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Boron (B) and B isotopic compositions (d11B) in biogenic carbonates are useful

proxies for pH reconstruction in the ocean. However, high-resolution archives

are scarce due to associated sampling and analytical difficulty. In this study, a

modern long-lived massive coral skeleton (Porites lobata) from Lanyu Islet off

southeast Taiwan was drilled and used for high-resolution major/trace element

analyses, including trace elements B and d11B, as well as oxygen and carbon

isotopes, to investigate the associated environmental changes during 1991–

1997. To avoid complicated biological influence, the top-most tissue layer was

excluded in this study. The coralline records show a clear temporal trend in

metal/Ca-based sea surface temperatures (SSTs) on annual and monthly

timescales. In particular, the Mg/Ca-SSTs, the most sensitive temperature

proxy at the site, show a significant warming trend (+0.2°C year−1) during the

study period. On the other hand, subtle changes in the annual d11B record were

identified, corresponding to ~0.2 pH unit, which is comparable with other coral

records in the Pacific, e.g., the South China Sea (SCS), Guam Island, Flinders,

and Arlington Reef, as well as the in-situ seawater pH measurement at Hawaii

station. This corresponds to an acidification rate of ~0.25 pH unit 100 year−1,

similar to other coralline data, in-situ pH/pCO2 measurement, or model

predictions, and emphasizes the importance of ocean acidification due to

anthropogenic activities. Combined with the Mg/Ca-SST, the intra-annual data

show a clear seasonal cycle with higher pH in winter, consistent with the pCO2

at the oceanic surface. These chemical and isotopic results in corals conclude

that marine biogenic carbonates are informative for oceanic pH reconstruction

and can provide new insights into the relationships between climate changes

and environmental responses on the coast of Taiwan.
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Introduction

The evidence for climate change is unequivocal as the consensus

in the FourthAssessment Report of the Intergovernmental Panel on

Climate Change (IPCC) indicated (Hoegh-Guldberg et al., 2007;

Pachauri, 2008; IPCC, 2014; Liu et al., 2014). Various climaticmodel

predictions and proxy reconstructions suggest that the increase in

atmospheric CO2 relative to the pre-industrial era has already

caused ocean acidification due to the uptake of anthropogenic

CO2 (Caldeira and Wickett, 2003; Kasemann et al., 2009; Louvat

et al., 2011). This acidification is predicted to decrease the level of

carbonate saturation in seawater and lead to unfavorable living

conditions for marine organisms (e.g., coccolithophorids,

foraminifera, and corals) by disrupting the calcification processes

necessary for shell/skeleton growth (Orr et al., 2005).

Many isotopic compositions in coral skeletons are primarily

controlled by environmental parameters of ambient seawater,

and thus, the patterns in trace elements and isotope compositions

of fossil corals offer a robust approach to reconstruct the physical

and chemical properties of the ocean (Quinn and Sampson, 2002;

Cohen and McConnaughey, 2003; Pelejero et al., 2005; Ourbak

et al., 2006; Shimamura et al., 2008). Most coralline trace

elements are incorporated directly into aragonite skeletons

from ambient seawater (Reuer et al., 2003). The trace element

ratios of B, Mg, Sr, and U in coral skeletons can reflect faithfully

the seawater compositions and physical conditions during

calcification. The long residence times of B, Mg, Sr, and U

(>1 Ma) cause relatively homogeneous distributions of these

elements in the oceans (Allison and Finch, 2010). Also,

temperature or other environmental variables may regulate

trace element ratios in coral skeletons (Wei et al., 2000; Quinn

and Sampson, 2002; Ourbak et al., 2006). On the other hand, the

stable isotopes of oxygen (O) and carbon (C) in biogenic

carbonates can provide an accurate reconstruction of past

oceanic conditions (Hönisch et al., 2004; Reynaud et al., 2004;

Omata et al., 2005; Shimamura et al., 2008; Moyer and Grottoli,

2011). Several factors may influence the stable isotope

compositions in biogenic carbonates, such as isotopic

equilibrium (e.g., temperature), kinetic isotope effects (e.g.,

growth rate), and metabolic isotope effects (i.e., photosynthesis

and respiration) (Omata et al., 2005).

In the marine carbonate system, gaseous CO2 dissolves into

surface seawater in proportion to the partial pressure of CO2

(pCO2). To understand any changes in the system, at least two of

the co-varying parameters of pH, [CO2], [HCO3
−], [CO3

2−],

total alkalinity (TA), and total dissolved carbon (DIC) need to be

constrained. By using these parameters, the state of the

carbonate system can be reconstructed for the evaluation of

past changes in saturation state with respect to atmospheric

CO2. In this study, we focus on seawater pH reconstruction

using boron isotopic composition in coral skeletons. There are

many studies that used boron isotopic composition in biogenic
Frontiers in Marine Science 02
carbonate to reconstruct past oceanic pH (Spivack et al., 1993;

Gaillardet and Allègre, 1995; Pearson and Palmer, 2000; Sanyal

et al., 2000; Hönisch et al., 2004; Hönisch et al., 2007; Foster,

2008; Liu et al., 2009). This application depends on the degree of

isotopic fractionation between the two aqueous species, boric

acid B(OH)3 and borate ion B(OH)4
−, in seawater, as well as the

pH dependence on the relative proportions of the two species

(Figure 1), and 20‰ fractionation between the two dissolved

boron species was experimentally calculated by Kakihana et al.

(1977). An important assumption adopted in the calculation is

that only the charged species, B(OH)4
−, can be incorporated into

calcium carbonates with insignificant fractionation during

calcification (Hemming and Hanson, 1992; Hemming et al.,

1995):

CaCO3 + B(OH)−4 ↔ Ca(HBO3) + HCO−
3 + H2O

It is critical to evaluate whether the boron isotopic

composition of biogenic carbonates can serve as a reliable

oceanic pH proxy. Several lines of evidence support the utility

of this tracer based on synthetic (Hemming et al., 1995) and

culture experiments (Sanyal et al., 2001; Hönisch et al., 2004),

which have shown that the boron isotopic composition of

biogenic carbonates accurately records variations in seawater

pH. On the other hand, boron isotopes in marine carbonates are

increasingly used to reconstruct seawater pH and atmospheric

pCO2 through the Earth’s history. While isotope ratio

measurements from individual laboratories are often of high

quality, it is important that records generated in different

laboratories can equally be compared (Gutjahr et al., 2021;

Stewart et al., 2021). Also, there are recent advancements in

studying biological effects using sensitive tracers in calcifying

fluids (Venn et al., 2013; Cornwall et al., 2017; Comeau et al.,

2018); however, those issues are beyond the scope of this study,

as we have carefully avoided the tissue layer during our sampling

or cleaning processes [see also McCulloch et al. (2017) for in-

depth discussion].

In this study, we established a low blank technique for the

precise measurement of d11B in coralline skeleton, to establish a

high-resolution temporal record of seawater pH, collected from

Lanyu Islet, western Pacific. This represents the first use of inter-

annual and intra-annual variations in surface ocean pH to

understand seasonal CO2 variation in the atmosphere in

this region.
Material and methods

Geological setting

Lanyu Islet, located offshore of southeast Taiwan (121.6°E,

22°N) (Figure 2), is an ideal location for high-resolution

paleoclimatic study in the western Pacific. Lanyu is within the
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subtropical climatic zone and is strongly influenced by the East

Asia monsoon system. The summer monsoon, a warm and wet

season, begins in May with prevailing southwest winds. The

winter monsoon, cold and dry, starts in November and is

characterized by strong northeast winds originating from the

Siberian High Pressure Zone. Heavy rainfall caused by typhoon

events often occurs in Lanyu in summer, but no significant

riverine discharge can reach Lanyu from Taiwan.

The Kuroshio Current, a major western boundary current in

the western Pacific, is the most important surface current in the

vicinity. It originates from the North Equatorial Current that

bifurcates between 12 and 15°N in the western Pacific. The

northward branch becomes the Kuroshio Current and the

southward branch evolves into the Mindanao Current.

The Kuroshio Current flows northward along the coasts of

Luzon and Taiwan and continues to the shelf edge of the East
Frontiers in Marine Science 03
China Sea. The Kuroshio Current transports warm water from

the tropical ocean to mid-latitudes and is an important source of

heat for global balance in the atmosphere (Chen et al., 2006). Its

transport flux varies between 5 and 21 Sv (Sv = 106 m3 s−1) off

western and eastern Lanyu Islet, respectively (Hsin et al., 2008).
Sampling and cleaning procedure

A 95-cm core of long-lived massive coral skeleton (Porites

lobata) was drilled off northeast Lanyu in May 1997 and has

been studied carefully for major/trace elements (Yu et al., 2015).

The core was cut into a 1-cm-thick slab, cleaned with distilled

water, and X-rayed. Monthly samples were cut along the major

growth axis using a microtome, with 0.5-mm increments

corresponding to a 1-month resolution (average 20 mg). All
FIGURE 1

Distribution of (A) aqueous boron species and (B) boron isotopic composition as a function of pH in solutions. Note that the dashed line
indicates modern seawater pH (~8.2), and the d11B of modern carbonates falls near the theoretical line of B(OH)4

− species.
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specimens were crushed using a PE rod and 1 mg of subsamples

were used for oxygen and carbon isotopic analyses.

Its average extension rate is ~12 mm year−1. Mg/Ca in the

Lanyu coral skeletons correlates strongly with sea surface

temperature (SST) (R2 = 0.9) and provides better sensitivity

than Sr/Ca for temperature reconstruction (Yu et al., 2015).

The chronology of this coral core is constructed by an SST

calibration equation based on the Sr/Ca ratio and the satellite

temperature record and corroborated by counting coral X-ray

density bands, according to the relationship below:

Sr=Ca  mmol=molð Þ = 9:92  −  0:04 * SST ( ° C; R
2 =  0:72)

Despite the potential bias induced by either the time

resolution of each coral specimen or the spatial resolution of

satellite-derived SST, the variation of temperature with the

amplitude of 8°C is consistent with the instrumental record of

a site nearby Lanyu (Shen et al., 2005). The slope in the

calibration equation also agrees with literature-reported values

using the same coral species (Corre`ge, 2006), with an estimated

age uncertainty of<3 months (Charles et al., 1997).

All the cleaning and purification steps were carried out in a

class-10 flow hood inside a class-10,000 cleanroom, and the

main steps follow that of Hönisch and Hemming (2005). First,

coral powders were bleached with 6%–14% sodium hypochlorite

(NaOCl), repeatedly rinsed, and ultrasonicated with distilled

water at least five times. Then, 0.0075 N of double-distilled

HNO3 was added and this was repeated several times. The

purified powder was dissolved with excess ultrapure HNO3 to

ensure acidic conditions for the microsublimation technique.
Frontiers in Marine Science 04
Boron isotope analysis

Purification: microsublimation technique
It is necessary to separate B completely from the potential Ca

matrix for isotopic determination. A microsublimation

technique, modified from Gaillardet et al. (2001), was used to

extract B from calcium carbonates to circumvent any column

separation or complicate a chemical reagent. It is more effective

for the purification and also for the elimination of potential

contamination (Wang et al., 2020). Furthermore, this technique

reduces the influence of organic matter from the ion exchange

resin or the sample itself. A solution, ~40 μl, was placed on the

cover of a 5-ml perfluoroalkoxy (PFA) conical beaker (Savillex,

Eden Prairie, Minnesota USA), and heated on a dry bath system

(Firefox Dry Bath 6100, Taipei City, Taiwan) for 12 h at 98°C. In

order to eliminate matrix effects, a series of recovery experiments

were conducted to assess our B separation under various

matrices of Ca- and Na-added solutions (Wang et al., 2010).

Instrumental analysis
Precise analytical methods for boron isotopic measurements

in natural materials have been discussed in detail (Spivack and

Edmond, 1986; Guerrot et al., 2011). Despite the importance of

marine biogenic carbonates for paleoceanographic studies, B

isotopic applications are scarce owing to analytical difficulties,

which require an accurate and high-precision technique for a

small amount of sample (a few nanograms of B). Recent

advances in multicollector inductively coupled plasma mass

spectrometry (MC-ICP-MS) techniques are capable of precise
BA

FIGURE 2

Location of the Lanyu Islet. This map shows (A) the path of the Kuroshio Current and the East Asian Monsoon and (B) the coral coring site off
NE Lanyu Islet.
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isotopic analyses for a wide range of samples (Stewart

et al., 2021).

In this study, a precise analytical technique for B isotopic

determination in coral skeletons was developed using MC-ICP-

MS (Thermo Fisher Neptune, Bremen, Germany) at the Earth

Dynamic System Research Center (EDSRC), NCKU. TheMC-ICP-

MS has more advantages than the traditional thermal ionization

mass spectrometry (TIMS). For instance, 1) the required sample

amount is relatively small, 2) both the sample throughput and

analytical precision are significantly higher than TIMS, and 3) the

mass discrimination inherited from the instrument itself can be

corrected by the sample-standard bracketing procedure.

A quartz spray dual chamber [Stable Sample Introduction

(SSI), ESI] and a 50-ml PFA-ST nebulizer (ESI) were used to

minimize boron blank and enhance signal stability. The Ni

sampler and skimmer cones were used and the RF power was

set at 1,200 W. Sample gas was adjusted to 1.05–1.10 L min−1,

and the flow rates of the cooling gas and auxiliary gas were set at

15.0 and 0.7 L min−1, respectively. The typical sensitivity of B is

~0.7–1 V for 100 ppb at an uptake rate of 60 ml min−1. Ammonia

solution was used to reduce the memory effect. Boron isotopes,
11B and 10B, were measured simultaneously on H3 and L3

Faraday cups, respectively, and 60 ratios with 6 blocks were

collected with 2 s integration. Each analysis takes approximately

2 min. A quartz spray dual chamber coupled to a 50-ml PFA-ST
nebulizer was used for sample introduction.

For most elements, memory effects can be resolved by

washing with diluted HNO3 in the introduction system. In the

case of boron, however, the interference cannot be reduced

effectively using HNO3. As described by Al-Ammar et al.

(1999), the addition of ammonia solution (NH4OH) to the

spray chamber of ICP-MS can reduce the absorbability of B-

bearing species, thus reducing memory effects more effectively.

Unlike the common internal or external correction for precise

isotope determinations, B only has two isotopes and cannot be

corrected for the mass bias by traditional normalization methods.

The instrumental mass bias correction for B can be carried out by

the sample-standard bracketing technique (Aggarwal et al., 2003),

and d11B values can be directly calculated by comparing the

measured boron isotope ratios to standards. To establish a

reliable isotope standard for boron using MC-ICP-MS, d11B
values of different standard materials were also analyzed by

TIMS (Thermo Fisher, Triton T1), in positive ion mode at

EDSRC, NCKU. Several reference materials, including synthetic

aragonites (AS10, AS30, and AS50), KTP-1 (in-house coral

standard), JA-A, and JA-B, were prepared for cross-calibration

of d11B values measured by MC-ICP-MS and P-TIMS.

Elemental ratios and other
isotope analyses

The distribution of trace elements in coral skeletons was

analyzed by HR-ICP-MS (Thermo Fisher, Element 2) at EDSRC,
Frontiers in Marine Science 05
NCKU. Both the quartz spray chamber and the PFA nebulizer

were used. The sensitivity of the instrument was optimized with

a tuning solution by adjusting the operation parameters, such as

the XYZ position of the plasma, gas flows, and lens voltages to

attend to a maximum and stable signal for 7Li-115In-238U, and

generally the sensitivity could reach ~0.8–1.2 × 106 cps ppb−1 for
238U. Carbon and oxygen isotopes were analyzed by a stable

isotope mass spectrometer (Finnigan MAT252, Bremen,

Germany) at the State Key Laboratory of Marine Geology,

Tongji University.
Results

All analytical results obtained in this study, including trace

element/Ca ratios and the isotopic compositions of B, O, and C,

are summarized in the Supplementary Material Table S1.

Analytical precision (2s) of the coral standard (KTP-1) was

2.1% for B/Ca, 1.6% for Mg/Ca and Sr/Ca, and 6.2% for U/Ca.

Carbon and oxygen isotopes were analyzed by a stable isotope

mass spectrometer with a precision better than ±0.10‰.

These results show a large magnitude of Mg/Ca variation

and apparent increases of Mg/Ca, Sr/Ca, and U/Ca, as well as

a decreasing trend in d13C record. The annual d11B variation

is around 2‰, ranging from 23.63‰ to 25.86‰, during the

study period, and the estimated uncertainty of long-term d11B
measurement is ±0.25‰ (2SD). The average extension rate is

~12 mm/year for this core. As the Mg/Ca in the Lanyu coral

skeletons correlates strongly with SST (R2 = 0.9), it provides a

better sensitivity than Sr/Ca for temperature reconstruction.
Trace elements and isotope
composition in corals

The coral temporal resolution in this study was

approximately 1 month. All data are expressed as 3-month

moving averages (Figure 3). The average growth rate is about

12 mm year−1 over the analyzed sections in coral skeletons

collected from Lanyu. A comparison of the X-radiography

with the instrumental temperature shows that the low- and

high-density bands were formed in summer and winter,

respectively. Seasonal variation of trace element ratios can

be seen in the Lanyu corals for B/Ca, Mg/Ca, Sr/Ca, and U/Ca,

based on the correlation between these trace elements and

satellite temperature in a 7-year-old long-lived massive coral

skeleton (P. lobata) (1991–1997 A.D.). d18O, d13C, and d11B
in the coral skeleton also show clear seasonal variability

(Figure 6). Note that this plot shows a large magnitude of

Mg/Ca variation and apparent upward slopes of Mg/Ca, Sr/

Ca, and U/Ca, as well as a decreasing trend in d13C record.

The annual d11B variation is around 2‰, 23.63‰–25.86‰,
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similar to recent results obtained from other coral reefs

around the world (Pelejero et al., 2005; Liu et al., 2009; Wei

et al., 2009).
Reconstruction of sea
surface temperature

Previous studies have reported that B/Ca, Mg/Ca, Sr/Ca,

and U/Ca in corals can record SST (Sinclair, 2005). Figure 4

shows the relationships of the trace element ratios versus SST.

The correlation coefficients (r) varied in a range between 0.90

and 0.64. The Mg/Ca ratios display the highest correlation
Frontiers in Marine Science
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with the satellite SST. In terms of temperature sensitivity, Mg/

Ca variability is much larger than Sr/Ca, potentially a more

reliable proxy for SST in the study region. Hence, the

following equation was used to estimate SST variations:

Mg=Ca (mmol mol−1) = 0:074� SST( ° C) + 2:57 r = 0:90

The satellite temperatures were plotted against the

coralline Mg/Ca (Figure 5). The mean slope was +0.2°

C year−1 and DMg/Ca-SST showed similar increasing

trends, with a slope similar to the satellite temperature

change of +0.17°C year−1.
FIGURE 3

(A) Moving average (~3 months) of the seasonal variation in geochemical proxies (Mg/Ca, Sr/Ca, U/Ca, B/Ca, d18O, d13C, and d11B) of the Lanyu
coral records between 1991 and 1997. pH records are estimated from coralline d11B. Yellow indicates the tissue layer. (B) Data of solar radiation
and cloudiness collected from Lanyu and Tai-Tung are plotted with satellite temperature. Solar radiation in Lanyu Island has been recorded
since 1993.
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On the other hand, the change of pCO2 in the Lanyu

corals was also calculated by estimated TA based on coralline

d18O (equation II) (Tseng et al., 2007) and pH (derived from

coralline d11B) using the CO2sys.xls (version 12) program of

Pelletier et al. (2005).

I :  pCO2(matm) corrected for DT

=   pCO2 meanð Þ exp  0:0423 Tobs − Tmeanð Þ½ �

where pCO2 mean = ~354 matm and Tmean = ~26.41°C
Frontiers in Marine Science 07
II : TA (umolkg−1)  =  65:7 � S −  1 +  2218

where S is the salinity estimated from d18Ocoral and d18OMg/

Ca-SST using the listed equations below:

d18OSSS = d18Ocoral − d18OMg=Ca−SST(DS

=  0:2‰ psu−1),  and d18OMg=Ca−SST

=   − 0:1952 �  SST  Mg=Cað Þ  +  0:094
FIGURE 4

Scatter plots for the trace element ratios and SST. The correlation coefficients for these equations are significant, ranging from 0.90 to 0.64.
FIGURE 5

Comparison of Mg/Ca-SST record in the Lanyu corals and satellite temperature.
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Discussion

Multiproxies approach

Factors controlling oxygen and carbon
isotopic compositions

d18O and d13C of corals are common tools in environmental

proxy studies. The d18O of corals is mainly controlled by

seawater temperature and salinity, whereas d13C is related to

skeletal extension rate, dissolved inorganic carbon, and light

availability (Shimamura et al., 2008). In this study, d13C ranged

between −3.9‰ and −1.7‰ and d18O varied from −5.7‰ to

−4.3‰. A clear annual cycle can be seen in both d18O and d13C;
however, the correlation is out-of-phase (Figure 3).

The Lanyu corals grew at a rate of 12 mm year−1, implying

that kinetic isotope effects would be relatively constant due to the

high skeletal extension rate, exceeding 5 mm year−1 (Suzuki

et al., 2005). The negative relationships (r = −0.73) between d18O
and d13C are consistent with the previous results by Omata et al.

(2005), suggesting that high solar radiation corresponds to

higher seawater temperature, resulting in the out-of-phase

pattern for d18O and d13C in rapidly growing corals. This

indicates that the coral skeleton was strongly affected by

metabolic effects (photosynthesis) over kinetic effects at Lanyu.

Despite the potential metabolic isotope effect playing a main

factor to affect d13C, the possible influence by seawater d13CDIC
Frontiers in Marine Science 08
was needed for further evaluation. Lin et al. (1999) pointed out

that the d13CDIC in surface seawater was slightly lower during the

cold season than the warm season around southern Taiwan. It is

possible that the d13C was affected by seawater d13C due to vital

effect (Pelejero et al., 2005). However, more detailed studies are

required to further evaluate the relationship between coralline

d13C and seawater d13CDIC at decadal timescales.
d11B in coralline carbonates

Previous studies have suggested that only [B(OH)4
−] is

incorporated into marine calcium carbonates (Hemming et al.,

1995). Therefore, seawater pH values can be estimated from

measured d11B based on an equilibrium constant pKB, and an

assumed fractionation factor aB, calculated from theoretical and

experimental studies (Kakihana et al., 1977; Klochko et al.,

2006). Then pH can be calculated by the following equation:

pH = pKB − log
d11BSW − d11Bcoral

aB � d11Bcoral − d11BSW + 103(aB − 1)

� �

where d11BSW = 39.5‰, pKB = 8.6 at 25°C, and aB = 1.0194.

The fractionation factor for boron isotopes ranges from

1.0176 (Sanchez-Valle et al., 2005) to 1.030 (Zeebe, 2005). The

uncertainty in the fractionation factor limits the application of
11B for oceanic pH proxy. More recently, aB in seawater has been
FIGURE 6

pH dependence of the boron isotopic composition of B(OH)4
− based on theoretical aB = 1.0194 (blue) (Kakihana et al., 1977) and empirical

aB = 1.0272 ± 0.0006 (red) (Klochko et al., 2006) at 25°C. The d11B data of scleractinian corals (square), foraminifers (circle), and inorganic
calcite precipitation (triangle) are also plotted. Note that most coralline specimens fit better with the Kakihana’s curve, but foraminifers and
inorganic calcite precipitation agree more with the Klochko’s.
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experimentally determined by Klochko et al. (2006). A value of

1.0272 ± 0.0006 was obtained using a spectrophotometric

approach, and this value differs from the more commonly

used value of 1.0194 in paleoceanography applications

(Kakihana et al., 1977). In this study, aB was 1.0194 used to

calculate seawater pH values from coralline d11B because this

value gives a better prediction of the borate isotopic composition

in seawater in the study region. This scenario is similar with the

observations depicted in McCulloch et al. (2018), where the

coralline carbonates fit better with the Kakihana’s fractionation

factor and foraminiferal shells or inorganic carbonates agree

with the Klochko’s curve. In addition, the estimated pH values

using aB = 1.0194 for the Lanyu coral records are consistent with

modern instrumental measurement of seawater pH (~8.1), and

seasonal variability in seawater pH is similar to modern

conditions in the western Pacific (Chou et al., 2007). In the

absence of knowledge regarding the physiological mechanisms

controlling coralline d11B, the in-situ calibration between d11B in

coral skeletons and ambient seawater pH needs to be evaluated.

Unfortunately, continuous records of seawater pH in the area

near Lanyu are lacking at this stage.
Comparison with published d11B data in marine
biogenic carbonates

Based on the close relationships between marine carbonate

chemistry and pCO2 concentrations, boron isotopic

composition of marine biogenic carbonates is the most

important geochemical proxy for reconstructing paleo-pH in

the ocean (Hönisch et al., 2007; De'ath et al., 2009). Here, we

discuss d11B values of different marine biogenic carbonates and

interpret the boron isotope excursion in the Lanyu corals.

The d11B in marine carbonates fall within the theoretical

curve for the borate species in seawater (Figure 6). This

observation has been supported by a number of empirical

calibration works on planktonic foraminifers (Sanyal et al.,

1996; Sanyal et al., 2001), scleractinian corals (Hemming et al.,

1998; Hönisch et al., 2004; Pelejero et al., 2005), and inorganic

precipitations (Sanyal et al., 2000) over a pH range of 7.7 to 9.0.

Previous research has shown that variation of boron isotopic

composition in marine carbonates was controlled by ambient

seawater. Nevertheless, the systematic offset from the theoretical

curve suggests that potential effects on the boron isotopic

composition may have occurred, possibly due to variation in

pH in calcification fluids (Hemming et al., 1998; Wei et al.,

2009). This indicates that coralline d11B may not record ambient

seawater pH, but these processes only resulted in slight constant

offset between corals and seawaters due to direct seawater supply

to the calcification site in corals.
Controlling factors on coralline d11B
Although the boron isotope in biogenic marine carbonates

has been used for constructing seawater pH in the past, detailed
Frontiers in Marine Science 09
studies about coralline d11B are scarce, especially for high-

resolution seasonal variation in d11B records (Pelejero et al.,

2005). It is necessary to understand the controlling factors on

boron uptake and the isotopic fractionation before applying the

coralline d11B to reconstruct the seawater pH in the past.

Hemming et al. (1998) investigated the seasonal variation in

the boron isotopic composition in coral skeletons. Paired

analyses of carbon and boron isotopes revealed a clear

seasonal variation, displaying the high-density bands having

heavier d11B and d13C in the coral P. lobata from Fanning

Island, probably reflecting high productivity during the period of

high solar insolation. However, the boron and carbon isotope

ratios in our corals did not show a similar correlation. Heavier

d11B together with lighter d13C is exhibited in the high-density

bands which grew in the cold season (Figure 3). Based on the

different patterns of the seasonal fluctuation between two study

areas, this effect cannot be used to explain the variation in

coralline d11B in Lanyu. Culture experiments with two surface

corals, Porites and Acropora, have confirmed that coral skeletons

can record the variation of seawater pH (Hönisch et al., 2004;

Reynaud et al., 2004). The experimental studies showed that the

d13C in cultured corals can be significantly affected by symbiont

photosynthetic activity, which is related to light intensity,

feeding, and habitat depth. This result is inconsistent with the

d11B values in the same corals, suggesting that pH variations at

the calcification site are rather small relative to the pH-

dependent isotopic fractionation. As mentioned above, our

coral samples do faithfully record the seawater signal on the

seasonal timescale and support the potential use of coral skeleton

boron isotopes for reconstructing seawater pH in the past.

High-resolution record of seawater pH around
Lanyu Islet

Boron isotopic compositions of the Lanyu corals, ranging

from 23.6‰ to 25.1‰, correspond to seawater pH of 8.0–8.2

(Figure 3). These d11B-derived pH values from the Lanyu corals

are identical to the modern surface seawater pH in the western

Pacific. There is a clear decreasing d11B trend of −0.16‰ if the El

Niño 1991 data are excluded, and it implies that ocean

acidification has occurred in the study area (pH change of

−0.02 unit). The d11B records obtained from the Lanyu corals

provide the first detailed and high-resolution record of seawater

pH in the region, which display low and high values during

warm and cold seasons, respectively. This can be explained by

seasonal variation in water masses with different pH values,

caused by the monsoon climate (Liu et al., 2009; Wei et al., 2009)

or pCO2 variations (Takahashi et al., 2002).

The Kuroshio Current is the most important current around

Lanyu Islet. Major water masses at the west side and the east side

of 121°E are the South China Sea surface water and Kuroshio

Current (KC), respectively. The typical water properties of the

two water masses are significantly different. The main water

mass close to Lanyu Islet is Kuroshio waters, based on the q–S
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plot (Chen et al., 2007). Chou et al. (2007) studied the carbon

chemistry of Kuroshio waters off SE Taiwan. Seawater from

stations off southeast Taiwan has intermediate values between

stations at the West Philippine Sea and the SCS. The pH value of

the surface seawater around Lanyu Islet is approximately 8.15,

significantly higher than the pH at the SCS (pH = 7.96 to 8.10)

(Chen et al., 2006).

The seasonal variability in KC can be linked to the East Asia

Monsoon (EAM) climate in the study area. The seawater

chemistry is affected by changes in the EAM, which causes

SCS seawater entering the KC from the loop current around

southern Taiwan. Nevertheless, most KC transport is associated

with the path contributed by the east flow of the Lanyu (Hsin

et al., 2008). The loop current probably carries the low pH

seawater from the SCS (pH~8.0) to the main KC (West

Philippine Sea water, pH ~ 8.2); thus, the pH value of surface

seawater will decrease in the winter due to the greater

contribution from the SCS. However, this is inconsistent with

the seasonal variation in d11B-based seawater pH, which is

characterized by high pH (high d11B) during the cold season.

A more detailed assessment on the influence of the SCS waters is

necessary for understanding the seawater pH variation

around Lanyu.

A comparison of oceanic pCO2 in the
western Pacific

Another possible reason for the change of seawater pH is

seasonal pCO2 variation. Culture experiments on the boron

isotopic composition of coral skeletons were carried out at two

pCO2 conditions (~440 vs. ~725 ppm) (Reynaud et al., 2004).

Their results indicated that seawater pH changes due to pCO2

variations can be recorded in coral skeletons. In comparison

with the global sea–air CO2 flux study by Takahashi et al. (2002),

low and high pCO2 were found during the cold and warm

seasons, respectively, and pCO2 is mainly controlled by the

solubility of CO2 and can be related to seawater temperature.

For further evidence of the relationship between pCO2 and
Frontiers in Marine Science 10
seawater temperature in tropical western Pacific, the variation

of pCO2 caused by temperature effect was estimated using

equation I (Takahashi et al., 2002).

The changes of the estimated pCO2 from the Lanyu coral

record are plotted in Figure 7, showing the correlation of

reconstructed pCO2 record in the study area on the basis of

the two estimates derived from SST and TA. Seasonal variability

in seawater pCO2, with higher pCO2 at warm seasons (higher

SST), can also be found. This observation agrees well with the

estimated seawater pH in the Lanyu corals, showing low pH

value (or higher pCO2) in the warmer SST. Furthermore, the

variation of seawater pH is approximately 0.2 units between the

cold and warm seasons, which is similar to the previous studies

in the western Pacific (Pelejero et al., 2005). This study suggests

that the boron isotopic composition of coral skeletons can be

used for studying the relationship between changes in surface

seawater chemistry and climate change and further provide

important information on ocean acidification and abrupt

climate change.
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FIGURE 7

The correlation of reconstructed pCO2 records derived from SST (A) and TA (B) in Lanyu Island using the CO2sys.xls program of Pelletier et al.
(2005). The seasonal variation in seawater pCO2 can also be observed, with higher pCO2 in warm seasons (higher SST) in this study.
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Matrix effects in the microsublimation technique. Graphs illustrate (A) the
recovery and (B) isotopic fractionation of boron at different concentration.

SUPPLEMENTARY FIGURE 2

Average precision of d11B measured by MC-ICP-MS (2s = ± 0.25‰) in the
IGL laboratory.
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Cross-calibration of the d11B of different inorganic carbonates, KTP-1, JA-
A and JA-B, measured by MC-ICP-MS and P-TIMS
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