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Phytoplankton induce defensive traits in response to chemical alarm signals from grazing
zooplankton. However, these signals are potentially vulnerable to changes in pH and it is
not yet known how predator recognition may be affected by ocean acidification. We
exposed four species of diatoms and one toxic dinoflagellate to future pCO2 levels,
projected by the turn of the century, in factorial combinations with predatory cues from
copepods (copepodamides). We measured the change in growth, chain length, silica
content, and toxin content. Effects of increased pCO2 were highly species specific. The
induction of defensive traits was accompanied by a significant reduction in growth rate in
three out of five species. The reduction averaged 39% and we interpret this as an
allocation cost associated with defensive traits. Copepodamides induced significant chain
length reduction in three of the four diatom species. Under elevated pCO2 Skeletonema
marinoi reduced silica content by 30% and in Alexandrium minutum the toxin content was
reduced by 30%. Using copepodamides to induce defensive traits in the absence of direct
grazing provides a straightforward methodology to assess costs of defense in
microplankton. We conclude that copepodamide signalling system is likely robust to
ocean acidification. Moreover, the variable responses of different taxa to ocean
acidification suggest that there will be winners and losers in a high pCO2 world, and
that ocean acidification may have structuring effects on phytoplankton communities.

Keywords: chemical defenses, chemical ecology, ocean acidification, inducible defense, plankton ecology,
predator-prey interactions, pCO2
INTRODUCTION

Ocean acidification (OA) is caused by increased atmospheric CO2 concentrations dissolving into
surface waters, thus driving the equilibrium of the carbonate system towards more acidic conditions
(Sabine et al., 2004). The present-day atmospheric CO2 concentration is 400 µatm, but this is
projected to increase to 1000 µatm by the year 2100 (RCP 8.5, IPCC, 2013). This has resulted in an
increased concentration of surface water hydrogen ions of 30% since the industrial revolution,
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corresponding to a pH reduction of 0.1 units (Raven et al., 2005).
This decrease is projected to continue and results in a decrease of
0.4 units by year 2050 and 0.7 units by year 2300 (Caldeira and
Wickett, 2003; Orr et al., 2005). The majority of the pH drop
takes place in the upper mixed layer but will eventually reach
deeper water as well (Sabine et al., 2004).

The photic zone of the ocean is home to the vast majority of
marine primary production, and more than half of global
primary productivity (Field et al., 1998; Falkowski et al., 1998).
Phytoplankton, marine photosynthesizers that form the basis of
most marine food webs, typically reside in the upper surface
layers and utilize CO2 for growth through photosynthesis.
Changes in pCO2 have both positive and negative effects on
photosynthetic carbon fixation rate in marine plankton
(R i eb e s e l l , 2 004 ) . Ca l c i f y ing o rgan i sms such a s
coccolithophorids appear to be carbon limited at present-day
pH, whilst diatoms and Phaeocystis are at or close to CO2

saturation (Riebesell et al., 2000; Zondervan et al., 2001;
Burkhardt et al., 2001). Phytoplankton have optimal growth
rate at different CO2 ranges (Burkhardt et al., 1999; Riebesell
et al., 2000; Gervais and Riebesell, 2001; Barker et al., 2003; Boyd
and Doney, 2003; Nielsen et al., 2010). Deviations from optimal
CO2 concentrations have the ability to alter organisms’
physiological responses which can result in large scale shifts in
biogeochemical cycling (Riebesell, 2004). The shift in pCO2 may
limit the activity of individuals and may ultimately favour those
species which are more adaptable.

Copepods are a common group of microalgae grazers, which
release copepodamides, a unique combination of polar lipids
whose concentrations have been shown to correlate to copepod
density (Selander et al., 2015; Selander et al., 2019).
Copepodamides induce defensive responses in both
dinoflagellates and diatoms (Selander et al., 2011; Selander
et al., 2015; Lindström et al., 2017; Grønning and Kiørboe,
2020; Rigby and Selander, 2021). Two out of three diatom
species shortened their chain length when exposed to
copepodamides (Rigby and Selander, 2021) and six of seven
species of diatoms showed a decrease in growth rate
accompanied by an increase in silica content in response to
copepodamides (Grønning and Kiørboe, 2020). It is not yet
known how these interactions are affected by ocean acidification.

Changes in pH have the potential to disrupt chemical
signalling systems and interfere with chemically mediated
behavioural responses (Hanazato, 1999; Hanazato, 2001;
Gutierrez et al., 2012). Altered pH can for example result in
protonation or deprotonation of odorant ligands or change the
tertial structure of the receptor proteins (Leduc et al., 2013;
Roggatz et al., 2016). In female sticklebacks an increase in pH led
to enhanced olfactory communication from males, resulting in
gravid females being more attracted to males (Heuschele and
Candolin, 2007). While others have reported infodisruption with
impaired chemoreception in term of foraging in crayfish,
suppression of feeding behaviour in newt larvae and impaired
foraging abilities in gold mollies (Allison et al., 1992; Griffiths,
1993; Tembo, 2009). While infodisruption is more extensively
studied in snails, fish, and crustaceans it is not yet known how it
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may affect chemical signalling in other taxa such as
phytoplankton (Cothran et al., 2021). However, ocean
acidification has been shown to change the perception of
odours by copepods (Maibam et al., 2015).

Future increase in pCO2 has been hypothesized to lead to
increased phytoplankton growth rate (Beardall and Raven, 2004;
Beardall et al., 2009). However, past mesocosm experiments
show that phytoplankton exhibit different responses to
increased pCO2, including both negative and positive effects on
growth rate (Kim et al., 2006; Bach et al., 2017; Riebesell et al.,
2017; Dörner et al., 2020) and primary production (Schulz et al.,
2013; Liu et al., 2017; Bach et al., 2019). Phytoplankton
stoichiometry suggests that inorganic carbon will rarely be the
limiting element in sea water. Normal concentration is around 2
mM, orders of magnitude higher than Redfield ratios with
respect to nitrogen and phosphate (Redfield, 1958; Libes,
2011). While inorganic carbon is not limiting in seawater it is
primarily present as hydrogen carbonate. This cannot be used for
growth without first being brought into a cell using a carbon
concentration mechanism (CCM, Giordano et al., 2005). The
increased pCO2 associated with OA allows greater passive intake
of carbon, which frees more energy for growth; energy that
would otherwise be invested in CCM (Giordano et al., 2005).
Furthermore, it has been suggested that some species of
phytoplankton are able to up-regulate their inorganic carbon
transport system as a response to changes in pCO2 (Tortell et al.,
2008). Previous studies on diatoms have differentiated between
OA-sensitive and OA-insensitive species (e.g., Kim et al., 2006).
In a 14-day long experiment, growth rate in Skeletonema
costatum increased with increasing levels of pCO2 whereas
Nitzschia spp. did not show any difference in growth rate
across treatments (Kim et al., 2006). This suggests that
Nitzschia spp. are insensitive to changes in pCO2 and that the
different responses between species to future elevated pCO2 can
change the structure of the diatom population. These changes in
community composition can alter the bottom-up processes and
have the potential to influence food web dynamics (Hays
et al., 2005).

The specific responses to elevated pCO2 are unknown for
many phytoplankton species. Here we explored the interactive
effects of ocean acidification and simulated predation risk with
regards to toxin content, chain length, and silica content on the
dinoflagellate Alexandrium minutum, and the diatoms
Skeletonema marinoi, Thalassiosira rotula, Chaetoceros
curvisetus, and Chaetoceros affinis. We expose cells to elevated
(1100 µatm) and ambient (400 µatm) pCO2 levels for a 48-hour
period with and without copepodamides. We then analyze the
growth rate and toxin content in A. minutum, as well as the
growth rate, silica content, and chain length in S. marinoi, T.
rotula, C. curvisetus, and C. affinis. We hypothesize that all taxa
will increase growth rate in response to the increased
concentration of available inorganic carbon. We further
hypothesize that copepodamides will initiate grazer induced
responses also in future pCO2 levels and impaired
copepodamide signalling would manifest in interactive effects
between copepodamide addition and pCO2 level.
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MATERIALS AND METHODS

Phytoplankton Cultivation
Stock cultures of Alexandriumminutum strain GUMACC #83 (also
known as AL1V, CCMP113), Thalassiosira rotula strain
CCAP1085/20, Chaetoceros curvisetus strain RCC6895,
Chaetoceros affinis strain CCAP1010/27, and Skeletonema marinoi
strain GF 04-7D were grown at 26 PSU, 12:12 light:dark cycle 100
µmol photons m-2 s-1, and 16°C prior to the experiment. A.
minutum was cultured with L1 metals (Guillard and Hargraves,
1993) and f/2 nutrients (Guillard & Ryther, 1962) and the diatom
species were grown with f/2 media enriched with silica at a salinity
of 26 PSU. All algal strains were obtained from GUMACC
(Gothenburg University Marine Culture Collection, Sweden).

Experimental Design
Control cultures of phytoplankton were maintained in ambient
pCO2 (400 µatm) while experimental cultures were gradually
exposed to increased levels of pCO2 over five days until
experimental condit ions were reached (1100 µatm;
corresponding to the projected value at the end of this
century). Treatments were regulated using solenoid valves
controlled by pH-computers (Aqua Medic, Germany, NBS-
calibrated) which mixed CO2 (AGA, Sweden) with air that had
CO2 removed to reach desired levels. The pCO2 was monitored
with LI-850 CO2/H2O Gas Analyzer (LI-COR Biosciences,
USA). Salinity, temperature, pCO2, and pH were measured at
the beginning of the experiment, pH was also measured at the
end of the experiment (Table S1). Total alkalinity was estimated
from salinity using long-term salinity:alkalinity relationship data
(Eriander et al., 2016; Falkenberg et al., 2019). All seawater was
filtered (0.2 µm) and autoclaved, nutrients were added to the
cultures before the experiment started. The cultures were split
into four groups (n=6): “ambient pCO2”, “elevated pCO2”,
“ambient pCO2 x 5nM copepodamides”, and “elevated pCO2 x
5nM copepodamides”. The average effective concentration is
1%– 2% of the nominal concentration corresponding to ~ 55
pM (Selander et al., 2019). At the end of the experiment
copepodamide concentrations were measured in 3 replicates
from each treatment and there was no significant difference
between the treatment groups (p=0.8).

Alexandrium minutum cultures were diluted into twenty-four
310 mL bottles with either ambient pCO2 or elevated pCO2

autoclaved seawater with L1 metals and f/2 nutrients to a starting
concentration 300 cells mL-1. Diatoms were diluted into 25 mL
vials with f/4 nutrients + Si to 1000 cells mL-1, 6 replicates per
treatment. All cell counts from start and end of all the
experiments (48 hours) were obtained by placing 1 mL of well
mixed culture with acidic lugol on a Sedgewick rafter chamber
where at least 0.1 mL per replicate was counted. A. minutum
bottles and diatom bottles were placed in a thermo-constant
room at 16°C with a 12:12 light cycle with intensity at 22-32
µmol m-2s-1. The diatom vials were placed on a plankton wheel
(0.5 rpm). Chain lengths were sampled at the start and end by
gently pipetting a 1 mL sample into a 48 well plate. Then the first
50 observed chains from a random location in the well were
Frontiers in Marine Science | www.frontiersin.org 3
counted from each replicate. Chain length is determined by the
number of cells in an individual chain.

Toxin Analysis
Toxin content of A. minutum was determined by suction filtering
300 mL culture of a known cell concentration from each replicate
onto 25 mm Whatman GF/F filters. The filters were transferred
to 2 mL Eppendorf tubes, frozen (-20°C), and freeze dried for 45
minutes. The dry filters were soaked in 750 µL 0.05 M acetic acid
(aq) and subjected to three freeze-thaw cycles to facilitate
extraction of toxins. The samples were filtered (GF/F) into 1.5
mL glass HPLC vials and stored frozen until analysis.

The A. minutum strain used here produce Gonyautoxins 1-4
(Selander et al., 2006), which were analyzed using high performance
liquid chromatography (Agilent 1200 series fitted with an Agilent
InfinityLab Poroshell 120 HILIC-Z, 2.1 x 50mm 2.7µm) column
coupled to an Agilent 6410 triple quadrupole (Turner and Tölgyesi,
2019). Eluent A consisted of 500 mL water + 75 µL formic acid +
300 µL ammonium hydroxide. Eluent B consisted of 850 mL
acetonitrile + 150 mL water + 100 µL formic acid + 300 µL
ammonium hydroxide. Concentrations were determined against
authentic standards from certified reference materials program,
Canadian National Research Council (Halifax, Canada).

Biogenic Silica
Biogenic silica in the four diatom species was determined
following the method of Paashe (1980) as modified by
Grønning and Kiørboe (2020). Subsamples of 20 mL were
filtered onto 3 µm polycarbonate filters and washed twice with
acidic milliQ, to minimize dissolution of silica. The filters were
then dried for 90 minutes at 65°C and stored at -20°C until
analysis. Biogenic silica on the filters were later dissolved in 15
mL 0.5% (w/v) sodium carbonate solution, heated at 85°C for 90
minutes and cooled. The pH was then adjusted to 5.0-6.0 by
adding concentrated sulfuric acid, and the reactive silica analyzed
following the method of Strickland and Parsons (1972) using a
SmartChem 200 wet chemistry analyser (Unity Scientific, MA).

Statistical Analysis
Growth rates, silica and toxin content were tested for equality of
variances with a Levene’s test and for normality with Shapiro–
Wilk’s test. When these assumptions were not met, data were
analyzed with Aligned Rank Transform for nonparametric
factorial ANOVAs (ART). Chain lengths were count data and
therefore analyzed with a generalized linear mixed model with a
Poisson distribution. C. curvisetus growth rate and A. minutum
toxin content passed the equality and normality tests and were
analyzed using a 2-way ANOVA. In all models copepodamide and
pCO2 were treated as fixed factors (i.e., presence or absence of
copepodamides; current or future pCO2 concentrations). Silica
data was analyzed with a generalized linear model. Two outliers, 8
and 14 times lower than treatment average, were identified as
failed measurements and were removed from further analysis.
Significant differences between means were further analyzed post-
hoc with Tukey’s HSD (honestly significant differences) test. All
analyses were performed with R and R studio version 4.1.0.
April 2022 | Volume 9 | Article 875858
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RESULTS

Growth Rate
Growth rates of microalgae were generally lower in
copepodamide exposed cultures suggesting an allocation cost
associated with expression of defensive traits. T. rotula, C. affinis
and A. minutum showed significantly lower growth in
copepodamide exposed cultures and there was a trend towards
reduced growth rate also in C. curvisetus against their respective
controls (p=0.33 ambient pCO2 & p=0.06 elevated pCO2,
Figure 1). There was a significant interaction between pCO2

level and copepodamides on growth rate in S. marinoi (p=0.04).
However, the post-hoc test revealed only a significant effect of
pCO2 with 42% higher growth rate in elevated pCO2 compared
to ambient pCO2 treatments. In the other three diatom species
there were negative main effects of elevated pCO2 as well as
copepodamides on growth rate (p ≤ 0.006 for all, Figure 1), with
the overall pattern of elevated pCO2 and copepodamides
resulting in lower growth rate, which was the most suppressed
under the combined treatment of elevated pCO2 and
copepodamides. The dinoflagellate A. minutum grew 133%
faster in the “elevated pCO2’’ treatment compared to the other
three groups (p=0.01, Figure 1), however in the “elevated pCO2
x copepodamide” treatment growth was 43% lower when
compared to “elevated pCO2” (p=0.002, Figure 1).

Induced Defences
Copepodamides and pCO2 had an interactive effect on chain
length in T. rotula (p=0.03, Figure 2). Chain length was slightly
Frontiers in Marine Science | www.frontiersin.org 4
more reduced in ambient (70%) than in elevated pCO2 (64%)
when exposed to copepodamides. The reason, however, is that
the cultures without copepodamides were 26% shorter in the
elevated pCO2 treatment. In C. affinis there was a weak
interaction (p=0.05, Figure 2). However, this was not
confirmed by post-hoc tests which only show a significant
chain length shortening (31%) in response to elevated pCO2

regardless of copepodamide concentration. For both C.
curvisetus and S. marinoi there was a significant main effect of
copepodamides (p<0.001 for both; Figure 2) showing that chain
length was 29% and 67% shorter in the presence of
copepodamides regardless of pCO2.

Silica content was only affected in S. marinoi which contained
30% less silica per cell when grown under elevated pCO2 (p<0.001,
Figure 3) regardless of whether copepodamides were present or
not. The analysis of toxin content in A. minutum showed reduced
toxicity in elevated pCO2 (p=0.005, Figure 4) whereas
copepodamide exposure led to increased toxin content (p=0.03,
Figure 4). The highest toxin content was found in the “ambient
pCO2 x copepodamide” treatment and the lowest toxin content
was measured in the “elevated pCO2” treatment (46% lower).
DISCUSSION

We show that growth was suppressed (between 27 and 63%) in
three out offive species under elevated pCO2 but increased in the
other two (Figure 1). This suggests that the response to increased
pCO2 is species or even strain specific. Previous studies also show
FIGURE 1 | Box plot showing the specific growth rates (day−1) for T. rotula, C. curvisetus, C. affinis, S. marinoi and A. minutum after 48 hours of exposure to one of
four treatments (“ambient pCO2”, “ambient pCO2 x copepodamide”, “elevated pCO2” or “elevated pCO2 x copepodamide”). Solid line inside the box signifies the
median, and box signifies the lower and upper quartile ranges; letters denote significance (p< 0.05), n = 6.
April 2022 | Volume 9 | Article 875858
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variable results and report higher growth rates in S. marinoi in
elevated pCO2 (Scheinin et al., 2015). Although closely related
species grew slower: Ihnken et al. (2011) found a 10% decrease in
growth in Chaetoceros muelleri. Mejıá et al. (2013) found that
Thalassiosira weissflogii had a decreased growth rate and 90%
decrease in silica when exposed to elevated pCO2.

Growth rate was lower in all treatments exposed to
copepodamides when compared to their respective controls,
although this difference was not always significant.
Theoretically there should be a cost associated with inducible
defensive traits (Tollrian and Harvell, 1999), while defensive
traits without costs are more likely to become constitutive (i.e.,
always present). However, some studies have been unable to
establish costs of grazer induced traits in terms of reduced
growth rate (Blossom et al., 2019; Ryderheim et al., 2021; but
see Grønning and Kiørboe, 2020; Park and Dam, 2021). Our
findings of reduced growth rate consequently suggests the
presence of a direct allocation cost associated with expression
of defensive traits, particularly in diatoms. Inducible defenses
offer effective protection in microplankton (Bergkvist et al., 2012;
Prevett et al., 2019; Ryderheim et al., 2021) thus providing a clear
benefit. However, the benefit must be larger than the cost to
motivate the investment in defensive traits which should only be
induced when grazers are abundant.
Frontiers in Marine Science | www.frontiersin.org 5
One of the species that grew faster in this study was the
dinoflagellate A. minutum. At a first glance this suggests that
future pCO2 would favour A. minutum harmful algal blooms, but
the increased growth was accompanied by a 30% reduction in
cell toxin content (Figure 4). Therefore, the amount of toxin per
unit volume will be partially counterbalanced by the lower toxin
content but will eventually lead to higher volume specific toxin
content with time. Less toxic cells are, however, grazed at higher
rates which will reduce the benefits of increased growth
(Teegarden, 1999; Selander et al., 2006; Ryderheim et al.,
2021). It is consequently hard to predict if the higher growth
rate in future pCO2 levels will favour harmful algal bloom
formation of A. minutum. Reduction in toxin content when
exposed to elevated pCO2 has also been seen in Pseudo-nitzschia
and Karlodinium veneficum (Lundholm et al., 2004; Fu et al.,
2010). This reduced production of deterring compounds has also
been seen for phlorotannin content in macroalgae (Kinnby et al.,
2021a; Kinnby et al., 2021b) and phenolics in seagrass (Arnold
et al, 2012).

In addition, the effect of high pCO2 seen on toxin production
in this study was relatively small compared to the well-
established effects of nitrogen or phosphate-availability and
grazer cues (Griffin et al., 2019; Brandenburg et al., 2020).
Phosphate limitation may for example trigger an order of
FIGURE 2 | Boxplots showing chain length of four species of chain-forming diatoms (T. rotula, C. curvisetus, C. affinis, S. marinoi) after 48 hours of exposure to one
of four treatments (“ambient pCO2”, “ambient pCO2 x copepodamide”, “elevated pCO2” or “elevated pCO2 x copepodamide”). In total, 300 observations were made
per species and treatment (6 replicates of 50 chain length measurements). Solid line inside the box signifies the median, box contains the lower and upper quartile
ranges, and dots represent individual observations; letters denote significance (p< 0.05), n = 6.
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FIGURE 3 | Box plot of silica content (pmol silica cell-1) for Thalassiosira rotula, Chaetoceros curvisetus, Chaetoceros affinis and Skeletonema marinoi after 48 hours
exposure to one of four treatments (“ambient pCO2”, “ambient pCO2 x copepodamide”, “elevated pCO2” or “elevated pCO2 x copepodamide”). Solid line inside the
box signifies the median, box contains the lower and upper quartile ranges; letters denote significance (p< 0.05), n = 6, for all groups but C. affinis “ambient pCO2”

and S. marinoi “elevated pCO2” where n = 5.
FIGURE 4 | Box plot of Alexandrium minutum toxin content (cell-1) after 48 hours exposure to one of four treatments (“ambient pCO2”, “ambient pCO2 x
copepodamide”, “elevated pCO2” or “elevated pCO2 x copepodamide”). Solid line inside the box signifies the median, box contains the lower and upper quartile
ranges, and dots represent individual observations; letters denote significance (p< 0.05), n = 6.
Frontiers in Marine Science | www.frontiersin.org April 2022 | Volume 9 | Article 8758586
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magnitude higher toxin content in Alexandrium catenella
compared to nutrient replete controls Tatters et al. (2013).
Thus, pCO2 is likely not among the most important drivers
controlling toxin production in paralytic shellfish toxin
producing algae (Brandenburg et al., 2019). Effects from ocean
acidification on toxin formation have further been found to
weaken in high temperatures (Tatters et al., 2013).

We found that copepodamide-induced toxin production was
similar in elevated and ambient pCO2 conditions (Figure 4).
Copepodamides have previously been shown to increase silica
content and induce chain length shortening in diatoms and
increase toxin production in dinoflagellates (Selander et al., 2015;
Selander et al., 2019; Grønning and Kiørboe, 2020; Rigby and
Selander, 2021). The results from this study imply that under
future pCO2 conditions, copepodamides will still be able to
induce chain shortening and an increase in toxin production,
even though alterations in growth rate may be accompanied by
slight changes in the magnitude of the induction. Dinoflagellates
follow a typical eukaryotic cell cycle and the production of PST
toxins mainly occurs during the G1 (Taroncher-Oldenburg et al.,
1999), and G2 phase of the cell cycle (Harlow et al., 2007). An
alteration in the length of these phases could consequently affect
toxin production. The dinoflagellate K. mikimotoi reduced the
percentage of cells in the G2 phase by up to 26% when exposed to
elevated pCO2 (Li et al., 2021). Van De Waal et al. (2014) report
up to a 26% reduction in toxin content from two Alexandrium
tamarense strains in response to elevated pCO2. Since A.
minutum grew faster in high pCO2, it is likely that the reduced
toxin content resulted from shorter time spent in the G1-2 phase.

Elevated pCO2 levels have previously been shown to have an
indirect effect on diatoms (Spisla et al., 2021) as the cell volume
positively correlates with growth rate and elevated pCO2, this
then leads to a shift towards larger diatom species (Wu et al.,
2014; Bach et al., 2019). Through bottom-up processes, even
small-scale changes in community composition have the
capacity to alter the food web structure. For instance, we found
a reduction in silica content in S. marinoi (Figure 3), suggesting a
reduction in its ballast potential which could result in lower
sinking rates (Petrou et al., 2019). Understanding how individual
species will react to an increase in pCO2 is necessary to
disentangle how and why communities might change in a
future environment. This study was carried out under
laboratory conditions with single species cultures testing two
different pCO2 levels. On the one hand an increase in carbon
enhances growth; on the other hand, there will be induced stress
of lowered pH on species and strains. In different conditions we
may experience different responses, each increment of pH may
have a distinctive effect on each species and strain.

Ocean acidification has varying effects even within strains of
species: Kremp and colleagues (2012) found that the response to
increased pCO2 is different among strains in Alexandrium
ostenfeldii. Three out of eight strains showed no significant
increase in growth from pCO2 alone and toxins were significantly
lower in elevated pCO2 in one strain while there was an overall
trend towards increasing cell toxin content with increasing pCO2

and temperature. Multiple strains of Alexandrium fundyense were
Frontiers in Marine Science | www.frontiersin.org 7
shown to have an overall trend towards faster growth but only one
from Northport Bay, New York became more toxic while another
from the Bay of Fundy showed no change with increased pCO2

(Hattenrath-Lehmann et al., 2015). This shows that there is a wide
variation of growth rate and toxin production responses in
experiments that focus on OA. Thus, demonstrating the
variability within species and the winner and loser concept may
be equally valid on strains rather than just at the species level.

We see an overall effect from copepodamides creating shorter
chains, trends of higher toxin content, and lower growth, thus we
conclude that copepodamide signalling is likely to be robust to
future pCO2 changes. The variable response of pCO2 suggests
that some species, or strains of species, will be favoured in a high
pCO2 world. However, in nature the conditions are much more
diverse and any general patterns arising from single species
laboratory experiments calls for validation in more natural and
complex settings, such as large scale mesocosms.
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