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Biological dinitrogen (N2) fixation is the pathway making the large pool of atmospheric N2

available to marine life. Besides direct rate measurements, a common approach to explore
the potential for N2 fixation in the ocean is a screening-based targeting the key functional
marker gene nifH, coding for a subunit of the nitrogenase reductase. As novel sequencing
techniques improved, our understanding of the diversity of marine N2 fixers grew
exponentially. However, one aspect of N2 fixation in the ocean is often underexplored,
which are the two alternative types of the key enzyme of N2 fixation, the nitrogenase.
Altogether there are three isoenzymes, the most common Mo-Fe nitrogenase Nif, the Fe-
Fe nitrogenase Anf, and the V-Fe nitrogenase Vnf, which differ regarding their genetic
organization, as well as their metal co-enzymes. While Mo is only available in the presence
of at least traces of oxygen (O2), V and Fe are available if O2 is absent. Therefore, low O2

and anoxic ocean environments could be an ideal place to explore the diversity of the
different isotypes of the nitrogenases. Most phylogenetic studies, however, were only
based on the functional marker gene nifH, encoding for a subunit of the Nif nitrogenase,
and thus limited in representing the diversity of alternative nitrogenases. Here, we
screened metagenomes and -transcriptomes from O2 minimum zones off Peru, from
the Bay of Bengal, and the anoxic Saanich Inlet to explore the diversity of genes involved in
N2 fixation. We identified genes related to all three nitrogenases, and a generally increased
diversity as compared to our previous nifH based on studies from OMZ waters. While
we could not confirm gene expression of alternative nitrogenases from our transcriptomic,
we detected diazotrophs harboring the genetic potential for alternative nitrogenases. We
suggest that alternative nitrogenases may not be used under conditions present in those
waters, however, depending on trace metal availability they may become active under
future ocean deoxygenation.

Keywords: alternative nitrogenases, nitrogen fixation, oxygen minimum zone (OMZ), diazotrophs diversity,
bioinfomatic analysis
INTRODUCTION

Biological fixation of dinitrogen gas (N2) is quantitatively the most important external supply of
nitrogen (N) to the Ocean. Only certain N2 fixing microbes, called diazotrophs, can perform this
highly energy costly enzymatic reaction. First pioneering studies involving large scale sequencing
surveys, based on the then-available Sanger sequencing technique, identified the paraphyletic nature
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of diazotrophs throughout the archaeal and bacterial kingdoms
(Zehr et al., 1998; Zani et al., 2000; Zehr and Turner, 2001). More
recent studies using high throughput sequencing approaches
[e.g., (Farnelid et al., 2011; Cheung et al., 2016; Gaby et al.,
2018)] broadened the tree of diazotrophs and more clades could
be added to the diversity of N2 fixers in the Ocean, however, it
appears that the initial trees did not fundamentally change
concerning their main cluster structure.

One major reason may be in the nature of the available
genetic screening methods, which are mostly based on selectively
targeting the nifH gene, defined as a key functional marker for
the operon encoding for the enzyme dinitrogenase reductase
(Yun and Szalay, 1984). The operon contains, however, two
additional structural genes, nifD and nifK, altogether the nif
regulon comprises seven operons (Brill, 1980). nifH genes are
often represented in small numbers in the marine realm, and
PCR-based detection requires subsequent amplification steps
thus introducing certain biases. Thus, to approach the diversity
of diazotrophs in the environment, it may be helpful to consider
other parts of the Nif operon to obtain a more complete picture.
An additional problem regarding the molecular screening for
nitrogenases is that the common nitrogenase (encoded by nif) is
only one out of three nitrogenases (Bishop et al., 1980; Joerger
et al., 1988; Kennedy et al., 1991).

Two alternative nitrogenases were described, one of which is
the Anf nitrogenase, which is characterized by an iron-iron (Fe)
co-enzyme, the other nitrogenase, Vnf, is a vanadium (V)-Fe
nitrogenase. The classic Nif nitrogenase has a Fe-Molybdenum
(Mo) cofactor. The difference regarding those metal cofactors is
of particular interest in anoxic or generally O2 depleted
environments. Mo –in contrast to Fe and V- is only available
when at least traces of O2 are present (Bertine and Turekian,
1973; Collier, 1985; Morford and Emerson, 1999; Anbar and
Knoll, 2002). This is important with regard to the predicted loss
of O2 in today’s Oceans in a warming world (Stramma et al.,
2008; Keeling et al., 2010; Schmidtko et al., 2017) which might
possibly lead to Mo not always being available, disabling Nif
nitrogenases and facilitate the use of alternative nitrogenases.
The reason for the evolutionary development of three different
nitrogenases is still debated. The general conclusion, however, is
that the two alternative nitrogenases originated from nif
(Raymond et al., 2004; Boyd et al., 2011; Boyd and Peters,
2013; Boyd et al., 2015), which is supported, e.g., by a similar
genetic structure and alternative nitrogenases being dependent
on nif-machinery for biosynthesis (Kennedy and Dean, 1992).

Alternative nitrogenases are frequently detected and active in
terrestrial environments (Bellenger et al., 2020). However,
information on the ecological role of alternative nitrogenases and
their activity and presence in marine settings is scarce. A previous
study based on whole-genome mining and PacBio from coastal
environments identified a 20 fold increase in diversity of
diazotrophs when including genes encoding for alternative
nitrogenases anf and vnf (McRose et al., 2017) suggesting the
importance of those nitrogenases for obtaining a conclusive
picture of the diazotroph community in an environment. The
contribution of alternative nitrogenases to N2 fixation in
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environments including cyanolichens, microbial mats, anaerobic
sediments has been further corroborated by studies based on isotope
fractionation using an isotopic acetylene reduction assay able to
distinguish canonical Mo and alternative nitrogenase activities
based on carbon isotope fractionation during acetylene reduction
to ethylene (Zhang et al., 2016). Based on this assay, Zhang et al.,
2016 determined alternative nitrogenases to contribute 20-55% to
bulk N2 fixation rates in salt marshes.

Due to the above-mentioned potential advantage of
diazotrophs with alternative nitrogenases, marine OMZs might
turn into suitable niches for those microbes. In the light of Ocean
deoxygenation (Stramma et al., 2008; Keeling et al., 2010;
Schmidtko et al., 2017) and increasing frequency of regional
severe anoxic and sulfidic events (Lennartz et al., 2014)
diazotrophs possessing those alternative nitrogenases may
therefore increasingly obtain advantage, because Mo may
become limiting under anoxia, thus disabling the functionality
of the nif-nitrogenase (Helz et al., 1996; Bellenger et al., 2020;
Bennett and Canfield, 2020). Still, information on the presence
and distribution of alternative nitrogenases in OMZ waters is to
date not available.

In this study, we explored the presence of the three different
nitrogenases in OMZs with different intensities. We compared
nitrogenases in the OMZ off Peru, which is one of the most
prominent examples for expanding and progressing
deoxygenation (Stramma et al., 2010) and displays coastal
sulfidic anoxia (Schunck et al., 2013; Löscher et al., 2015;
Callbeck et al., 2018), Saanich Inlet (SI), a seasonally anoxic
fjord (Carter, 1932; Carter, 1934; Anderson and Devol, 1973;
Torres-Beltrán et al., 2017), and the Bay of Bengal (BoB) OMZ as
part of the Northern Indian Ocean, which has been described to
maintain traces of oxygen in its OMZ core waters (Bristow
et al., 2017).
MATERIALS AND METHODS

We re-analyzed metagenomic and -transcriptomic datasets
collected on a cruise to the eastern tropical South Pacific in
2009/2010. The cruise was carried out in the framework of the
collaborative research center SFB 754 ‘Climate-biogeochemistry
interactions in tropical Oceans’ on the German research vessel
RV Meteor. The samples were collected as previously described
(Schunck et al., 2013; Löscher et al., 2014) on the shelf on station
#19, 12°21.88´S, 77°10.00´W, where the water column was
anoxic from 20 m down to the sediment (124 m) and
hydrogen sulfide (H2S) was present in the anoxic zone
reaching concentrations up to 5 µmol L-1. Metagenomic
dataset for from BoB were collected from Löscher et al., 2020
with location 17°N, 88.2°E. Metagenomic dataset from SI (48.5°
N, 123.5°W) are accessible through JGI IMG/G portal as
indicated in Hawley et al., 2017.

Seawater Sampling
Samples for salinity, O2 and nutrient analysis, including nitrate,
nitrite, ammonia, and phosphate (NO3

-, NO2
-, NH4

+ and PO4
3-),
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respectively were collected from a pump-CTD system. OnM77/3
this allowed to combine the classical conductivity-temperature-
density sensor measurements with O2, fluorescence, turbidity,
and acoustic doppler counter profiler measurements, and
importantly with continuous water sampling over a water
column of maximum 350 m depth in high resolution. Seabird
sensor O2 measurements were calibrated with Winkler method
measurements; salinity and nutrients were measured directly
after sampling according to Grasshoff et al., 1999 using an
autoanalyzer. Samples for nucleic acid extraction were
prefiltered through 10 µm pore size filters (Whatman
Nuclepore Track-Etch) and cells were collected on 0.22 µm
pore size filters (Durapore Membrane filters, Millipore) using a
vacuum pump, with filtration times not exceeding 20 min. Filters
were frozen and stored at -80°C.

Molecular Methods
Molecular analysis for this study is based on a publicly available
metagenomic and –transcriptomic dataset, originally presented
in Schunck et al., 2013 with a focus on chemolithoautotrophic
lifestyles in sulfidic OMZ waters. Sequencing resulted in
1,888,768 (DNA) and 1,560,959 (RNA) sequences with an
average length of 392 base pairs, accounting for 757,439,211
and 599,103,110 base pairs of sequence information, respectively.
Sequence datasets are publicly available from the metagenomics
analysis server (MG-RAST) under accession numbers 4460677.3,
4450892.3, 4450891.3, 4460736.3, 4461588.3, 4460676.3,
4452038.3, 4460734.3, 4452039.3, 4452042.3, 4460735.3,
4460734.3 and 4452043.3.

Bioinformatic Methods
Metagenomic and transcriptomic raw-reads from the Peruvian
shelf, BoB and SI were uploaded and processed on MG-RAST, an
open-submission portal for analyzing metagenomic/
transcriptomic dataset, such as annotation and functional
reconstruction (Keegan et al., 2016). We screened for
nitrogenase genes using COG (Cluster of Orthologous genes)
database and were subsequently exported. A total of 8677 nif-
related and 1112 alternative-related genes were exported from SI,
529 nif-related and 124 alternative-related genes from the
Peruvian Shelf, and 116 nif-related and 27 alternative-related
genes from the BoB. Exported nitrogenase genes were subject to a
BLAST search on the NCBI Genbank database to create a
reference library. Mega 7 was used for phylogenetic analysis
(Neighbor-joining method) using the reference library and
exported nitrogenase genes (Kumar et al., 2016). Clades were
defined based on phylogenetic analysis. In order to constrain
differences to our previous study of the same samples (Löscher
et al., 2014), which were based on nifH Sanger sequencing, we
constructed Neighbor-joining trees. Gene/transcript relative
abundances were estimated by normalizing counts of
nitrogenase genes to the housekeeping gene, rpoB.

In order to identify parameters determining the distribution
of N2 fixers in these sulfidic waters, we applied simple correlation
analysis and a principal component analysis (PCA, Table S1 and
Figure S2). This dataset was compared to a metagenomic dataset
available from the BoB from a situation with an OMZ with only
Frontiers in Marine Science | www.frontiersin.org 3
traces of O2 left in its core waters, low productivity and a typical
OMZ diazotroph community as identified by Sanger sequencing
of nifH (Löscher et al., 2020), and from the SI from Oct 2011
where O2 concentrations were below 5 µmol L-1 (Hawley
et al., 2017).
RESULTS AND DISCUSSION

Hydrochemistry Features
In this study, we used full metagenomes and –transcriptomes
from an environment sharing certain characteristics with an
ancient Ocean, in order to explore the functional diversity of N2

fixers, and the expression of genes involved in it. We compared
the results of this presumably unbiased dataset to previous PCR-
based studies targeting the classical functional marker for N2

fixation, nifH. Sampling took place on the shelf off Peru, in a
patch of water that was sulfidic at the time. Sulfidic conditions
were reported in other studies as well (Galán et al., 2014; Callbeck
et al., 2018), thus this condition could be a permanent feature.
The distribution of nutrients and chemical properties can be seen
in Schunck et al., 2013. Briefly, the path which was sulfidic
during our cruise is visibly O2 depleted even in this integrated
plot. The water column was anoxic from 18 m downwards and
hydrogen sulfide (H2S) was detected along the vertical profile
from 27 m downwards (Figures 3C, D). At the same depth
(27 m) NO3

- and NO2
- were depleted and NH4

+was accumulated
throughout the anoxic water column (Figure 1). Iron (Fe)
concentrations were reportedly high reaching concentrations
up to about 267 nmol kg-1 in the water column, mostly in the
bioavailable form of Fe(II) (Schlosser et al., 2018) in line with
earlier reports from that same area (Hong and Kester, 1986).

Composition of Diazotrophs off the
Peruvian Shelf
In our previous study from 2014 (Löscher et al., 2014) based on
Sanger sequencing of the nifH gene, we identified a community
of seven previously unknown and two described clades of N2

fixers in the OMZ waters off Peru. Organisms matching those
clades could be recovered from our metagenomes, thus
supporting our previous study regarding the validity of
sequence presence (Figure 2). In addition to those previously
described N2 fixers, we identified several diazotroph clades on
the genus level from the combined metagenomes and
transcriptomes, thus suggesting that the previously used Sanger
sequencing did not entirely cover the present diversity. Taking all
nif, anf, and vnf genes into consideration, we identified
additional N2 fixers amongst ß-, ɣ-, and ɗ- Proteobacteria,
green and purple sulfur bacteria, Firmicutes, Verrumicrobia,
Crenarchaeota and Euryarchaeota.

Importantly, we could not identify the traditionally genetic
marker gene for nitrogenases (nifH), but rather, rather nifA, were
the most abundant nitrogenase gene identified (Tables S2A, B).
This, indeed, leaves us wondering how far any of the genes
identified in this or other studies are translated into functional
nitrogenases. N2 fixation has been shown to occur in those OMZ
July 2022 | Volume 9 | Article 875582
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waters, however, rates deviated strongly and ranged from below
the detection limit (Bonnet et al., 2013; Dekaezemacker et al.,
2013; Turk-Kubo et al., 2014) to comparably high rates of up to
24.8 ± 8.4 nmol N L-1 d-1 (Löscher et al., 2014; Löscher et al.,
2016) (Figure 3D). The latter, however possibly having been
corrupted by the use of a potentially contaminated gas stock
(Dabundo et al., 2014). In our previous studies, we could not
clearly correlate a specific clade of N2 fixers to the high rates in
N2 fixation in the euphotic zone in the sulfidic patch. Our data,
however, shows the presence of N2 fixers within the genera of
both Burkholderiales, Rhizobiales, and Myxococcales in the
euphotic zone (Figure 3A and Figure S1), possibly contributing
to N2 fixation in surface waters.

There were two descriptions of this area developing sulfidic
anoxia (Schunck et al., 2013; Callbeck et al., 2018). Historical
reports of Peruvian fishermen on the characteristic smell and
Frontiers in Marine Science | www.frontiersin.org 4
black fishing gear (Schunck et al., 2013), and at least two earlier
descriptions of sulfidic anoxia in those waters point towards re-
occurring sulfidic anoxia in this region (Burtt, 1852; Dugdale
et al., 1977). We identified clades typically observed in anoxic
environments, such as clades related to Desulfovibrio and
Chlorobiales (Farnelid et al., 2013; Löscher et al., 2014;
Jayakumar and Ward, 2020). A large fraction, of N2 fixers in
those sulfidic waters, as previously described (Fernandez et al.,
2011; Löscher et al., 2014), are microbes involved in sulfur
cycling, and similar to those found in organic carbon-rich
sediments [e.g., (Bertics et al., 2013; Gier et al., 2016)]. While
those N2 fixers do not seem to be quantitatively important for N2

fixation rates, they still find a niche and might become more
important in the future with intensifying, expanding OMZs and
more frequent events of sulfidic anoxia (Stramma et al., 2008;
Lennartz et al., 2014).
A B

FIGURE 2 | Presence of nitrogenase genes in the metagenomes and -transcriptomes. (A) The maximum likelihood tree shows the detected diversity based on nifD,
anfD, and vnfD. (B) Species closest related to the detected diazotrophs, the presence of nif, anf, and vnf is indicated in green. Note that the majority of diazotrophs
possesses nif-nitrogenase genes only. * mark genera, of which we found representatives in our previous nifH-based study.
FIGURE 1 | Location of stations from where samples were analyzed from. Stations are indicated by a red star. Peruvian Shelf at 12.2°S, 77°W. Saanich inlet at
48.5°N, 123.5°W. Bay of Bengal at 17°N, 88.2°E.
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Activity of Diazotrophs off the
Peruvian Shelf
The metatranscriptomic analysis showed no expression of genes
coding for either of the two alternative nitrogenases. nif
transcripts could be detected at water depths below 40 m
downwards (Figure 3B) affiliated with the genera of
Chlorobiales, Syntrophobacterales, Desulfovibrionales,
Rhodocyclales, Desulfuromonadales, and Desulfobacterales.
The presence and transcriptional activity of the sulfate-
reducing Desulfovibrionales and Desulfobacterales, as well as
the sulfur-respiring Desulfuromonadales, is in line with our
previous study, as well as with a sediment-focused study on N2
Frontiers in Marine Science | www.frontiersin.org 5
fixation from the same area, where those clades have been
identified important amongst N2 fixers (Gier et al., 2016).

Green sulfur bacteria (Chlorobiales), sulfate-reducing
Syntrophobacterales, and Rhodocyclales (mostly classified
closest to Dechloromonas clades, which can denitrify) have,
however, previously never been described to play any role in
N2 fixation in the Peruvian OMZ. Except for the identified
Rhodocyclales, all those newly identified N2 fixing clades are
capable of metabolizing sulfur compounds, thus hinting towards
a link between N2 fixation and sulfur cycling. However, a
statistical correlation to the concentration of H2S could only be
observed for transcripts of Desulfovibrionales and
A

B

D EC

FIGURE 3 | Phylogenetic representation of organisms possessing nitrogenase genes of the nif, anf, or vnf type (all genes of the operons pooled) in metagenomes
(A) and -transcriptomes (B) from the sulfidic station. Genera identified from annotations of protein-coding genes (in the NCBI database) in both our metagenomes
and –transcriptomes. Nitrogenase gene abundances and expression are shown relative to the putative single copy per organism of RNA polymerase subunit B
(rpoB). The grey rectangle indicates the alternative nitrogenases anf and vnf, note that no expression of either of them was found. Vertical profiles from the Peruvian
Shelf of O2 (C), H2S (D) and N2 fixation rate (E) are modified from Löscher et al., 2014.
July 2022 | Volume 9 | Article 875582
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Desulfuromonadales, thus speaking for a potential link of N2

fixation and H2S turnover only in those clades (Figure 3D,
Table S1).

Previous studies reported both, massive denitrification rates,
as well as extreme nitrous oxide production from the sulfidic
shelf area off Peru (Kalvelage et al., 2013; Arévalo-Martıńez et al.,
2015). We identified Rhodocyclales, in our dataset related to
Dechloromonas, which are described as denitrifiers, producing
the greenhouse gas nitrous oxide as an end-product in their
denitrification chain (Horn et al., 2005). Principle component
analysis revealed transcript abundances of Rhodocyclales to be
linearly correlated to nitrous oxide concentrations (Table S1B)
which supports the idea of spatially coupled denitrification and
N2 fixation, as previously suggested (Deutsch et al., 2007).
However, this correlation is limited by sampling size and
further, nitrous oxide concentrations are a result of combined
multiple processes. Thus, a connection between denitrification
and N2 fixation remains speculative and will still require a deeper
focused analysis in those waters in the future. nif transcripts of
Desulfovibrionales and Desulfobacterales were dominant at 80 m
depth, which is where N2 fixation was at its maximum at anoxic
conditions. Those clades were identified as well via nifH
amplicon-based screening and peaked in abundance at the
same depth in our previous study, however, only in the gene,
but not in the transcript pool.

Based on the dominant abundance of transcripts related to
Desulfovibrionales and Desulfobacterales, those clades seem to
play an important role in N2 fixation in those sulfidic waters,
possibly contributing to the described N2 fixation rates. In this
sense, using full metagenomes/-transcriptomes did, compared to
the nifH-only based approach, only provide novel insights into
identifying active diazotrophs to a certain extent. The power of a
metagenome/-transcriptome based approach seems to rather be
impor tant in exp lor ing the d iver s i ty o f poss ib ly
underrepresented clades, as well as clades discriminated against
by the common nifH primers (Zehr et al., 1998).

Alternative Nitrogenases and Diazotrophs
Across OMZ Waters
In addition to nif, we identified alternative nitrogenases in OMZ
waters off Peru, SI and the BoB. We detected anf genes associated
with Pseudomonadales and Rhizobiales, and Chlorobiales, and
vnf genes associated with Rhizobiales, Chlorobiales, and low
abundances of Rhodospririllales, Acidothiobacillales,
Methylacidiphilales and Desulfovibrionales (Figures 2, 3A and
Figures S1).If compared to other O2 depleted ocean water bodies
with available full metagenomic datasets (BoB, SI), the diversity
of alternative nitrogenases seems similar, with Pseudomonadales,
Rhizobiales and Chlorobiales consistently present in the anf
pool, and Rhizobiales, Chlorobiales, and Rhodospirillales
dominating the vnf pool of sequences (Figure S1). Because
alternative N2 fixers always also have genes coding for the nif
nitrogenase, it cannot be expected that the diversity of alternative
nitrogenase genes exceeds the diversity of nif genes.

One obvious effect of the limitations of nifH-based mining is
the previous lack of a description of alternative nitrogenases.
Frontiers in Marine Science | www.frontiersin.org 6
In our samples, we could identify at least some clades possessing
genes for anf and vnf consistently through OMZs of different
intensity thus raising the question of whether those genes are
maintained in the genome for at least occasional use when Mo is
limiting for the expression of nif. This, however, cannot be
answered from our dataset and is generally a question we can
only speculate about.

The turnover of trace metals, in general, is largely redox
sensitive (Morford and Emerson, 1999), and has been reported to
be impacted by ENSO-dependent changes in redox conditions at
the sediment-water interface in this area. With a cyclic
alternation between oxic conditions favoring V and Mo fluxes
to the water column and anoxic conditions re-precipitating V
and Mo to the sediment, both V and Mo accumulate in shelf
sediments in the Peruvian OMZ (Scholz et al., 2011). Further, a
reduction of V to V(III) by H2S has been demonstrated
experimentally, thus explaining the redox-dependent
accumulation in sulfate-reducing sediments (Wanty and
Goldhaber, 1992). Under sulfidic conditions, Mo(VI) is
reduced to Mo(IV) and precipitated to the sediments (Crusius
et al., 1996). While this precipitation at anoxic and sulfidic
conditions in principle removes Mo and V from the water
column, it promotes the formation of a reservoir of those trace
metals in the sediments (Bennett and Canfield, 2020), enabling
their availability in the water column via upwelling at least
occasionally when redox conditions allow for it. Given the
decrease in Mo and V availability at anoxic-sulfidic conditions,
possessing the genes for an additional Fe-Fe nitrogenase may
thus be advantageous, both regarding ocean anoxic events in
Earth history and future ocean deoxygenation likewise. Thus,
one could suggest that while anf and vnfmay presently not play a
major role for N2 fixation in OMZs they may become important
under a possible future euxinia scenario.

It has only recently been shown that even under Mo
limitation alternative N2 fixers will try to acquire enough of
this trace metal to still sustain their nif nitrogenase instead of
expressing the alternative nitrogenases (Philippi et al., 2021).
Thus, the presence of alternative nitrogenases, while being a
given, is not explainable for us right now. Thou, they may play a
substantial role in N2 fixation in costal sediment environments,
particular in sediments (Zhang et al., 2016; McRose et al., 2017).
CONCLUSION

This study addresses the diazotrophic community, based on a
whole-metagenome and – transcriptome screening. It reports an
increased diversity of N2 fixing microbes in the sulfidic shelf
water off Peru, as compared to the previous target-gene based
studies from the same waters. In addition to a generally higher
diversity, genes encoding for alternative nitrogenases, which
were previously not subject of any study on N2 fixation in
those OMZs, were detected. The ecological meaning and
evolutionary history of those alternative nitrogenases are
debated, however, their presence in OMZ waters would
possibly become relevant under scenarios of extreme and
July 2022 | Volume 9 | Article 875582
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persistent anoxia, which may become important in a future
ocean challenged by progressive deoxygenation.
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