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In this paper, atomic force microscopy was employed to study the harmful algal bloom
species Prorocentrum donghaiense for the first time. Cells were immobilized in pores of
polycarbonate membrane to keep moist and to acquire images of P. donghaiense at
different scales. Typical ultrastructures, such as knob-like spines and valve pores, were
observed on cell surfaces. These structures had similar characteristics to those observed
on scanning electron microscopy images. Moreover, the height and spacing of typical
nanostructure, and nanomechanical parameters such as adhesion and elasticity, were
also quantified by AFM. Additionally, the changes in cell surface nanostructure and
nanomechanical characteristics under nitrogen limitation were further studied.
Compared with the cells under normal culture conditions, the cell surface roughness
and adhesion decreased, and the elastic modulus increased for cells under nitrogen
limitation. Potential changes in the ability of P. donghaiense cells to perform normal
physiological functions are reflected by changes in cell surface parameters, including cell
surface roughness, cell surface adhesion, and cell surface elasticity. The results of this
study reveal how P. donghaiense responds to changes in the external environment under
approximately physiological conditions from the perspective of changes in cell surface
nanostructures and nanomechanical characteristics and provide a new understanding of
its cell biology.

Keywords: Prorocentrum donghaiense, atomic force microscopy, nanostructure, nanomechanics, nitrogen limitation
1 INTRODUCTION

Prorocentrum donghaiense is a common harmful algal bloom species in the coastal waters of China,
especially in the East China Sea (Lu et al., 2005; Wang et al., 2021; Gu et al., 2022). Since 1990, P.
donghaiense has formed blooms almost every year along the Yangtze River Estuary and offshore of
the Zhejiang Province (Lu et al., 2005). Algal blooms can cover an area of hundreds to thousands of
square kilometers and the cell density can be as high as 3.7×108cells/L, which seriously affects the
health of the ecosystem (Lu et al., 2005; Lin et al., 2014). Moreover, in recent years, algal blooms
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caused by P. donghaiense have gradually expanded to Japan,
South Korea, and other sea areas, and the scope of influence has
further expanded (Shin et al., 2019). P. donghaiense blooms can
be regulated by nitrogen (Wang et al., 2020). Thus, studying the
response of P. donghaiense cells under nitrogen limitation is of
great significance to thoroughly understanding the mechanism
of their environmental adaptation. At present, many studies have
been carried out on the physiological, biochemical, and
molecular biological response of P. donghaiense cells under
nitrogen limitation (Lai et al., 2011; Zhang et al., 2015; Ou
et al., 2019; Zhang et al., 2019), and these studies revealed its
adaptation mechanism from many points of view. However,
there is no relevant research on mechanical properties of P.
donghaiense cells response to nitrogen limitation under
approximately physiological conditions.

Surface morphology is an important feature of biological cells.
At present , the common high-resolut ion structure
characterization method is scanning electron microscopy, but
the sample preparation process is complex, and the method
cannot directly observe living cells, so it is difficult to observe the
physiological state of cells (Zewail, 2010). In recent years, an
increasing number of studies have used atomic force microscopy
to uncover the surface structure and properties of biological cells
(Li et al., 2014; Pasquina-Lemonche et al., 2020). However,
compared with its widespread use and applications in animal
cell research, only a few microalgae related studies use atomic
force microscopy technology. Atomic force microscopy is more
widely used in diatom cell research, including the morphology of
silica nanostructures, adsorption characteristics of the mucus
layer, physical and mechanical properties of diatom cells
(Higgins et al., 2000; Higgins et al., 2002; Gebeshuber et al.,
2003; Higgins and Wetherbee, 2019), and the response of
diatoms to environmental changes (Ma et al., 2019; Ma et al.,
2020; Ma et al., 2021). Unlike diatoms, flagellated microalgae are
rarely studied, which is partly due to the difficulty of cell
immobilization. At present, there are also a few reports on the
study of green algae by atomic force microscopy regarding
understanding its cell wall structure and adsorption
characteristics (Eslick et al., 2014; Pillet et al., 2019). In
addition to the above applications, high-resolution atomic
force microscopy is also used to study organelles. With the
cyanobacteria model strain Synechococcus elongatus PCC 7942
as the research material, high-resolution imaging was performed
and its photosynthetic membrane thylakoid membrane, the
natural structure and mutual binding mode of photosynthetic
complexes on thylakoid membrane were displayed at the nano
level, and the light adaptation mechanism of thylakoid
membrane structure and function was explained (Zhao et al.,
2020). Atomic force microscopy can be used to characterize the
response of cells to the environment under approximately
physiological conditions from the ultrastructural and
mechanical characteristics of the cell surface to provide a new
understanding of cell biology (Lu et al., 2020; Venturelli
et al., 2020).

Previous studies have shown that nitrogen limitation inhibited
the growth of P. donghaiense, maintained its cell density,
Frontiers in Marine Science | www.frontiersin.org 2
chlorophyll a content and particulate organic nitrogen content
at a low level, and caused the downregulation of proteins involved
in photosynthesis, carbon fixation, and protein and lipid synthesis
(Zhang et al., 2015; Ou et al., 2019). On the basis of previous
studies, this paper intends to characterize the surface
nanostructure and nanomechanics of P. donghaiense cells by
atomic force microscopy and to further study their changes
under nitrogen limitation to reveal the response of P.
donghaiense cells to nitrogen limitation from the perspective of
cell surface characteristics under approximately physiological
conditions, which would provide a basis for further explaining
the environmental adaptation mechanism of P. donghaiense.
2 MATERIALS AND METHODS

2.1 Culture of P. donghaiense
P. donghaiense cells in the later stage of exponential growth
were centrifuged at 4000 g, the excess nutrients on the cell
surface were washed off with sterilized seawater three times,
and the cells were inoculated into normal f/2 medium with a
nitrogen concentration of 883 mM and f/2 medium without a
nitrogen source. The container was a 25 cm2 breathable cell
culture flask (Nest), and the initial density was 1×104 cells/mL.
The culture temperature was 20°C in a light:dark cycle of
12h:12h with a light intensity of 4000 lux. When the cells
grew to the later stage of exponential growth in normal f/2
medium, the samples of the two groups were taken for
sample determination.

2.2 SEM Image Analysis
For each sample, 2 ml algal solution was added to the same
volume of 4% osmic acid for fixation for 50 min, and then algal
cells were collected, dehydrated in acetone solutions of different
concentrations (10%, 30%, 50%, 70%, 90%, 100%, each
concentration for 15 min), dried by a CO2 critical point dryer
(EM cpd300, Leica), and sprayed with gold by a coating
instrument (sputter/carbon thread, EM ace200, Leica). The
morphology of P. donghaiense was observed by scanning
electron microscopy (Hitachi S-4800, Japan) and measured by
electron microscopy software (Veltkamp et al., 1994).
2.3 Samples for AFM and
Measurement Parameters
Cells were immobilized with the method used for Staphylococcus
aureus cells (Pasquina-Lemonche et al., 2020), while details were
modified, and polycarbonate membrane was used instead of
NuNano silicon grids. P. donghaiense cells have flagella and
different degrees of activity, so it is difficult to fix them when
they are completely submerged in the liquid medium. In this
study, a polycarbonate membrane (Millipore Isopore, with a
thickness of 16 µm to trap the moisture) with a pore size similar
to cell size was considered the matrix for fixation so that the cells
could be properly “stuck” in the pores and kept moist. A total of
10 µL algal liquid without any treatment was directly dropped
April 2022 | Volume 9 | Article 874888
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onto a 10 µm pore diameter polycarbonate membrane and
scanned with atomic force microscopy (Bruker Bioscope
Resolve) at room temperature 20°C with air humidity ranging
from 50% to 70%. The images should be obtained while the cells
are kept moist in approximately physiological conditions. When
the cells are dry, salt separates out on the surface, which is also a
way to judge the state of the cells. Both automatic mode and
contact mode were employed in this study. The probes used are
SCANASYST-AIR and DNP. The scanning frequency was 0.5 Hz,
and the resolution was 512×512. The mechanical parameters were
measured using the ramp mode, and cell surface areas of different
sizes such as 5 µm×5 µm were selected for testing.
2.4 Image and Data Processing
The image analysis software used was NanoScope Analysis
1.8. Adhesion and elasticity were calculated by this software.
After the images were scanned by atomic force microscopy,
they were uniformly processed by first-order flatten, and the
cell surface roughness was analyzed by a rough module. The
height and spacing of the cell surface ultrastructure were
analyzed by the section module, and the original data were
redrawn in Excel. Similarly, after the original mechanical
analysis data were exported, they were replotted and
analyzed in Excel. The roughness (Ra) is the arithmetic
mean of the absolute height of the cell surface in the
selected area. Roughness of cells under nitrogen limitation
and under normal culture conditions were counted by five
Frontiers in Marine Science | www.frontiersin.org 3
cells, respectively. The roughness calculation formula is as
follows:

Ra =
1
No

N

j=1
Zj

�
�

�
�

where Z is the absolute height of the cell surface and N is the
number of calculation points.
3 RESULTS

3.1 Morphology of P. donghaiense
Revealed by AFM
In this study, images of P. donghaiense cells from different angles
and at different scales were obtained by atomic force microscopy
(Figures 1A–F). Figure 1B shows the overall appearance from
the left valve view. Figure 1C shows depression structure in the
flagellum area at the top of the cell, and the flagellum of P.
donghaiense cells can be observed in more detail in Figure 1D.
Figure 1E shows the collar structure around the flagellum pores
at the top of the cell. Figure 1F is the megacytic zone of the cell,
and Figures 1G, H show the knob-like spines and valve pores on
the shell surface of the cell. These morphological characteristics
of the cell surface of P. donghaiense revealed in this study are
similar to those obtained by Lu et al. through SEM (Lu et al.,
2005), which indicates that AFM can be used to characterize the
cell surface ultrastructure of P. donghaiense.
April 2022 | Volume 9 | Article 874888
FIGURE 1 | Images of P. donghaiense by AFM. (A) Valve view. (B) The left valve view. (C) Lateral view of cell which shows the flagellum pore. (D) Lateral view of
cell which shows the flagellate. (E) The local magnification of cell which shows the collar structure. (F) The local magnification of cell which shows the megacytic
zone. (G, H) The ultrastructure of the cell surface, which displays typical structures, such as knob-like spines and valve pores.
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Further high-resolution imaging of the unique structure on the
cell surface of P. donghaiense showed clear knob-like spines and
valve pores (Figure 2A). The height measurement results
show that the height of knob-like spines relative to the cell
surface is approximately 100 nm, the spacing between them is
approximately 400 nm, the diameter of valve pores is
approximately 200 nm, and the height is 120 nm
(Figures 2B, C). Similarly, by measuring the height of the
indirect zone of P. donghaiense cells (Figure 2D), it can be
seen that the height of the bulge on the surface of the megacytic
zone is not the same, and the height ranges from approximately
100-200 nm (Figures 2E, F).

3.2 Nanostructure of P. donghaiense
Under Nitrogen Limitation
Nitrogen limitation can affect the physiological activities of P.
donghaiense cells, which include photosynthesis, carbon fixation,
Frontiers in Marine Science | www.frontiersin.org 4
and protein and lipid synthesis. Compared with cells under
normal culture conditions (Figures 3A, C), the cell surface
under nitrogen limitation seemed to lack some “reticular
substances” (Figures 3B, D).

Using AFM to observe moist P. donghaiense cells under two
culture conditions, clear knob-like spines and valve pores were
observed on the cell surface under normal culture conditions
(Figure 4A), while the pores on the cell surface of P. donghaiense
under nitrogen limitation were not sufficiently clear (Figure 4B).
Further analysis of the height of knob-like spines showed that
there were differences in the height of knob-like spines on the
surface of the two cells. The height of knob-like spines on the cell
surface under normal conditions was approximately 99 nm, while
that under nitrogen limited conditions was approximately 75 nm.
The cell surface protrusion angle under normal culture conditions
was “sharp”, while the cell surface protrusion angle under nitrogen
limitation was “blunt”.
A

B

C

D

E

F

FIGURE 2 | Nanostructure of P. donghaiense. (A) The ultrastructure of the cell surface. (B) The height and spacing value of knob-like spines in Panel A. (C) The
height and spacing of valve pores on the shell surface in Panel A. (D) The megacytic zone structure of the cell. (E, F) The surface concave convex value in Panel D.
April 2022 | Volume 9 | Article 874888

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


He et al. Nano Characteristics of Prorocentrum donghaiense
Further roughness analysis was carried out on 30 areas of
different sizes ranging from 0.3-43.7 µm2 on the cell surface of P.
donghaiense. The results showed that the variation range of cell
surface roughness of P. donghaiense under normal culture
conditions was 25-350 nm, while the value and range of cell
surface roughness of P. donghaiense under nitrogen limitation
were 25-40 nm (Figures 5A, B). Both the value and range of cell
surface roughness of P. donghaiense under normal culture
conditions were larger than those under nitrogen limitation.
The difference was that the cell surface roughness under normal
culture conditions was positively correlated with the surface area
(R2= 0.858), and the cell surface roughness under nitrogen
restriction was negatively correlated with the surface area (R2=
0.564) (Figures 5C, D).

3.3 Nanomechanical Characteristics of P.
donghaiense Under Nitrogen Limitation
Many important physiological functions of cells depend on
their mechanical properties, such as adhesion and elastic
modulus. This study found that the cell surface adhesion of
P. donghaiense under normal culture conditions ranged from
Frontiers in Marine Science | www.frontiersin.org 5
0.03 to 2.11 nN, with an average of 0.65 nN (Figures 6A, C).
Under nitrogen limitation, the cell surface adhesion of P.
donghaiense ranged from 0.04 to 0.71 nN, with an average of
0.43 nN (Figures 6B, D). The surface adhesion of P.
donghaiense cells under normal culture conditions is
generally greater than that under nitrogen limitation, and the
distribution range is wider.

The elastic modulus can be regarded as an index to measure
the difficulty of elastic deformation to occur in materials. The
greater its value is, the greater the stress causing certain elastic
deformations in materials; that is, the greater the material
stiffness is, the smaller the elastic deformation under the action
of certain stress. This study found that the surface elastic
modulus of P. donghaiense cells under normal culture
conditions ranged from 0.17 to 0.88 MPa, with an average
value of 0.60 MPa (Figures 7A, C). Under nitrogen limitation,
the cell surface elastic modulus of P. donghaiense ranged from
0.14 to 3.91 MPa, with an average of 3.42 MPa (Figures 7B, D).
The surface elastic modulus of P. donghaiense cells under normal
culture conditions is less than that under nitrogen limitation, and
the whole entity is “softer”.
A B

C D

FIGURE 3 | Morphology of P. donghaiense by SEM. (A, C) The normal culture conditions. (B, D) The nitrogen limiting conditions.
April 2022 | Volume 9 | Article 874888
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A B

FIGURE 4 | Morphology of P. donghaiense by AFM. (A) The normal culture condition. (B) The nitrogen limiting condition.
FIGURE 5 | Comparison of the cell surface roughness of P. donghaiense. (A) 3D morphology of P. donghaiense under normal culture conditions. (B) 3D
morphology of P. donghaiense under nitrogen limiting conditions. (C) Statistical analysis of roughness under normal culture conditions. (D) Statistical analysis of
roughness under nitrogen limiting conditions.
Frontiers in Marine Science | www.frontiersin.org April 2022 | Volume 9 | Article 8748886
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4 DISCUSSION

4.1 Using Atomic Force Microscopy to
Study Harmful Algal Bloom Species
For a long time, there has been a dispute about the species
identification of Prorocentrum in the East China Sea. Lu et al.
described the taxonomic characteristics of this species in detail,
identified it as P. donghaiense, and found evenly distributed knob-
like spines and valve pores on its surface by using scanning electron
microscopy (Lu et al., 2005). In this paper, atomic force microscopy
was employed to study moist cells in the harmful algal bloom
species P. donghaiense for the first time. Typical ultrastructures such
as knob-like spines and valve pores on the cell surface had similar
characteristics compared with those observed on scanning electron
microscopy images. What is more, the height and spacing of a
typical nanostructure were quantified by AFM to reflect the
microenvironment on the cell surface. Besides morphology
characters, adhesion and elasticity were also revealed in this study,
which is the first mechanical research of P. donghaiense.

One major advantage of AFM is that it can characterize cells
under physiological conditions, which can more accurately reflect
the original characteristics of cells (Demir-Yilmaz et al., 2021). Due
to the lack of movement ability, diatoms can more easily adhere to
the substrate to grow and fix themselves compared with other
microalgae equipped with flagella, which avoids the requirements of
Frontiers in Marine Science | www.frontiersin.org 7
atomic force microscopy for sample fixation (Gebeshuber et al.,
2003). At present, atomic force microscopy in microalgae is mainly
used in diatoms (Luis et al., 2017; Demir-Yilmaz et al., 2021).
However, there are few reports on atomic force microscopy in the
field of red tide algae.

For red tide algae, cell immobilization is an important challenge
for the application of atomic force microscopy in the study of living
cells, partly due to their strong movement ability. At present, the
main methods for flagellated cell immobilization include fixed by
glutaraldehyde and then adhered to the substrate (Gunther et al.,
2014; Pillet et al., 2019). Unlike diatom cells that can adhere to the
substrate for growth, red tide algae such as dinoflagellates have
flagella and motion ability, so it is difficult to fix them. In this study,
several fixation methods were compared. For dinoflagellates with
different particle sizes, a polycarbonate membrane with a pore size
similar to its cell size was considered the matrix for fixation so that
the cells could be properly “stuck” in the pores and kept moist, and
this method is similar to that used for S. aureus cells (Pasquina-
Lemonche et al., 2020) and Emiliania huxleyi cells (Evans et al.,
2021). In the 10 µm pore size polycarbonate membrane selected in
this study, there are several types of “stuck slots”: a single 10 µm hole
(Figure 8A) and two 10 µm connected holes (Figure 8B) which
can immobilize P. donghaiense cells. Atomic force microscopy is an
important method to study the biological mechanism of cells.
Studies based on animal cells show that the elastic modulus E of
A B

C D

FIGURE 6 | Comparison of the cell surface adhesion of P. donghaiense. (A, C) The normal culture conditions. (B, D) The nitrogen limiting conditions.
April 2022 | Volume 9 | Article 874888
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cells is closely related to their life activities and health status. For
example, the elastic modulus E of human cancerous cells is much
lower than that of normal cells, and by directly measuring the elastic
modulus E of biological cells, the cancerous state can be reflected
(Cross et al., 2007). Cell differentiation is usually accompanied by
Frontiers in Marine Science | www.frontiersin.org 8
changes in shape to realize special functions. To produce different
shapes, cells need to change the mechanical properties of their
surface (Bergert et al., 2021). By using a cell magnetic twisting
instrument, Wang et al. found that integrin, a cell adhesion protein,
is a cell mechanical receptor (Wang et al., 1993); moreover,
FIGURE 8 | Different types of “slots” in the 10-µm pore size polycarbonate membrane. (A) A single 10 mm hole. (B) Two 10 mm connected holes.
A B

C D

FIGURE 7 | Comparison of the cell surface elastic modulus of P. donghaiense. (A, C) The normal culture conditions. (B, D) The nitrogen limiting conditions.
April 2022 | Volume 9 | Article 874888
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mechanical stimulation can be directly transmitted to the nucleus
through the cytoskeleton and nuclear membrane and directly
activate gene expression. Directly stretching chromatin with
mechanical force can upregulate transcription (Tajik et al., 2016).

The instrument can image microalgae cells with nanoscale
resolution and probe the nanomechanical properties and
nanoadhesive properties of microalgae cells (Demir-Yilmaz
et al., 2021). Mechanical factors can play a key role in the
response and adaptation of different levels of functions, such as
mechanical regulation and transportation, tissue deformation,
cell growth and movement, intermolecular interactions, and
signal pathways (Cross et al., 2007; Tajik et al., 2016; Bergert
et al., 2021). Through studying the surface ultrastructure and
biomechanics, AFM is expected to make a new breakthrough in
the environmental adaptation mechanism of microalgae.

4.2 Effects of Nitrogen Limitation
on P. donghaiense
Previous studies have shown that nitrogen limitation inhibited the
growth of P. donghaiense, maintained its cell density, chlorophyll a
content and particulate organic nitrogen content at a low level, and
caused the downregulation of proteins involved in photosynthesis,
carbon fixation, and protein and lipid synthesis (Zhang et al., 2015;
Ou et al., 2019). In this study, the effect of nitrogen limitation on
the surface morphology and mechanical characteristics of P.
donghaiense cells under physiological conditions was further
uncovered. Details of morphology parameters are shown in
Table 1. Compared with cells under normal culture conditions,
the value and range of cell surface roughness under nitrogen
limitation decreased, the value and range of cell surface adhesion
decreased, and the value and range of elastic modulus increased.
The function of cell surface is very complex. In addition to
supporting and protecting cells, the cell surface is closely related
to the behavior, physiological activities, mutual recognition,
adhesion, material transportation, signal transduction, cell
movement, growth, differentiation, aging, and pathological
process of the whole cell (Ludwig et al., 2021). The cell surface
is responsible for the material exchange and energy exchange
inside and outside the cell, and carries out cell recognition,
information reception and transmission, cell movement, and
maintenance of various cell forms through the surface structure.
4.2.1 Physiological Significance of Cell
Surface Roughness
Roughness is a comprehensive reflection of cell microsurface
structure, composition, and content (Hou et al., 2020). This
study revealed that the value and range of P. donghaiense cell
Frontiers in Marine Science | www.frontiersin.org 9
surface roughness under nitrogen limitation decreased compared
with that of cells under normal culture conditions. The cell
surface roughness under normal culture conditions was
positively correlated with the surface area, with the cell surface
roughness under nitrogen restriction negatively correlated with
the surface area, which reflects the microenvironment decreased
under nitrogen limitation. In terms of function, the cell surface
expands function of the plasma membrane, which plays a role in
supporting and protecting the cell, so that the cell has a relatively
stable internal environment. The cell wall of dinoflagellates is
mainly composed of cellulose and protein (Lin, 2011). These
adhesion substances are an important part of the extracellular
microenvironment, and sugary substances, such as sialic acid and
hyaluronic acid, are charged and can adsorb ions to maintain a
constant charge and pH in the microenvironment, which is
beneficial to the activity of enzymes on the plasma membrane
and the activity of cells. For example, there are extracellular
phosphatases such as alkaline phosphatase on the cell surface of
Prorocentrum minimum, which can utilize organic phosphorus,
and the suitable pH condition for its function is 8 (Dyhrman and
Palenik, 1997). Changes in the cell surface microenvironment are
certain to affect the activity of extracellular enzymes to a
certain extent.

As the roughness value and range decrease, the potential
microenvironment on the cell surface decreases, which may
affect various normal physiological activities. For example,
research on diatom Nitzchia closterium shows that the cell
surface roughness decreases with increasing salinity, which
affects the components of the cell surface and further affects
the adsorption of heavy metals (Ma et al., 2019). For another
diatom Phaeodactylum tricornutum, the surface of the oval form
has an outer extracellular polymer, and its surface roughness is
greater than that of the fusiform and triradiate forms, which is
also a potential mechanism for this form to adapt to
environmental change (Francius et al., 2008).

4.2.2 Physiological Significance of Cell
Surface Adhesion
Cell adhesion is a basic phenomenon in biology. Cells can exchange
materials with the surrounding environment through adhesion.
Understanding the mechanical and biological mechanism of cell
adhesion and debonding is of great significance to understanding
cell migration, hardness perception, cell differentiation, and other
life phenomena (Zhang et al., 2017). In this study, the cell surface
adhesion of P. donghaiense under normal culture conditions ranged
from 0.03 to 2.11 nN, with an average of 0.65 nN. The cell surface
adhesion of P. donghaiense under nitrogen limitation ranged from
0.04 to 0.71 nN, with an average of 0.43 nN. The surface adhesion of
P. donghaiense cells under normal culture conditions is generally
greater than that under nitrogen limitation, and the distribution
range is wider.

Adhesion is of great significance to cellular roles. The reduction
in cell surface adhesion under nitrogen limitation is certain to affect
the normal function of cells. Algae cells can achieve the phototaxis
functions through adhesion, and the phenomenon of microalgae
attaching to the wall can be controlled by light. By regulating the
TABLE 1 | Surface characteristics of P. donghaiense measured by AFM.

Parameters Nitrogen sufficient Nitrogen limitation

Roughness (nm) Range 25-350 25-40
Adhesion (nN) Range 0.03-2.11 0.04-0.71

Average 0.65 0.43
Elasticity (MPa) Range 0.17-0.88 0.14-3.91

Average 0.60 3.42
April 2022 | Volume 9 | Article 874888
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control switch in Chlamydomonas flagella, Chlamydomonas can
switch between a floating state and an attached state and adapt to
environmental changes by maximizing their photosynthetic
efficiency. This transformation can be realized by adjusting the
adhesion of the cell surface (Kreis et al., 2018). Higgins et al. studied
the adhesion of diatoms and found that EPS can be secreted in
many places on the surface of diatoms, including pores on the
surface of girdle bands and valves. There are active substances such
as sugars, lipids, and proteins on the cell surface of diatoms (Higgins
et al., 2000; Higgins et al., 2002). Microalgae EPS contains carboxyl,
hydroxyl, amino, sulfhydryl, and other functional groups with
adhesion, which has good adsorption performance for heavy
metals, and the number of these groups can increase greatly
under heavy metal stress, which plays a significant role in the
bioremediation of heavy metals (Wotton, 2004).
4.2.3 Physiological Significance of Cell
Surface Elasticity
The cell elastic modulus can reflect the state of biological cells. For
example, the elastic modulus on the surface of cancer cells is much
lower than that of normal cells (Cross et al., 2007). In this study, the
surface elastic modulus of P. donghaiense cells under normal culture
conditions ranged from 0.17 to 0.88 MPa, with an average of 0.60
MPa. Under nitrogen limitation, the cell surface elastic modulus of
P. donghaiense ranged from 0.14 to 3.91 MPa, with an average of
3.42 MPa. The surface elastic modulus of P. donghaiense cells under
nitrogen limitation was higher than that under normal
culture conditions.

Increasing evidence shows that mechanical signals, such as
chemical small molecules and protein signal transduction, play a
decisive role in the function and fate of cells. Compared with chemical
signals, mechanical signals have the characteristics of fast occurrence,
short action time, and variable action effect (Mitchell and Rosenblatt,
2021). Cells respond in time through integrin receptors on their
surface, and selectively convert mechanical signals to different
structural components of cells in the form of tension integration.
After cells are stimulated by force, the stimulation is transformed into
corresponding signals into cells, causing a series of response reactions
(Lin et al., 2019). The change in cell surface elasticity affects the signal
conversion of the response to a certain extent, thus changing the
downstream transcriptional expression.

Directly stretching chromatin with mechanical force can
upregulate transcription (Tajik et al., 2016), which indicates
that mechanical stimulation can be directly transmitted to the
nucleus through the cytoskeleton and nuclear membrane and
directly activate gene expression. From this perspective, under
the condition of nitrogen limitation, the cell surface elastic
modulus increases, the cell flexibility decreases, and the
difficulty of directly regulating transcription and expression by
external mechanical signals will certainly increase. Cell elasticity
is an important parameter to maintain the structure of the cell
outer wall (Zhao et al., 2005), and the cell wall of dinoflagellates is
mainly composed of cellulose and protein (Lin, 2011). Beta-
glucosidase can degrade cell wall polysaccharides in P.
donghaiense (Shi et al., 2018). The study on green algae
Chlorococcum sp. showed that the Young’s modulus under
Frontiers in Marine Science | www.frontiersin.org 10
nitrogen limitation was 30% higher than that under normal
culture conditions, which was related to the content of
triglycerides. The cell wall thickness increased from 387 nm to
503 nm under nitrogen limitation (Yap et al., 2016). Because the
surface of oval cells has a siliceous outer wall but the surface of
fusiform and triradiate forms cells is mainly composed of organic
substances such as sulfated glucuromannan, the Young’s
modulus on the surface of oval P. tricornutum cells is five
times that of the other two forms. The differential mechanical
characteristics of the cell surface are conducive to the adaptation
of different forms of cells (Higgins et al., 2002) to environmental
changes (Francius et al., 2008).
5 CONCLUSIONS

In this study, a feasible immobilization method was used to fix P.
donghaiense cells by clamping them in the pores of a
polycarbonate membrane to further measure the surface
morphology and mechanical parameters of moist cells. Typical
ultrastructures, such as knob-like spines and valve pores, on the
cell surface show similar characteristics to those observed with
SEM images, which indicates that AFM can be used to
characterize the cell surface ultrastructure of P. donghaiense.
Moreover, the height and spacing of typical ultrastructures were
also quantified. This study further found that compared with the
cells under normal culture conditions, the cell surface roughness
and adhesion decreased, and elastic modulus increased for cells
under nitrogen limitation. This study demonstrates the first
AFM image of the harmful algal species P. donghaiense with a
typical nanostructure with high resolution and reveals the
surface nanomechanical properties of P. donghaiense under
nitrogen limitation for the first time. Changes in cell surface
roughness, adhesion, and elastic modulus reflect potential
changes in the ability of cells to perform normal physiological
functions. The change in intracellular transcriptional expression
is directly regulated by mechanical stimulation caused by the
change in cell surface elasticity. This study reflects the way P.
donghaiense responds to changes in the external environment
from the perspective of cell surface ultrastructure and
mechanical parameters, provides a new understanding of its
cell biology, and demonstrates AFM as a novel and powerful
technique for studying harmful algal bloom species.
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