traits (Embley et al., 1992; Rosati, 2002; Beinart
et al., 2018; Lind et al., 2018; Graf et al., 2021). One well-known
representative is the association of benthic ciliates with
thiotrophic bacteria in which ectosymbionts account for
approximately half the biomass of the symbiotic consortium in
some species (Fenchel and Finlay, 1989). Ciliates associated with
thiotrophic bacteria are known typically from two genera—the
periphyton Zoothamnium and the benthic Kentrophoros—both
of which are densely covered by ectosymbionts on the cell surface
(Raikov, 1971; Fenchel and Finlay, 1989; Edgcomb et al., 2011;
Bright et al., 2014; Seah et al., 2017). Evidence has shown that
thiotrophic symbionts can absorb and oxidize sulfide in sulfur-
rich environments (Fenchel and Finlay, 1989; Volland et al.,
2018; Seah et al., 2019). The symbionts are phagocytized by the
host as a food resource (Foissner, 1995; Dubilier et al., 2008;
Bright et al., 2014) or directly release soluble organic molecules
that are uptaken into the host cytoplasm (Volland et al., 2018).
Mutually, the ciliate host may carry the ectosymbionts to a depth
in sediments where the chemical gradients are not too steep and
where the bacterial metabolisms are optimized (Fenchel and
Finlay, 1989).

Some ciliates host more than one symbiotic (or associated)
species that may form structural and functional consortia
(Edgcomb et al., 2011; Park and Yu, 2018; Lanzoni et al., 2019;
Muñoz-Gómez et al., 2021). Functional consortia have been
recovered in a geleiid karyorelictean ciliate that harbored two
sulfate reducers, a methanogen, and possibly a Bacteroidetes and
a Type I methanotroph (Edgcomb et al., 2011). A purple-green
ciliate, Pseudoblepharisma tenue, was found simultaneously
harboring green algae and anoxygenic photosynthesizers (e.g.,
purple bacteria) (Muñoz-Gómez et al., 2021). Boscaro et al.
(2019) found that up to six different symbionts could co-occur
in the cytoplasm of a single Euplotes species. In ciliates associated
with thiotrophic bacteria, much less attention has been paid to
the diversity and composition of the ectosymbionts, although
single thiotrophic bacterial species have been recognized in
Zoothamnium (“Candidatus Thiobios zoothamnicoli”,
Gammaproteobacteria) and Kentrophoros (“Candidatus
Kentron spp.”, Gammaproteobacteria) (Bright et al., 2014; Seah
et al., 2017; Seah et al., 2019).

Members of the genus Kentrophoros (Ciliophora and
Karyorelictea) are microaerobic ciliates that are typically
distributed in the chemocline between the oxidized and
anaerobic sulfide–reducing layers of marine sediments
Frontiers in Marine Science | www.frontiersin.org 2
(Fenchel, 1969). They are typically characterized by a lack of
the adoral zone for prey, but they are covered with dense rod-
shaped chemolithotrophic bacteria on the cell surface (Foissner,
1995; Gao et al., 2010; Xu et al., 2011). It has been shown that this
ciliate relies directly on engulfing symbionts (or adhering algae/
particles) along the entire cell body as a food resource (Fenchel
and Finlay, 1989; Foissner, 1995). Morphological observation
and chemical measurement estimated that one Kentrophoros cell
carries approximately 4500 bacteria that account for
approximately half the biomass of the symbiont-ciliate
consortium (Fenchel and Finlay, 1989). Earlier ultrastructural
observations (Fenchel and Finlay, 1989; Foissner, 1995) and
recent metagenomic methods (Seah et al., 2017) have both
revealed sulfur-oxidizing bacteria among the symbionts. Using
the meta-genome technique and 16S rDNA amplification, Seah
et al. (2017; 2019) recognized one genus from 13 Kentrophoros
spp. and proposed the name “CandidatusKentron” (hereafter, “Ca.
Kentron”). Despite being known as the primary food source for
Kentrophoros, a genomic study of “Ca. Kentron” revealed that the
thiotrophic bacteria lack genes that encode canonical enzymes for
autotrophicCO2fixation (Seahet al., 2019).This indicates that there
must be extra energy and organic carbon sources for the “Kentron-
Kentrophoros” system from the environment ormicrobial activities
(Seah et al., 2019). Thus far, there have been no systematic studies
investigating the bacterial diversity associated with the genus
Kentrophoros (symbiotic and/or adhering). It is unclear if “Ca.
Kentron” is the only genus among the ectosymbionts or whether
there are other bacteria that interact with the “Kentron-
Kentrophoros” system.

In recent decades, molecular approaches such as 16S rDNA
cloning and sequencing and fluorescence in situ hybridization
(FISH) have been increasingly used to detect and identify
bacterial symbionts or associations with unicellular eukaryotes
(Edgcomb et al., 2011; Gong et al., 2014; Seah et al., 2017;
Plotnikov et al., 2019). Most recently, the newly developed
PacBio platform was able to generate more than 5000
CCS 16S rDNA sequences from one sample (with >0.99
accuracy for 16S rDNA fragments). This allows for a much
deeper sequencing depth than is the case with rDNA clone
libraries. These approaches make it possible to discover the
potentially associated prokaryotes on Kentrophoros outside of
“Ca. Kentron”.

In this study, we collected and described a Kentrophoros
species, K. flavus, from the intertidal region near the eastern
gate of Yantai University (hereafter, K. flavus YE). The bacterial
diversity associated with K. flavus YE was examined using 16S
rRNA-based approaches, including the clone library and PacBio
sequencing. We detected a genus-typical thiotrophic symbiont
and named it the “Candidatus Kentron” stain YE (hereafter, “Ca.
Kentron” YE). In addition, an undescribed bacterium belonging
to the molecular family Muribaculaceae was also consistently
detected in the PacBio data. The name “Muribaculaceae-like
bacterium associated with Kentrophoros flavus” (MLAKF) is
proposed for the bacterium. Three specific probes were
designed, and in situ FISH was performed to determine the
location of MLAKF on the ciliate cells.
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MATERIALS AND METHODS

Sample Collection and
Morphological Observations
Kentrophoros flavus YE was collected on different dates from
May 2020 to March 2022 from the intertidal zone near the
eastern gate of Yantai University, China (37°28′50″N, 121°27′41″
E). Samples were scraped at the chemocline in fine, well-sorted
sands with a reduced, sulfide layer at an approximate 15 cm
beneath the sediment surface. Wet sands were transported to the
laboratory and examined under a stereo microscope (Guiguang
GL-6345BI, China). Living cells were observed using a bright
field and differential interference contrast microscopy at 100-
1000× magnifications (Zeiss Axio Scope A1, Germany). Counts
and measurements of the living cells were conducted at a
magnification of 1000×.

DNA Extraction, PCR Amplification, Clone
Libraries, and PacBio Sequencing
Approximately 10 cells were isolated from the raw cultures using
a micropipette and washed three times with in situ water filtered
by a millipore filter of 0.2 µm in pore diameter (Pall Laboratory,
US) to remove the irrelevant bacteria in the environmental water.
The ciliate cells were then starved for approximately 5 h in the
sterilized water, allowing the hosts to digest the potential
bacterial food in the cytoplasm. Each individual was
transferred into 1.5 ml Eppendorf tubes with a small drop of
water for DNA extraction. DNA was extracted using the
REDExtract-N-Amp Tissue PCR Kit (Sigma, St. Louis, MO)
according to Gong et al. (2016).

The host’s 18S rRNA gene was amplified via polymerase
chain reaction (PCR) with the primers 82F (5′-GAAACT
GCGAATGGCTC-3′) and 1492R (5′-GGTTACCTTGTTAC
GACTT-3′) according to Wang et al. (2019). The PCR reaction
solution (25 µl) contained 2 µl of 10 µM primers, 1 µl of template,
12.5 µl of MegaFi™ Fidelity 2X PCR MasterMix with MegaFi™

Fidelity DNA Polymerase (ABM, Shanghai, China), and 9.5 µl of
nuclease-free H2O. The cycling parameters were as follows: pre-
run of 3 min at 95°C, followed by 30 cycles of 30 s at 95°C, 30 s at
56°C, and 90 s at 72°C, with a final extension of 10 min at 72°C.
The associating bacteria’s 16S rRNA gene was amplified via PCR
with the primers 27F (5′-AGAGTTTGATCMTGGCTCAG-3′)
and 1525R (5′-AAGGAGGTGATCCAGCC-3′). The PCR
reaction solution (25 µl) contained 2 µl of 10 µM primers, 1 µl
of template, 0.5 µl of dNTP Mix (10 mM of each), 1.25 units of
Vazyme Lamp® DNA Polymerase (Vazyme, Nanjing, China),
2.5 µl 10X of Vazyme Lamp® buffer with MgCl2, and 18.75 µl of
nuclease-free H2O. The cycling parameters were as follows: pre-
run of 5 min at 94°C, followed by 30 cycles of 90 s at 94°C, 90 s at
53°C, and 3 min at 72°C, with a final extension of 10 min at 72°C.
The PCR products were purified using a TIANgel Midi
Purification Kit (Tiangen Bio. Co., Shanghai, China) and then
inserted into pCE2 TA/Blunt-Zero vectors (5 min TA/Blunt-
Zero Cloning Kit, Vazyme, Nanjing, China). The recombinant
vectors were then transformed into competent cells Trans1-T1
(TransGen Biotech Co., Ltd., Beijing, China). The recombinants
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were screened using the blue/white selection. The white colonies
were randomly selected and screened using PCR with the
primers M13-20 and M13-26. Positive clones with the target
inserts were sent for Sanger sequencing (Sangon Biotech Co.,
Ltd., Shanghai, China). A total of 132 clones were sent, and 46
sequences were successfully obtained, with an average length of
1500 bp.

For the other two ciliate individuals, the PacBio Sequel II
platform was selected to complete the collection of the 16S rRNA
full-length amplicons. The 16S rRNA gene was amplified using
the same primers and PCR cycling parameters as those applied in
the clone library construction. The PCR amplicons derived from
two individuals were purified separately using the DNA Clean &
Concentrator™-5 Kit (Zymo Research, Beijing, China), and each
library was constructed according to the size of the amplified
fragments (approximately 1500 bp). Sequencing was performed
on a PacBio sequel II platform (Frasergen Co., Ltd., Wuhan,
China), using a Hifi mode for small-insert (1.6kb) libraries,
which allowed the insert being corrected by circular consensus
sequences (CCS) for 30-40 times (with CCS≥3) and ensured an
accuracy higher than 99.9%. More than 5000 raw CCS were
generated from each sample.

Sequence Analysis for the Clone Library
and the PacBio Data
Data derived from the clone libraries were examined manually to
remove vector sections and low-qualified sequences using Bioedit
(Hall et al., 2011). Data generated from PacBio sequencing were
pretreated and qualified using the Pacific Biosciences’ SMRT Link
v8.0 workflow (https://www.pacb.com/support/software-
downloads). Subreads were generated using the lima program
integrated in SMRT Link inferring the barcode information of
each sample. The subreads were converted to raw CCS using the
CCS program with a strict threshold (minPasses≥3,
minPredictedAccuracy≥0.99). Cutadapt V3.2 (Martin, 2011) was
used to identify and trim the adapters from the raw CCS with a
maximum error rate of 0.1. Chimeras and raw CCS shorter than
1300 bp were also filtered by Cutadapt V3.2.

The qualified clone sequences and clean CCS were pretreated
following the methods of Fu et al. (2020). Briefly, chimeras were
further removed using the vsearch program integrated in QIIME
v.1.8.0 (Caporaso et al., 2010), and the singletons were discarded
using Mothur v.1.34.4 (Schloss et al., 2009). The resulting data
were clustered according to operational taxonomic units (OTUs)
at a sequence similarity of 97% using QIIME v.1.8.0 (Caporaso
et al., 2010). The OTUs were blasted, aligned, and classified
against the SILVA ribosomal RNA gene database (SILVA 128
database, accessed October 2021) (Quast et al., 2012). Analysis of
the species composition and abundance was conducted to
examine the major taxa of the associated bacteria using the
Pacman package (Peng et al., 2021) appended in R (v3.6.2).

Phylogenetic Analysis for Ciliate and the
Associated Bacteria
For the phylogenetic analyses of the 18S rRNA gene (ciliate host),
34 sequences from the ciliate class Karyorelictea and 11
June 2022 | Volume 9 | Article 879388
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sequences of the class Heterotrichea were downloaded from the
GenBank database and were appended to the new 18S rRNA
sequences. Members of class Heterotrichea were selected as
outgroups. Two separate phylogenetic analyses of 16S rRNA were
performed for the bacterial OTUs “Ca. Kentron” YE and MLAKF.
For “Ca. Kentron” YE, the reference sequences were revised from
the dataset of Seah et al. (2017). A total of 42 16S rRNA sequences
from the class Gammaproteobacteria were appended to the new
sequences, and the classesCoxiellaceae and Ectothiorhodospiraceae
were used as outgroups (Seah et al., 2017). For theOTUMLAKF, 44
sequences from the classes Muribaculaceae, Bacteroidaceae,
Prevotellaceae, and Porphyromonadaceae of the phylum
Bacteroidetes were appended. The classes Bacteroidaceae,
Prevotellaceae, and Porphyromonadaceae were selected as
outgroups (Lagkouvardos et al., 2019).

The assembled 16S and 18S rRNA datasets were first aligned
using SINA v.1.2.11 integrated in the SILVAWeb server (https://
www.arb-silva.de/aligner/) with default parameters (Pruesse
et al., 2012). The resulting alignments were refined manually to
excise poorly aligned sites in SeaView v4.0 (Galtier et al., 1996).
For the dataset of K. flavus YE, “Ca. Kentron” YE, and MLAKF,
the final matrix used for the tree analysis comprised 1524, 1580,
and 1505 nucleotide positions, respectively. The maximum
likelihood (ML) and MrBayes v.3.2.2 (BI) algorithms were used to
perform the phylogenetic tree analyses. In all three datasets, the
GTR + I + Г model was selected as the best model for both
algorithms by jModelTest 2.1.7 (Posada, 2008) using the Akaike
InformationCriterion (AIC). TheML trees of the rRNAgeneswere
constructedwith RAxMLV. 8 (Stamatakis, 2014) with 100 random
taxonadditions togenerate the starting trees. Bootstrap supportwas
inferred from 1000 pseudo replicate datasets. The Bayesian
inference (BI) approach was implemented by MrBayes v.3.2.2
(Ronquist and Huelsenbeck, 2003). Markov chain Monte Carlo
(MCMC) simulations were run for 5,000,000 generations (default
temperature parameter and sampling frequency 0.01) with two
parallel runs and each runwith four simultaneous chains. Themean
standard deviation of the split frequencies based on the last 75% of
generations was 0.004 (< 0.01) at the end of the analysis. The first
12,500 trees (corresponding to 25% of generations) were removed
as burn-in. MEGA v.6 (Tamura et al., 2013) was used to visualize
tree topologies and adjust the branches.

Fluorescence In Situ Hybridization (FISH)
Three 16S rRNA-targeted oligonucleotide probes targeting
MLAKF were newly designed according to the method of
Gong et al. (2014), and they were named C01-612, C01-824,
and C01-1125. The specificities of the probes were confirmed
Frontiers in Marine Science | www.frontiersin.org 4
using the Test Probe 3.0 tool against the SILVA NR 99 database
(https://www.arb-silva.de/search/testprobe/). The non-sense
probe NON338, complementary to C01-612/824/1125, was
used as a negative control for the hybridization protocol. The
specific probe chr4Ca for “Ca. Kentron” (Seah et al., 2017) was
also employed in our FISH analysis to virtualize “Ca. Kentron”
YE. The primary sequence and specificity of the four probes are
shown in Table 1.

Thewhole-cell hybridizationprocedure followed the protocol of
Omar et al. (2017). Starved ciliates were transferred onmicroscopic
slides (Frontier FRC-05) and dried at room temperature after
fixation using Bouin’s solution (50%, final concentration). Prior
to the FISH assay, the slides were washed three times in distilled
water and then progressively dehydrated via ethanol gradients
(30%, 50%, 80%, and 100%). The concentration of formamide for
each probe was estimated in the mathFISH webserver (http://
mathfish.cee.wisc.edu/formamide.html) (Yılmaz and Noguera,
2007). The highest concentration (30%) among the three was
applied to maximally remove unspecific hybridization (Gong
et al., 2014). There was 36 ml of the hybridization buffer (20 mM
Tris–HCl at pH 8.0, 0.9 M NaCl, 0.01% SDS = sodium dodecyl
sulfate, and 30% formamide) added to the slides together with 4 ml
of the targeting fluorescent probes (5 ng/ml final concentration).
“Cy3” fluorescence was applied to all MLAKF probes (C01-
612/824/1125). For the double label experiment, the MLAKF
and ”Ca. Kentron” YE probes were labeled with “Cy3” and
“AF488”, respectively. Considering the disparity in the bacterial
abundance, the twoprobesweremixed invarious ratios (3.5ml Cy3-
C01-612/824:0.5 ml AF488-chrCa and 2 ml Cy3-C01-824: 2 ml
AF488-chrCa) when applied in the experiment. The slides were
incubatedat46°C for3h.Afterhybridization, the slidesweredipped
in awashing buffer (20mMofTris-HCl at pH8.0, 450mMofNaCl,
0.01% SDS) for 15 min at 48°C and then washed in chilled distilled
water three times for 30 s. The specimens on the slides were covered
with anti-fademountingmedium (Beyotime, China) andDAPI (50
ng/ml) for 5 min in darkness prior to observations under an
epifluorescence microscope (Olympus BX61, Japan) using a
SPOT RT3 digital camera (SPOT Imaging Solutions, Sterling
Heights, US) and mercury lamp accessories (Olympus U-RFL-T,
Japan). Photomicrographs were colored using Image-pro plus 5.1.
RESULTS

Morphological Description of the Host
The size of the host ciliate was 200-460 × 16-36 mm in vivo, with
a length:width ratio of 8-12:1 when fully extended (n=20;
TABLE 1 | Oligonucleotide probes used in FISH for the detection of the MLAKF bacteria and “Candidatus Kentron”.

Probe Sequence (5′ - 3′) Specificity Data source

C01-612 TTCGAGCCGTTGAAACTG Bacteroidetes, Muribaculaceae Present study
C01-824 AGAATGATCCCTGAGTGA Bacteroidetes, Muribaculaceae Present study
C01-1125 GTTGCTAACAGGTCAGGC Bacteroidetes, Muribaculaceae Present study
chr4Ca CCGAGGATGTCAAAAGCAGG Gamma, Ca. Kentron Seah et al., 2017
June 2022 | Volume 9
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SD=71.5 and 7.8 for the length and width, respectively). The
cells were highly flattened and had long ribbon shapes
(Figure 1A). The body was curved (Figure 1A). The cells
crawled along the bottom of the petri dish and attached to the
substrate when stimulated. The ciliate had no cytostome.
Nearly the entire dorsal surface of the cell was covered by
rod-shaped bacteria that attached to the host erectly with one
end (Figures 1B–E). Refractile globules (approximately 1 mm
in diameter) were found within nearly all the rod-shaped
bacteria (Figures 1C, D). The ventral side of the ciliates
showed no symbiotic bacteria (Figure 1E).
Phylogenetic Analyses of the Host
The 18S rRNA gene sequence of Kentrophoros flavus YE was
deposited in the GenBank database with the accession number
OM421748. The acquired 18S rRNA gene fragment was 1566 bp
long and had a GC content of 48.98%. The BLAST search on
NCBI showed that this 18S rRNA gene fragment had the highest
identity (99.68%) with that of the K. flavus isolate QD (the
accession number FJ467505) (Gao et al., 2010). The ML and BI
trees based on the 18S rRNA gene showed identical topologies
Frontiers in Marine Science | www.frontiersin.org 5
(Figure 2) in which the new sequence of K. flavus YE clustered
with two species, the K. flavus QD and one isolate of K. gracilis,
with high support from the ML (97%) and BI (1.00).

Diversity of Bacteria Associated With
Kentrophoros flavus YE, Revealed by
Clone Library and PacBio Sequencing
A total of 46 clean 16S rRNA gene sequences were obtained from
the clone library technique and were assigned to 17 OTUs
(Figure 3). Proteobacteria accounted for a sizable proportion
of the assemblages (80.43%, 37 sequences). The most abundant
OTU was affiliated with the genus “Candidatus Kentron”
(41.30%, 19 sequences). The other OTUs comprised only a few
sequences that were closely related to the genera Thalassolituus
(10.87%, 5 sequences), Neisseria (8.7%, 4 sequences), Escherichia
(4.35%, 2 sequences), Sphingobium (4.35%, 2 sequences),
Streptococcus (4.35%, 2 sequences), and “Candidatus
Nitrososphaera” (4.35%, 2 sequences).

A total of 6154 and 4729 clean CCS reads were generated
from the PacBio sequencing data for the two ciliate individuals,
the total of which was clustered to 121 OTUs (Figure 4). Based
on the total reads, the phylum Proteobacteria accounted for a
considerable proportion of the assemblages (72.12%), followed
by Bacteroidetes (10.63%) and Firmicutes (9.78%). The top three
FIGURE 1 | Photomicrographs of Kentrophoros flavus YE from life. (A) Typical individual showing fold-over shape while gliding on the substrate; (B) showing the
dense rod-shaped bacteria on the cell surface; (C) showing refractile globules within the rod-shaped bacteria; (D) details of the body margin showing rod-shaped
bacteria (arrows); and (E) folded individual shows symbiotic bacteria on only one side (arrows). Scale bars = 100 mm (A); 30 mm (B, E); 5 mm (C, D).
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FIGURE 2 | Maximum likelihood (ML) tree based on the 18S rRNA genes showing the positions of Kentrophoros flavus YE (in red) with a GTR + I + Г model. The
numbers on the nodes represent the bootstrap values of the ML and the posterior probability of the Bayesian inference (BI). The black dot on the node represents
the bootstrap value >95%. The species marked with blue asterisks have been reported with thiotrophic ectosymbionts. GenBank accession numbers are given
following the species names. All branches are drawn to scale.
FIGURE 3 | Relative abundances of the bacterial major taxa in Kentrophoros flavus YE are suggested by the clone library data. Members of the genus, “Candidatus
Kentron”, are shown as the most frequently occurring bacteria.
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abundant bacterial orders were “Ca. Kentron” (53.89%),
Bacteroidales (10.63%), and Pseudomonas (6.63%). The
measurable OTUs (>2% relative abundance) were affiliated
with 7 genera: “Ca. Kentron” (53.89%), Muribaculaceae-like
bacteria (the formerly S24–7 group of Bacteroidales) (10.34%),
Psychrobacter (5.53%), Cutibacterium (4.73%), Lactobacillus
(3.74%), Staphylococcus (3.07%), and Thalassolituus (2.01%).
Of the different ciliate individuals, the diversity of the most
least abundant OTUs (<10%) varied obviously, for example,
Psychrobacter (5.53% vs. 0.01%), Cutibacterium (4.32% vs.
0.41%), Lactobacillus (2.26% vs. 1.48%), Staphylococcus (2.69%
vs. 0.38%), and Thalassolituus (1.86% vs. 0.15%). Nevertheless,
the OTUs affiliated with “Ca. Kentron” andMuribaculaceae-like
Frontiers in Marine Science | www.frontiersin.org 7
bacteria consistently occurred with the highest proportions in
both individuals (Figure 4). Sequence of the former was nearly
identical to the OTU affiliated with “Ca. Kentron” revealed in the
Clone Library (differed by two bases). Accordingly, we named
the two consistently occurring OTUs “Ca. Kentron” YE and
“Muribaculaceae-like bacteria associated with K. flavus”
(MLAKF). For the measurable OTUs in the PacBio data, the
sequence length, GC content of the representative 16S rRNA,
and the closely related sequences in the NCBI database gene
fragments are provided in Table 2.

The 16S rRNA gene sequences of “Ca. Kentron” YE (derived
from the Clone Library and the PacBio platform) and MLAKF
were deposited in the GenBank database with accession numbers
FIGURE 4 | Relative abundances of the bacterial major taxa in Kentrophoros flavus YE, inferred by the PacBio data. Note that the genera, “Candidatus Kentron”
and Muribaculaceae-like bacteria, are shown as the most frequently occurring taxa. A01 and C01 represent different individuals of Kentrophoros flavus YE.
TABLE 2 | Details of 16S rRNA gene fragments of “Ca. Kentron” YE and the measurable bacterial OTUs revealed by PacBio sequencing.

OTU name OTU
abundance

Sequence
length

GC
content

Closely related sequences (Genbank
accession number) and identity

Closely related known species (Genbank acces-
sion number) and identity

Ca. Kentron YE OTU
clone library

41.30% 1541 56.85% Ca. Kentron H (LT622015) 95.43% Ca. Kentron H (LT622015) 95.43%

Ca. Kentron YE OTU
PacBio

53.89% 1510 56.62% Ca. Kentron H (LT622015) 95.26% Ca. Kentron H (LT622015) 95.26%

MLAKF 10.34% 1480 56.69% Uncultured bacterium from environmental
samples (EF406613) 98.58%

Duncaniella sp. C9 (MK521457) 96.83%

OTU-Psychrobacter 5.53% 1500 52.40% Uncultured bacterium from environmental
samples (KC502874) 99.87%

Psychrobacter alimentarius (JX514419) 99.86%

OTU-Cutibacterium 4.73% 1486 57.13% Uncultured bacterium from environmental
samples (MK372587) 99.93%

Cutibacterium acnes (KF933802) 99.53%

OTU-Lactobacillus 3.74% 1529 53.83% Uncultured bacterium from environmental
samples (FJ880299) 99.61%

Limosilactobacillus reuteri (MN537548) 99.54%

OTU-Staphylococcus 3.07% 1512 51.32% Staphylococcus hominis (MH665980) 99.73% Staphylococcus hominis (MH665980) 99.73%
OTU-Thalassolituus 2.01% 1500 53.46% Uncultured bacterium (FJ403082) 98.8% Thalassolituus oleivorans (KF170318) 97.78%
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OM501125, OM501126, and OM468468. The read sequences
derived from the PacBio sequencing were also deposited in
GenBank, with the bioproject number PRJNA801354.
Phylogenetic Analyses of “Ca. Kentron”
YE and the OTU MLAKF
Phylogenetic analyses based on the 16S rRNA genes were
performed to assess the accurate affiliations of the OTU “Ca.
Kentron” YE (Figure 5) and the OTU MLAKF (Figure 6). In
the phylogenetic trees, “Ca. Kentron” YE fell into the clade
of the genus “Ca. Kentron” , belonging to the class
Gammaproteobacteria (Figure 5). The BLAST search on the
NCBI showed that this 16S rRNA gene fragment had the highest
identity (95.43%) with that of “Ca. Kentron” H (accession
number LT622015) (Seah et al., 2017). The OTU MLAKF fell
into the family Muribaculaceae in phylum Bacteroidetes (100%
ML/1.00 BI) (Figure 6). Within Muribaculaceae, MLAKF
appeared to be a distinct taxon, as a sister branch to a clade
comprising Duncaniella species and several uncultured bacteria
(98% ML/1.00 BI) (Figure 6).

Fluorescence In Situ Hybridization (FISH)
The newly designed probes C01-824 and C01-612 for OTU
MLAKF have been shown in silico to be highly Muribaculaceae
specific in the SILVANR99 database (accessedMarch 2022). C01-
824 completely matched the family Muribaculaceae (126/126).
C01-612 primarily matched the familyMuribaculaceae (151/154),
except for one sequence of the familyRikenellaceae (Bacteroidetes)
and two sequences of Firmicutes (Bacteria). The third probe, C01-
1125, was more MLAKF-specific but matched a smaller range of
Frontiers in Marine Science | www.frontiersin.org 8
Muribaculaceae (62/72). It alsomatched 10 sequences of the family
Prolixibacteraceae (Bacteroidetes) and one sequence of
Thiomicrospiraceae (Gammaproteobacteria). All matched non-
Muribaculaceae families above were not detected in our clone
library (Figure 3) and PacBio data (Figure 4), implying their
absence in the samples. Compared to the 16S rDNA of “Ca.
Kentron” YE, the three probes C01-612, C01-824, and C01-1125
were mismatched by 6, 7, and 7 sites, respectively, excluding the
possibility of nonspecific binding to “Ca. Kentron” YE.

The three probes were applied separately to a total of 10 cells of
K. flavus (4 cells with C01-612, 3 with C01-824, and 3 with C01-
1125). Strong positive signals were observed on all specimens, with
rod-shaped structures distinguishable on several slides
(Figures 7C, G, K; Figures 8C, H, M). The overlays of the
DAPI and probe’s signals showed that the MLAKF bacteria
were primarily located on the surface of the ciliate cells
(Figures 7D, H, L). To distinguish MLAKF and “Ca. Kentron”
YE, double-label experiments were conducted on the same ciliate
with specific probes labeled with different fluorophores (Figure 8).
For two sets of probe combinations, namely C01-612 + chr4Ca
and C01-824 + chr4Ca, the red fluorescence (Cy3) of MLAKF
(Figures 8C, H, M), and the green ones (AF488) of “Ca. Kentron”
YE (Figures 8D, I, N) were simultaneously observed, both
appearing on the host’s surface. Negative control was conducted
by using the non-sense probe NON338 (Supplementary Figure
S1) in the FISH protocol, in which neither Cy3/AF488
fluorescence nor autofluorescence could be observed. Overlays
of the signals on the same cell showed that the MLAKF and “Ca.
Kentron” YE were mixed but were distinguishable from each
other, with the former appearing more peripheral on the ciliate’s
cell surface (Figures 8E, J, O).
FIGURE 5 | Maximum likelihood (ML) tree based on the 16S rRNA genes showing the positions of “Candidatus Kentron” YE (in red) with a GTR + I + Г model. The
numbers on the nodes represent the bootstrap values of ML and the posterior probability of the Bayesian inference (BI). The black dot on the node represents the
bootstrap value > 95%. Genbank accession numbers are given following the species names. All branches are drawn to scale.
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DISCUSSION

Comparison of the K. flavus YE and “Ca.
Kentron” YE with Similar Species
The newly obtained 18S rRNA gene sequence for Kentrophoros
flavus YE was closely clustered with Kentrophoros gracilis and
Kentrophoros flavus (97%ML and 1.00 BI in both, Figure 2). In a
comparison of the primary sequences, K. flavus YE differed from
K. flavus and K. gracilis by 4 and 5 sites, respectively. In vivo, the
Yantai populations matched the K. flavus population isolate in
Qingdao (Xu et al., 2011) in terms of body shape and general
appearance. In addition, the living cell characteristics of K. flavus
YE were different from the original description of K. gracilis (Xu
et al., 2011) in cell size (200–460 × 16–36 mm vs. 250–600 × 30–
60 mm) and shape (K. gracilis was more elongated). The cells of
K. flavus YE we observed were ciliated on the ventral side and
contained ectosymbionts on the dorsal side (Figure 1E)
corresponding to the “open” type among the four different
body involution types recognized by Seah et al. (2017) for the
genus Kentrophoros.

The OTU “Ca. Kentron” YE always displayed the highest
proportion (41.3% in the clone library data and 53.89% in the
PacBio data) among theK. flavus-associating bacteria (Figures 3, 4).
This aligns with the previous study that used the meta-genomic
technique to detect the genus “Ca. Kentron” in 13 Kentrophoros
morphospecies (Seah et al., 2017). Compared with the most similar
relative, “Ca. Kentron”H (Table 2), “Ca. Kentron” YE was different
by 70 bases in the primary 16S rRNA sequence, indicating that “Ca.
Frontiers in Marine Science | www.frontiersin.org 9
Kentron” YE may represent a new ectosymbiotic species of the
genus “Ca. Kentron”.

Potential Roles of The Newly
Detected MLAKF
As seen from the PacBio results (Figure 4), the OTU MLAKF
accounted for the second-largest number (10.34%, approximately
1125 reads) among the associated bacteria in two K. flavus
individuals. On 10 host cells that were sampled on different
dates, the FISH results with three specific probes all produced
positive signals of MLAKF on the surface of K. flavus (Figures 7C,
G, K; Figures 8C, H, M), suggesting that their presence on the
ciliate was relatively stable.

The 16S rRNA gene sequence of MLAKF was 21 bases
different from an uncultured bacterium with 98.58% identity
(Table 2), and 47 bases were different from the most similar
species Duncaniella sp. C9 with 96.83% identity (accession
number: MK521457). Combined with its distinct position in
the phylogenetic trees (Figure 6), this suggests that MLAKF
should represent a new bacterial species in the family
Muribaculaceae. The family Muribaculaceae comprises mainly
molecular taxa, which are known as prevalent and abundant
bacterial components in the mammal gut microbiome
(Lagkouvardos et al., 2019). Members of Muribaculaceae have
been widely detected in the intestines of mice, humans,
ruminants, and homeothermic animals (Van Valkenburgh,
1991; Salzman et al., 2002; Lagkouvardos et al., 2016;
Lagkouvardos et al., 2019; Miyake et al., 2020), with only a few
FIGURE 6 | Maximum likelihood (ML) tree based on the 16S rRNA genes showing the positions of MLAKF (in red) with a GTR + I + Г model. The numbers on the
nodes represent the bootstrap values of the ML and the posterior probability of the Bayesian inference (BI). The black dot on the node represents the bootstrap
value > 95%. Genbank accession numbers are given following the species names. All branches are drawn to scale.
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species abundant in the natural environment, including manure,
wastewater treatment plants, and coral reefs (Lagkouvardos et al.,
2019). Our study adds to this list but with another scenario.
Muribaculacid bacteria are abundant on the surface of the
ciliated protist K. flavus and merge with thiotrophic
ectosymbionts. This is the first time a muribaculacid bacterium
has been found to be consistently associated with unicellular
eukaryotic organisms.

It is worth noting that MLAKF was consistently present in large
numbers on the cell surface of the host (Figure 7), emerging with or
onanoutlayerof the ectosymbiotic “Ca. Kentron”YE(Figure8).The
two symbionts and the ciliate host may have formed a three-partner
consortium. First, MLAKF may offer extra organic carbon for the
host-symbiont system. Genomic studies of “Ca. Kentron” have
revealed that “Ca. Kentron” lacks genes encoding canonical
enzymes for autotrophic CO2 fixation, despite being a food source
for Kentrophoros (Seah et al., 2019). It has been suggested that “Ca.
Kentron” relies more on the uptake of exogenous organic substrates,
heterotrophic carboxylation, and the recycling of host waste for
growth (Seah et al., 2019). Extra energy and organic carbon sources
should be required for the “Kentron-Kentrophoros” symbiote, and
these shouldcome fromtheenvironmentormicrobial activities (Seah
Frontiers in Marine Science | www.frontiersin.org 10
et al., 2019). Coincidently, bacteria of Muribaculaceae have been
predicted to play important roles in degrading dietary carbohydrates
in the animal gut (Lagkouvardos et al., 2019). Genomic studies on a
wide range of muribaculacid members have highlighted their
prevalent versatility in degrading complex carbohydrates, benzoate
resistance, and nitrogen utilization (>90% prevalence) (Ormerod
et al., 2016; Lagkouvardos et al., 2019). Therefore, it is possible that
MLAKF on the ciliate cells may play similar roles, degrading a wide
rangeof substrate in the sediment (thismight also includehostwaste)
for growth, whereby the bio-product may provide accessible organic
carbon for “Ca.Kentron”. Simultaneously, MLAKF themselves may
offer an extra food source for the ciliate to support the overall growth
of the host-symbiont system.

Second, it is known that Kentrophoros likely shuttles between
oxic and anoxic zones in marine sediment with the ectosymbionts
(Fenchel and Finlay, 1989; Seah et al., 2019). Under anoxic
conditions, thiotrophic bacteria would not completely oxidize
sulfide to sulfate, leading to less efficient energy generation (Seah
et al., 2019). MLAKF may contribute as a compensated food
source under anoxic conditions. Members ofMuribaculaceae have
been revealed to be well equipped with anti-oxygen strategies to
support potential microaerobic growth (Ormerod et al., 2016).
FIGURE 7 | Micrographs of K. flavus with MLAKF. (A, E, I) Microphotographs of the fixed cells in the bright field; (B, F, J) DAPI staining; (C, G, K), and
fluorescence in situ hybridization (FISH) using Cy3-C01-612 (C), Cy3-C01-824 (G), and Cy3-C01-1125 probes (K); (D, H, L) overlay of the DAPI and FISH. Scale
bars = 50 mm (A–L). The result for C01-824 was derived from a double-label experiment with a probe solution of 3.5 ml of Cy3-C01-824 plus 0.5 ml of AF488-
chrCa, while others were generated from a single-probe (4-ml probe solution) hybridization.
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Nevertheless, the nature of the relationship between the MLAKF
bacterium, “Ca. Kentron” YE, andK. flavus remains to be resolved,
and single-cell genome sequencing can be a powerful tool for
revealing the interactions between ciliated protists and their
bacterial symbionts (Martinez-Garcia et al., 2012).

Higher Bacterial Diversity Potentially
Associated With K. flavus
Aside from the thiotrophic bacteria “Ca. Kentron” YE, we
detected a high diversity of associated bacteria using 16S
rDNA-based approaches (Figures 3 and 4; Table 2). This
result accords with a previous morphological study of the
species K. latum that recorded ectosymbiotic spirochaetes and
intracellular prokaryotic symbionts (Raikov, 1971). The
existence of particles adhering to thiotrophic bacteria has also
been observed (Fenchel, 1969; Fenchel and Finlay, 1989) (e.g.,
diatoms and other ingested particles within Kentrophoros),
which may be another explanation for the high bacterial
diversity being detected. Except for the overwhelming OTU
“Ca. Kentron” YE, the revealed diversity of the associating
bacteria in K. flavus was variable between the clone library and
PacBio sequencing (Figures 3, 4). This might be attributable to
the significant difference in sequencing depths between the two
techniques (46 clones vs. 10,883 CCS).
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In addition to the consistently associated MLAKF bacterium,
the comprehensive sequencing by the PacBio platform also
detected OTUs related to members in the genera Psychrobacter,
Cutibacterium, Lactobacillus, Staphylococcus, and Thalassolituus,
all with measurable abundance (2–5.53%) (Figure 4; Table 2).
Most of these 16S rDNA fragments are most similar to the known
species in GenBank (Table 2), indicating that these might
represent common taxa. Among these, members of
Cutibacterium and Psychrobacter are obligate symbionts in
human skin and the anogenital gland of captive pandas (Scholz
and Kilian, 2016; Zhou et al., 2021), suggesting their symbiotic
potential. However, the sequences might also derive from particles
adhering to “Ca. Kentron”, as assumed by previous morphological
studies (Fenchel, 1969). Because of the variable result among the
different individuals and a lack of FISH analysis, we must refrain
from predicting the stable existence or roles of these OTUs.
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