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A complex and dynamic microbiota exists in the intestine of fish and plays vital roles in host
growth and health. However, the interactions between host originated beneficial bacteria/
probiotics with gut microbiota are still largely unknown. The aim of the study is to
investigate the impact of two host-derived probiotics, Lactococcus petauri LF3 and
Bacillus siamensis LF4, on the intestinal microbiota of juvenile Japanese seabass
(Lateolabrax japonicus). Fish were fed the control diet (C), L. petauri LF3 (LF3) and B.
siamensis LF4 (LF4) supplemented diets for 6 weeks, and the intestinal microbial
composition and function were evaluated by using high-throughput sequencing
technology. The relative abundances of certain phyla changed significantly in the
probiotic-supplemented groups, Fusobacteria and Proteobacteria decreased, while
Firmicutes and Bacteroidetes increased apparently in the groups LF3 and LF4. The
apparently increased relative abundances of intestinal possible beneficial
Christensenellaceae_R-7_group and Lactobacillus were observed in the groups LF3
and LF4, especially in the group LF4. Compared with the control group (C), Chao1,
Ace and Shannon indices enhanced remarkably in groups LF3 and LF4. Intestinal
microbiota was determined to have more similarity and lower individual differences
based on beta diversity analysis including PCoA, NMDS and UPGMA clustering tree in
groups LF3 and LF4 compared with the control group (C). Additionally, Firmicutes as a
significant biomarker emerged in the groups LF3 and LF4 compared with the control. The
intestinal microbial functions (amino acid metabolism, carbohydrate metabolism, energy
metabolism, membrane transport, etc.) did not alter among all groups based on level-2
KEGG pathways. In summary, host- derived probiotic L. petauri LF3 and B. siamensis LF4
shape the intestinal microbial composition, but not function in juvenile Japanese seabass
(L. japonicus).

Keywords: host-derived probiotics, intestinal microbiota, diversity, functions, Lateolabrax japonicus
in.org April 2022 | Volume 9 | Article 8786331

https://www.frontiersin.org/articles/10.3389/fmars.2022.878633/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.878633/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.878633/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.878633/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.878633/full
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jmusunyunzhang@163.com
https://doi.org/10.3389/fmars.2022.878633
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.878633
https://www.frontiersin.org/journals/marine-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.878633&domain=pdf&date_stamp=2022-04-19


Yang et al. Probiotics Shape Microbial Composition
INTRODUCTION

The fish intestinal microbiota plays vital roles in host growth and
health, and has co-evolved with the host in a mutually positive
way (Wang et al., 2018). Intestinal microbiota is primarily
affected by host phylogeny (Cornejo-Granados et al., 2017) and
partly associated with growth stages, ambient condition and diet
(Wang et al., 2018). With the rapid development of the modern
aquaculture industry, intestinal microbial dysbiosis, immune
deficiency and mass outbreak of diseases (e.g., enteritis and
red-skin disease) are frequently appeared in fish because of the
accumulation of opportunistic pathogens and/or other viruses
under inteansive farming model (Chen et al., 2021). Previous
studies have shown that maintaining the intestinal microbial
homeostasis will greatly benefit the growth, immunity, and
disease resistance in fish (Hoseinifar et al., 2018; Wang et al.,
2019; Yang et al., 2019). Thus, exploring useful approaches to
maintain the intestinal microbial homeostasis in fish will be
conducive to improve the production, and effectively decrease
the abuse of antibiotics in aquaculture.

Dietary supplementation of probiotics could modulate intestinal
microbiota, improve production performance, immune response
and disease resistance in many fish species, such as Asian seabass
larvae (Lates calcarifer) (Masduki et al., 2020), grouper (Epinephelus
coioides) (Yang et al., 2019), common carp (Cyprinus carpio L.)
(Meng et al., 2021), tilapia (Oreochromis niloticus) (Li et al., 2019),
snakehead (Channa argus) (Kong et al., 2021), and so on. Recently,
probiotics asmeans of intestinal healthmaintain anddiseases control
in aquaculture have been reviewed extensively (Lazado et al., 2015;
Hoseinifar et al., 2018; Doan et al., 2020; Teame et al., 2020; Zhang
et al., 2020; Simon et al., 2021). The precise mechanism by which the
positive performance of probiotics in aquaculture havemust bemore
comprehensive and have not been well studied. So far as we know,
one of the most recognized mechanisms is that probiotics can
improve fish intestinal homeostasis and health via re-shaping the
intestinal microbiota (Dawood et al., 2019; Doan et al., 2020; Simon
et al., 2021; Guo et al., 2022). Nevertheless, information pertaining to
interactions between host-derived probiotics and intestinal
microbiota (including microbial composition and function) are still
limited in teleost fish (Kong et al., 2021).

Japanese seabass, Lateolabrax japonicus, is one of the most
economically important marine fish in China, and the annual
production has reached 195, 246 tons in 2020 (China Fishery and
Statistics Yearbook, 2021). Previous study has evaluated the
application of five possible host-derived probiotic strains (Bacillus
siamensis LF4, Lactococcus petaurid LF3, Micrococcus yunnanensis
LD5,Micrococcus aloeverae LC3,Mitsuaria chitosanitabida LD3) in
juvenile Japanese seabass (L. japonicus). The results demonstrated
that probiotic L. petauri LF3 and B. siamensis LF4 could effectively
improve growth performance, innate immunity, antioxidant activity
and ammonia tolerance (Yang et al., 2021). To the best of our
knowledge, limited information is still available about the impact of
host-derived probiotics on intestinal microbiota in Japanese seabass.
In this study, therefore, the intestinal microbial community and
putative function of juvenile Japanese seabass in response to host-
derived probiotic L. petauri LF3 and B. siamensis LF4 were analyzed
and characterized by using high-throughput sequencing technology.
Frontiers in Marine Science | www.frontiersin.org 2
MATERIALS AND METHODS

Probiotic Strains and Experimental
Diets Preparation
Two host-derived probiotics L. petauri LF3 (GenBank number
MZ618882) and B. siamensis LF4 (GenBank number MZ683191)
isolated from the gut of Japanese seabass (L. japonicus) were
selected and applied for this study. The control diet was
formulated with ingredients as described by our previous study
(Yang et al., 2021), For probiotic-supplemented diets
preparation, two probiotic strains L. petauri LF3 and B.
siamensis LF4 were inoculated into nutrient broth liquid, the
culture was incubated at 30°C for 24 h. Bacterial cells were
centrifuged, washed, and re-suspended in sterile phosphate
buffered saline (PBS) before being surface spray to the control
diet and air-dried for 24 h to obtain approximately 1 × 108 CFU
g−1 of diets. All diets were stored at 4°C until use. To ensure the
viability of dietary probiotics in the whole feeding trial (6 weeks),
new diets were prepared every 3 weeks.

Experimental Fish and Sampling
Healthy Japanese seabass, L. japonicus, were transferred from a
commercial farm to the Aquaculture Research Aquarium of
Jimei University, China. After acclimation for two weeks, fish
(average weight 23 g) were divided into three groups with
triplicate (three tanks per group) and hand-fed control diet
(C), L. petauri LF3 (LF3) and B. siamensis LF4 (LF4)
supplemented diets to apparent satiation at 08:30 a.m. and
17:30 p.m. for 6 weeks. Fish husbandry management was in
line with Yang et al. (2021).

At the end of the feeding trial, seabass was anaesthetized with
buffered MS-222 (CAS:886-86-2) after 24 h of starvation.
Subsequently, four seabass per tank were collected randomly
under sterile environment, thus total twelve seabass of each
group were collected. Intestines were separated and washed
with sterile PBS (P7208B; Beijing LABLEAD, Inc., Beijing,
China). Then, two intestines were pooled together as one
sample to decrease individual variation, thus total six samples
of each group were collected into 5.0 mL storage cryogenic tubes
and immediately put into liquid nitrogen for subsequent
DNA extraction.

Intestinal Microbiota DNA Extraction
Total DNA were extracted from each intestinal sample following
the guideline of Bacterial Genomic DNA Extraction Kit (D2100;
Beijing Solarbio Science & Technology Co., Ltd., China). The
quality, integrity and concentration of extracted DNA were
determined with 1% agarose gels and NanoDrop One (Thermo
Fisher Scientific, USA) (Yang et al., 2019).

16S rRNA Amplification and
High-Throughput Sequencing
Qualified DNA were amplificated and then performed high-
throughput sequencing by Biomarker Technologies (Beijing,
China). In brief, the V3–V4 region of 16S rRNA gene was
amplificated using primers 338F (5’-ACTCCTACGGGAG
April 2022 | Volume 9 | Article 878633
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GCAGCA-3) and 806R (5’-GGACTACHVGGGTWTCTAAT-
3’). The steps of PCR amplification as follows: one pre-
denaturation step at 98°C for 2 min, followed by 30 cycles at
98°C for 30 s, 50°C for 30 s and 72°C for 60 s, then an extension
step at 72°C for 5 min, followed by a final step at 4°C for ∞. The
amplified products were purified and quantified, and then high-
throughput sequencing based on Illumina HiSeq 2500 platform
(Biomarker Biotechnology Co., Ltd., Beijing, China). Small
fragment libraries were established for 16sRNA sequencing
using the paired-end sequencing method.

Analyzation of Microbial Composition
and Diversity
Information of high-throughput sequencing were pre-treated via
trimming the low-quality sequences and adaptors to obtain
effective tags. The final data were clustered in same operational
taxonomic units (OTUs) under 97% similarity. Normalization of
the OTUs abundance data was treated based on taxonomic
database of Silva and Unite.

For each sample, alpha diversity and beta diversity were
determined to exploring the effects of probiotic diets. To assess
the changes in microbial community structure, differentially
abundant taxa were identified in all groups (C, LF3, and LF4).
In order to estimate the response of intestinal microbiota to diets,
the differences of microbial abundance between the control
group (C) and the probiotic groups (LF3 and LF4) were
compared by the linear discriminatory analysis (LDA) effect
size (LEfSe) method. Microbial composition and diversity
analysis were performed on the platform BMKCloud (www.
biocloud.net).

Intestinal Microbiota Function Prediction
By comparison of high-throughput sequencing data in different
groups, the functional general composition could be found, and
then variations of function could be analyzed and predicted.
Detailly, the OTUs-table were normalized, and then KEGG and
COG family information corresponded with OUTs could be
obtained, resulting in that each OTUs existed a corresponding
Greengene ID. Finally, relative abundances of different function
could be calculated according to information in KEGG database.
All above steps were performed with PICRUSt 2 software.

Statistical Analysis
Alpha diversity parameters (Chao1, Ace, Shannon and Simpson
indices) were analyzed by one-way analysis of variance followed
by Duncan’s multiple-range comparison in SPSS (Version 26.0;
IBM Corporation, USA). The significant difference was
considered when P value < 0.05. All results were exhibited as
mean ± standard error.
RESULTS

Overview of High-Throughput Sequencing
A total of 1,437,027 PE Reads and 1,407,310 raw tags were
generated from the 18 intestinal samples, and 1,364,142 effective
Frontiers in Marine Science | www.frontiersin.org 3
tags were obtained after dislodging adaptors. The effective rate was
ranged from 87.94% to 97.01% across the 18 intestinal samples.
The rarefied curves for observed species number tended to
approach the saturation plateau (Figure S1), indicating that
sequencing depth was sufficient and sequencing data was
credible. The sequencing information have been submitted into
Sequence Read Archive (Accession Number, PRJNA759698).

To facilitate downstream analyzation, all effective tags were
normalized, and all normalized tags in 18 intestinal samples were
clustered into 2420 OTUs based on 97% similar degree. The
Venn diagram displayed that 170 OTUs were shared by the three
groups, and the numbers of unique OTUs in groups C, LF3 and
LF4 were 2, 1 and 0, respectively (Figure 1).

Alpha Diversity
The Good’s coverage values of all the samples were over 99.96%,
suggesting the adequate sampling of data and high sequencing
quality (Table 1). Compared with the control group (C),
intestinal microbiota richness (Chao1 and Ace) enhanced
remarkably in the probiotic treated groups LF3 and LF4 (P <
0.05), except Ace indice in group LF4. Administration of host-
derived probiotics resulted in improvement of Shannon indice,
and significant improvement were noticed in group LF4 (P <
0.05). No significant variation in Simpson indice was
documented between all groups (P > 0.05), although Simpson
indices exhibited apparent enhancement in two probiotic groups.

Beta Diversity
Beta diversity parameters, PCoA, NMDS and UPGMA clustering
tree at genus level based on binary_jaccard were used to analyze
the intestinal microbial similarity among three groups (Figure 2).
Regarding PCoA, the clusters of samples in the group C apparently
scattered on the coordinate axis, whereas the clusters of samples in
the groups LF3 and LF4 gathered on the lower left, especially that
in the group LF4 (Figure 2A). Similar phenomenon was also
observed in NMDS analysis (Figure 2B), and the Stress = 0.1163
(< 0.2), indicating that the NMDS data is credible. UPGMA
clustering tree based on genus level showed that a remarkable
separation between the group C and probiotic supplemented
groups, especially in group LF4 (Figure 2C).

Intestinal Microbial Composition
At phylum level, Fusobacteria, Proteobacteria and Firmicutes were
the three most dominant bacterial phyla, which accounted for
99.76%, 99.47% and 98.13% of the relative abundance in the
groups C, LF3 and LF4, respectively (Figure 3A). The other phyla
concurrently existed in the three groups, including Actinobacteria,
Bacteroidetes, Verrucomicrobia, Cyanobacteria, Spirochaetes and
Patescibacteria. The relative abundances of Fusobacteria and
Proteobacteria were lower in the groups LF3 and LF4 compared
with the group C, while apparently higher relative abundances of
Firmicutes, Actinobacteria and Bacteroidetes were observed in the
groups LF3 and LF4 (Figure 3B).

At genus level, the top 15 bacterial genera in the intestine of
seabass were present in Figure 3C. Cetobacterium, Plesiomonas,
Candidatus_Arthromitus, Aeromonas, Christensenellaceae_R-
7_group, and Lactobacillus were considered as core genera
April 2022 | Volume 9 | Article 878633
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with the relative abundances over 1%. As seen in Figure 3D,
groups LF3 and LF4 showed a slight reduction in the relative
abundances of Cetobacterium and Plesiomonas compared with
the control (C). On the contrary, enhanced relative abundances
of Candidatus_Arthromitus and Aeromonas was documented in
the group LF3 compared with the group C. Additionally, the
relative abundances of Christensenellaceae_R-7_group and
Lactobacillus increased markedly in the groups LF3 and LF4,
particularly in group LF4.

LEfSe Analyses
LEfSe analyses with LDA > 4 as the threshold were performed to
determine whether there were significant changes in taxon
abundance between control (C) group and probiotic groups
LF3 or LF4 (Figure 4). For classification of phylum, the
biomarkers emerging for the LF3 group indicated Firmicutes
Frontiers in Marine Science | www.frontiersin.org 4
was biomarkers for the group C, and family Clostridiaceae_1,
belonging to the phylum Firmicutes, had the highest LDA score
(5.08, Figure 4A). On the other hand, the biomarkers emerging
for the LF4 group also indicated Firmicutes was biomarkers for
the group C, and the highest LDA score of phylum Firmicutes
was 5.09 (Figure 4B).

Functional Prediction
Changed level-2 KEGG pathways with relative abundances over
1% were displayed in Figure 5. Among predicted functions,
Amino acid metabolism, Carbohydrate metabolism, Global and
overview maps, energy metabolism, membrane transport,
metabolism of cofactors and vitamin, and nucleotide
metabolism were the most dominant. Unexpectedly, there were
only slight alteration in the functions of intestinal microbiota in
the groups C, LF3 and LF4.
TABLE 1 | Alpha diversity indexes of intestial microbiota of Japanese seabass, L. japonicus.

Group Good’s coverage Richness Diversity

Chao1 Ace Shannon Simpson

Control 99.96 ± 0.00 139.98 ± 6.12a 148.67 ± 5.68a 1.06 ± 0.07a 0.44 ± 0.04
LF3 99.97 ± 0.01 180.59 ± 10.58b 192.43 ± 14.05b 1.51 ± 0.15ab 0.50 ± 0.05
LF4 99.98 ± 0.01 168.32 ± 2.28b 166.87 ± 1.40ab 2.16 ± 0.57b 0.54 ± 0.08
April 2022 | Volume 9 | Ar
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B

C

A

FIGURE 2 | Beta diversity of intestinal microbiota based on genus level. (A) Principal Coordinate Analysis (PCoA) against PC1 vs PC2 axes; (B) Non-Metric Multi-
Dimensional Scaling (NMDS) against NMDS1 vs NMDS2 axes; (C) UPGMA clustering trees. F1, F2, F3, F4, F5 and F6 are the six replicates of group C; B1, B2, B3,
B4, B5 and B6 are the six replicates of the group LF3; A1, A2, A3, A4, A5 and A6 are the six replicates of the group LF4.
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DISCUSSION

The application of probiotics in fish aquaculture has been
extensively reported, while limited information is available
about the interactions between host-derived probiotics and
intestinal microbiota (Kong et al., 2021). In this study, the
impact of host-derived probiotic L. petauri LF3 and B.
siamensis LF4 on intestinal microbiota in juvenile Japanese
Frontiers in Marine Science | www.frontiersin.org 6
seabass were analyzed by using high-throughput sequencing
technology. The intestinal microbiota of Japanese seabass (L.
japonicus) fed control or probiotic diets shared three dominant
phyla (Fusobacteria, Proteobacteria and Firmicutes), which had
been also reported as dominant phyla in the intestines of other
teleost fish, such as European seabass (Dicentrarchus labrax)
(Kokou et al., 2020; Wassef et al., 2020; Serra et al., 2021), Asian
seabass (Lates calcarifer) (Apper et al., 2016), grass carp
B

DC

A

FIGURE 3 | Relative abundances of intestinal microbiota at phyla (A) and genus (C) taxonomic levels in C, LF3 and LF4 groups. The changes of relative abundances
of dominant phyla (B) and genus (D).
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(Ctenopharyngodon idellus) (Shi F. et al., 2021), tilapia (O.
niloticus) (Adeoye et al., 2016; Li et al., 2019), orange-spotted
grouper (Epinephelus coioides) (Yang et al., 2019), and so on.
Overabundances of certain taxa led to intestinal microbiota
turning from balance to dysbiosis status, and then threaten
host well-being (Li et al., 2019; Yang et al., 2019; Serra et al.,
2021). In this study, the relative abundances of Fusobacteria and
Proteobacteria were decreased in Japanese seabass fed probiotic
diets. In line with the present study, decreased abundances of
Fusobacteria and/or Proteobacteria following probiotics
application were documented in Asian seabass (L. calcarifer)
(Masduki et al., 2020) and orange-spotted grouper (E. coioides)
(Yang et al., 2019). Inhibiting opportunistic pathogens
Fusobacteria and Proteobacteria overgrowth would create
redundant niches, which might benefit the growth of other
beneficial microbes (Xun et al., 2019; Tan and Sun, 2020; Shi
F. et al., 2021). On the other hand, the supplementation of host-
derived probiotics in diet (groups LF3 and LF4) apparently
enhanced the relative abundances of Firmicutes, Actinobacteria
and Bacteroidetes in this study. Firmicutes and Bacteroidetes
have been recorded previously as primarily beneficial phyla in
healthy Japanese seabass (L. japonicus) (Wang et al., 2017),
European sea bass (D. labrax) (Parma et al., 2019; Rimoldi
et al., 2020), common carp (Cyprinus carpio L.) (Meng et al.,
2021), and grouper (E. coioides) (Yang et al., 2019). Bacteria of
phylum Actinobacteria could produce a wide range of
exoenzymes and secondary metabolites (Ventura et al., 2007).
Frontiers in Marine Science | www.frontiersin.org 7
In particular, the genus Bifidobacterium, belonging to phylum
Actinobacteria, is an important lactic acid producer, which was
used as probiotic in aquaculture (Jha et al., 2015). This may
illustrate the better growth performance and feed utilization in
Japanese seabass fed probiotic L. petauri LF3 and B. siamensis
LF4 (Yang et al., 2021).

At the genus level, Japanese seabass fed with Lc. petaurid LF3
and B. siamensis LF4 containing diets showed lower relative
abundances of opportunistic pathogens such as Cetobacterium
and Plesiomonas, which might be partly contributed to the
improvement of growth performance and general health in
juvenile Japanese seabass (L. japonicus) (Yang et al., 2021). In
line with the present study, previous reports have showed that
lower abundances of Cetobacterium and Plesiomonas existed in
the intestine of healthier fish and benefited to host health due to
cooperative activity among commensal microbes (Miller et al.,
2006; Behera et al., 2018; Liu et al., 2021; Zhang et al., 2021). On
the other hand, higher abundances of intestinal possible
beneficial Christensenellaceae_R-7_group and Lactobacillus in
the phylum Firmicutes, which have been reported as beneficial
bacteria to improve growth performance, immunity, antioxidant
capability and other welfares in aquatic animals (Van Doan et al.,
2017; Zheng et al., 2017; Hoseinifar et al., 2018; Wang et al.,
2019), were presented in seabass fed with host-derived
probiotics, especially with B. siamensis LF4. The genus
Lactobacillus can produce high level of lactic acid, and then are
able to improve feed efficiency and alleviate metabolic damage by
B

A

FIGURE 4 | Lineages with linear discriminant analysis (LDA) score of the abundance of taxa. Only the taxa that LDA value above 4.0 are shown. (A) group C vs
group LF3; (B) group C vs group LF4.
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positively modulating gut microbiota (Hoseinifar et al., 2018;
Wang et al., 2019). In line with the current study, significantly
elevated abundances of beneficial microorganisms have been also
reported in probiotic Clostridium butyricum fed tilapia (O.
Frontiers in Marine Science | www.frontiersin.org 8
niloticus) (Li et al., 2019) and common carp (C. carpio L.)
(Meng et al., 2021). These results evidenced that beneficial
microorganisms were usually common members of the normal
microbiota in the fish gut, and under certain circumstances, the
B

C

A

FIGURE 5 | Predicted functions of intestinal microbiota in groups C, LF3 and LF4. (A) mean abundances of three groups; (B) abundance of each sample; (C) level-
2 KEGG pathways with relative abundances over 1%.
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higher abundances of these microorganisms could be partly
responsible for mucosal homeostasis and avoiding disease
happen (Hoseinifar et al., 2018; Yu et al., 2021). Interestingly,
seabass fed with Lc. petaurid LF3 demonstrated a sharp
increase in the relative abundances of Aeromonas, which is a
traditionally opportunistic pathogen in the intestines of aquatic
animals (Jiravanichpaisal et al., 2009; Zhu et al., 2016;
Chen et al., 2021). However, several studies have evidenced
that Aeromonas could be use as probiotic and improve growth,
immunity, and disease resistance in certain aquatic animals, such
as common carp (C. carpio) (Chi et al., 2014), grass carp
(Ctenopharyngodon idella) (Hao et al., 2017), Pacific white
shrimp (Litopenaeus vannamei) (Hao et al., 2014), and so on.
In general, these results illustrated that host-derived Lc. petaurid
LF3 and B. siamensis LF4 can positively remodel intestinal
microbial composition.

In the present study, the intestinal microbiota of fish fed
probiotics L. petauri LF3 and B. siamensis LF4 demonstrated
higher species diversity based on alpha diversity data (Chao1, Ace,
Shannon and Simpson indices), and more similarity and lower
individual differences based on beta diversity data (PCoA, NMDS
and UPGMA clustering tree). The results are in line with other
researches in snakehead fish (Channa argus) fed with two lactic
acid bacteria (Kong et al., 2021), and common carp (C. carpio L.)
fed with Clostridium butyricum (Meng et al., 2021). Generally,
high intestinal bacterial diversity reflect a well-development of the
host, as the increase of commensal microbial diversity and/or
species richness might lead to attenuated colonization resistance
against invading opportunistic pathogens, which have the
potential to cause infection of the intestine (Rimoldi et al.,
2020). In the current study, it is worth noting that probiotic L.
petauri LF3 and B. siamensis LF4 can improve intestinal microbial
diversities and meanwhile reduce individual differences, which
might partly explain the previous results that the two probiotic
strains facilitated growth performance, immune response, and
ammonia tolerance in juvenile Japanese seabass (L. japonicus)
(Yang et al., 2021). Similarly, higher and stabler intestinal
microbial diversities were detected in probiotics-treated fish
with improving growth, immunity and disease resistance (Kong
et al., 2021); (Meng et al., 2021).

In the present study, compared to the control group,
supplementation of host-derived Lc. petaurid LF3 and
B. siamensis LF4 led to biomarkers emerging, especially
phylum Firmicutes, as selected using LEfSe. In general,
phylum Firmicutes is a well recognized class of beneficial
microorganisms. Early researches have showed that bacteria
(i.e., genus Bacillus, Lactobacillus, Lactococcus, Enterococcus,
and Clostridium) in phylum Firmicutes can secretion
of various enzymes and decreasing the intestinal pH by
producing short-chain fatty acids (Dawood et al., 2019), which
can inhibit the proliferation of pathogenic bacteria and improve
intestinal microecology of aquatic animals (Hao et al., 2017;
Hoseinifar et al., 2018; Dawood et al., 2019; Li et al., 2019;
Wang et al., 2019; Yang et al., 2019; Meng et al., 2021). The
results of phylum Firmicutes significantly enriched by dietary
supplementation of host-derived probiotics again proved that
Frontiers in Marine Science | www.frontiersin.org 9
probiotics can increase the beneficial bacteria to achieve the
purpose of positively modulating intestinal microbiota of aquatic
animals (Hoseinifar et al., 2018; Wang et al., 2019; Yang et al.,
2019; Doan et al., 2020; Kong et al., 2021).

The NSTI values (0.19 ± 0.03) for seabass intestinal samples
in the present study were in line with those for red swamp
crayfish, Procambarus clarkii (0.171 ± 0.023) and pacific white
shrimp, Litopenaeus vannamei (0.18 ± 0.02) (Zeng et al., 2017;
Chen et al., 2021). It has been validated that PICRUSt 2 could
accurately predict the functions of seabass intestinal microbiota
(Chen et al., 2021). In this study, the dominated function of
Amino acid metabolism, Carbohydrate metabolism and
Global and overview maps were accurately predicted using
PICRUSt 2, which are associated strongly with seabass
digestion and absorption. Unexpectedly, the intestinal
microbial functions were stable among all groups, although
dietary supplementation with host-derived probiotics
remarkably changed the intestinal microbial community. In
agreement with the present study, the intestinal microbial
functions (including carbrohydrate transport and metabolism,
lipid transport and metabolism, and so on) were determined to
be almost similar in snakehead fish (C. argus) fed with a basal
diet or diets supplemented with 1.0 × 108 CFU/g of host-derived
probiotics (L. lacti L19, E. faecalis W24, L. lacti L19 + E. faecalis
W24 (Kong et al., 2021). However, these results contradict to
previous studies that the change of intestinal microbial
composition was associated with function change in aquatic
animals, such as zebrafish (Danio rerio) (Shi Y. Y. et al., 2021)
and turbot (Scophthalmus maximus) (Guo et al., 2022). Guo et al.
(2022) has reported that several pathways related to glycan, lipid
and amino acid metabolism upregulated in turbots (S. maximus)
fed with probiotic (strain B. coagulans G1902, unspecified
source). We hypothesized that this paradox might be caused
by the different probiotic species and source, and rearing
environment. Additionally, this study supported the hypothesis
that when the host is sufficiently healthy, the function of the
intestinal microbiota might maintain relative stability rather than
emerge significant changes (Fan and Pedersen, 2021).
CONCLUSION

Host-derived probiotic L. petauri LF3 and B. siamensis LF4
decreased opportunistic pathogenic Fusobacteria, Proteobacteria,
and Plesiomonas and apparently increased beneficial Firmicutes,
Bacteroidetes, and Lactobacillus in juvenile Japanese seabass (L.
japonicus). Dietary supplementation of host-derived probiotic L.
petauri LF3 and B. siamensis LF4 significantly improve the
intestinal microbial diversities and led to Firmicutes as a
significant biomarker emerge. However, the intestinal microbial
functions (i.e., amino acid metabolism, carbohydrate metabolism,
energy metabolism, etc.) did not alter by host-derived probiotics.
These results lay the necessary theoretical basis for the
development and application of host-associated probiotics in
Japanese seabass.
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