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Quaternary ammonium compounds (QACs) – e.g., betaines – have a chemical
structure related to that of the tertiary sulfonium compounds (TSCs) – e.g.,
dimethylsulfoniopropionate – explaining why these two classes of coral metabolites are
often studied and interpreted together. Functionally, both QACs and TSCs play important
roles in the photobiology of reef-building corals under stress, according to recent
hypotheses. The TSC dimethylsulfoniopropionate (DMSP) is the principal precursor of
the gas dimethylsulfide (DMS) which is hypothesized to affect, through influences on cloud
formation, the photon and thermal fluxes to which corals are exposed. Simultaneously,
QACs – e.g., glycine betaine – in coral tissues are hypothesized to protect the
zooxanthellae photosystems against photon and thermal stresses by exerting stabilizing
effects on photosystem proteins and by ameliorating reactive-oxygen-species
perturbations. This review, which synthesizes the most current available evidence on
the relevant actions of QACs, emphasizes the need for enhanced direct study of QAC
physiology in corals to ascertain the degree to which coral QACs exert photoprotective
effects paralleling their well-established protective effects in plants.
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INTRODUCTION

In a watershed paper, Rhodes and Hanson (1993) emphasized the logic and value of considering the
tertiary sulfonium compounds (TSCs), notably dimethylsulfoniopropionate (DMSP), and the
quaternary ammonium compounds (QACs) together because of their similarities in chemical
structure and properties. Twenty-five years later, with far more data available, Somero et al. (2017)
again affirmed the logic of emphasizing the shared properties of these two sets of small molecules,
which they termed the methylsulfonium and methylammonium compounds – terms highlighting
the key positions the compounds often occupy in methyl trafficking in cells. In this Special Issue on
dimethylsulfide (DMS) in coral reefs, this paper on QACs is included not only because of the shared
chemical properties of TSCs and QACs (Figure 1), but also because of important ways in which the
two sets of compounds may interact in the ecological physiology of reef-building corals.

Glycine betaine is probably the most thoroughly studied QAC. Mäkelä et al. (2019) document
that published research on glycine betaine has more than doubled in each successive decade over the
past five decades, with more than 25,000 papers published in 2011-2020. Simultaneously, fewer than
in.org May 2022 | Volume 9 | Article 8697391
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Hill Quaternary Ammonium Compounds in Corals
20 papers have been published on glycine betaine or other QACs
in reef-building corals over the entire five decades. In this paper, I
argue that the near-total neglect of glycine betaine and other
QACs in research on corals may represent a serious omission in
the effort to conserve coral-reef ecosystems.

The betaines are one of the principal subsets of QACs.
Structurally speaking, betaines are amino (or imino) acids fully
methylated at the N position; there are in principle as many
betaines as there are amino acids. Until a few decades ago, the
most common betaine, glycine betaine, was typically called simply
“betaine”. However, in this paper – and usually in the current
scientific literature – it is called “glycine betaine” to specify the
molecule and distinguish it from other betaines (although it is still
called “betaine” in nontechnical contexts, such as ingredient lists
for consumer products). In addition to glycine betaine, a number
of other betaines, such as proline betaine and ß-alanine betaine,
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are commonly detected in vascular plants and algae when looked
for (Rhodes and Hanson, 1993; McNeil et al., 1999).
Trimethylamine N-oxide (TMAO) is a chemically related
compound, long known in animals but only recently identified
in plants (Catalá et al., 2021). All these compounds are
zwitterionic, with a permanent positive charge at the N position:
a structure that, as emphasized by Rhodes and Hanson (1993), is
analogous to that of the TSC dimethylsulfoniopropionate, which is
fully methylated at the S position and bears a permanent positive
charge at that position (Figure 1).

A principal reason for glycine betaine to be of interest to coral
biologists is its potential importance for photosynthesis. Already in
1995, Papageorgiou and Murata (1995) stressed the “unusually
strong stabilizing effects of glycine betaine” on photosystem II in
vascular plants. Other papers – such as those by Sakamoto and
Murata (2002) and Allakhverdiev et al. (2003) – soon reinforced
that message, helping to thrust glycine betaine into the center of
research on photosynthesis under abiotic stress in vascular plants.

For discussing betaines and other QACs today, it is instructive
to recognize the ways in which knowledge of the roles played by
these compounds in photosynthetic organisms has expanded
over the last several decades. In the 1970s and 1980s, glycine
betaine was recognized principally as a compatible solute: an
osmolyte that tended not to disturb cellular function (Yancey
et al., 1982). As years passed, investigators identified additional
roles, including glycine betaine’s stabilization of proteins in
photosynthesis already alluded to (and addressed in detail
later) and glycine betaine’s favorable effects (Chen and Murata,
2011) on reactive oxygen species (ROS) (Lesser, 2006). In the last
few years, investigators have increasingly emphasized evidence
that glycine betaine in addition can play signaling roles, as by
directly or indirectly controlling gene expression (Figueroa-Soto
and Valenzuela-Soto, 2018; Dutta et al., 2019; Hossain et al.,
2019; Mäkelä et al., 2019; Valenzuela-Soto and Figueroa-Soto,
2019), and glycine betaine can modulate heat-shock protein
expression (Li et al., 2011; Zhang et al., 2020). Today,
therefore, when we consider glycine betaine and other QACs,
we recognize that they may have broad ranges of action and be
multifunctional (Derakhshani et al., 2017).
BETAINES IN REEF-BUILDING CORALS

Only about a decade has passed since publication of the first
definitive information on betaines in the tissues of reef-building
corals. The very first information seems to have been a report in
1976 by Moore and Huxley (1976) that crown-of-thorns seastars
(Acanthaster planci) exhibit aversive behavior when exposed to a
compound, tentatively identified as glycine betaine, in the tissues
of certain reef-building corals. In 2010, Hill et al. (2010) and
Yancey et al. (2010) used rigorous chemical methods [liquid
chromatography/mass spectrometry (LC/MS) with internal
standards in the case of Hill et al.] to quantify multiple
betaines in the tissues of wild-collected, reef-building corals in
the Caribbean (Hill et al., 2010) and at Hawaii (Yancey et al.,
2010). Later, Hill et al. (2017), working mostly with wild-
collected specimens, quantified multiple betaines in coral
FIGURE 1 | Chemical structures of five compounds that are discussed in this
manuscript: dimethylsulfoniopropionate (DMSP), glycine betaine (often called
simply “betaine” in the older literature); ß-alanine betaine (trimethylammonium
propionate); proline betaine (stachydrine), and trimethylamine N-oxide (TMAO).
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species in the western Pacific and also in five species of tridacnid
clams (genera Tridacna and Hippopus), animals that inhabit
Indo-Pacific coral-reef ecosystems and, like corals, live in
symbioses with dinoflagellate symbionts. Swan et al. (2017a)
also quantified multiple betaines in a set of wild-collected Great
Barrier Reef branching corals.

The evidence shows that betaines, despite their relative
obscurity in corals, are abundant metabolites in the tissues of
reef-building corals in the wild. Among the 10 species of
Caribbean corals (6 genera) and the 6 species of western
Pacific corals (5 genera), collected from the wild, that Hill et al.
(2010; 2017) analyzed using LC/MS with internal standards, total
betaine concentration was estimated to be 12-204 mmole per
liter of living tissue (mean: 60 mM), except in one species,
Acropora formosa, in which the total concentration was much
lower (1.5 mM). An important point to stress is that these
concentrations were calculated assuming a homogeneous
distribution of the betaines in tissue. The true, operative
concentrations of betaines in living tissue are likely
substantially higher because betaines are probably, in fact,
more concentrated in some subcellular regions than others.
This same consideration applies also to other values reported.

Yancey et al. (2010), using a somewhat less sensitive analytical
method than Hill et al. (2010; 2017), measured two betaines,
glycine betaine and proline betaine, in 6 wild-collected species (4
genera) of Hawaiian reef-building corals and found total
concentrations of about 9-69 mM (mean: 37 mM). Swan et al.
(2017a), using a high-sensitivity method, focused on a restricted
part of the anatomy, the branch tips, in 6 species of Acropora and
one of Stylophora. Most of their estimates of total betaine
concentration were 12-52 mM, although in A. valida, their
estimate was lower, 6 mM.

Considering all studied coral species as a set, the two most
abundant betaines in reef-building corals are glycine betaine and
proline betaine. In the three studies that attempted to measure all
betaines present in wild-collected corals (Hill et al., 2010; Hill
et al., 2017; Swan et al., 2017a), glycine betaine and proline
betaine together accounted for ≥90% of all betaines (on a molar
basis) in 14 species, 58-88% in 8 species, and <50% in 1 species.
Multiple additional betaines (e.g., alanine betaine, ß-alanine
betaine, and hydroxyproline betaine) are also typically present
in reef-building corals, some at just low concentrations. Different
coral taxa sometimes differ substantially in the particular suite of
betaines they express.

Ngugi et al. (2020) recently completed a genomic survey of
pathways for glycine betaine synthesis, transport, and
degradation in a wide sample of invertebrates, including reef-
building corals. According to the genomic evidence, corals have
pathways for the de novo synthesis of glycine betaine and for
transport of glycine betaine into their tissues from the seawater
environment. The transporters in particular have a restricted
phylogenetic distribution within the invertebrates, suggesting a
specialized role in corals and/or coral relatives. Strikingly,
Ngugi et al. (2020) calculated that corals worldwide store
sufficient glycine betaine to account for 16% of their
tissue nitrogen.
Frontiers in Marine Science | www.frontiersin.org 3
POTENTIAL PROTECTIVE EFFECTS OF
BETAINES IN REEF-BUILDING CORALS:
THE MESSAGE FROM PHYSIOLOGICAL
DATA ON VASCULAR PLANTS AND
ECOLOGICAL DATA ON CORALS

In corals, the biochemical and physiological actions of betaines
have yet to be directly studied. However, the situation in vascular
plants is quite opposite: By virtue of the massive effort to
understand photosynthesis under abiotic stress in crop plants,
a great deal is known about protective actions of glycine betaine.
By applying the knowledge from vascular plants to reef-building
corals, it seems highly reasonable to hypothesize that glycine
betaine and other betaines are important photoprotective,
protein- and membrane-stabilizing, compounds in corals.
Should this hypothesis prove correct, manipulations of betaines
(or other QACs) might be useful interventions for protecting
reefs against threats of photoinhibition and bleaching (Gorbunov
et al., 2001; Lesser, 2011; Frieler et al., 2013; Van Oppen and
Lough, 2018), or for aiding recovery. Clearly, the tissue betaine
concentrations measured in corals (reviewed in the previous
section) are of sufficient magnitude for stabilization of protein
and membrane functions, judging by studies in plants (e.g.,
Prasad and Saradhi, 2004; Shirasawa et al., 2006; Yang et al.,
2007; Chen and Murata, 2011).

Before going further to explore these ideas, a few comments
are appropriate regarding the fact that, at this time, although
most research on the functions of betaines in photosynthetic
organisms has been carried on one chemical species (glycine
betaine), in the literature betaines are often discussed as a group:
as a set of chemical species that, to a first approximation, have
similar actions in protecting proteins and membranes. At the
present time, there are two reasons for considering betaines as a
group with common properties. First, several betaines in
addition to glycine betaine, including ß-alanine betaine and
proline betaine (Figure 1), have been demonstrated in at least
limited ways to act as compatible solutes (Rhodes and Hanson,
1993; Bashir et al., 2014). Second, existing theories of betaine
action emphasize molecular properties that are shared by
betaines as a group rather than being highly specific to certain
chemical species. Specifically, the protein- and membrane-
stabilizing effects of betaines are attributed for the most part to
influences that betaines noncovalently exert – by virtue of their
fundamental chemical nature – on the structure of water in the
immediate vicinity of protein molecules, enhancing thereby the
extent to which native protein states are more favorable
thermodynamically than nonnative states (McNeil et al., 1999;
Bennion and Daggett, 2004; Street et al., 2006; Auton et al., 2011;
Guinn et al., 2011; Bruździak et al., 2013; Roychoudhury et al., 2013).
At the present state of knowledge, it seems parsimonious and
reasonable to hypothesize that (1) all the principal betaines in
corals exert, to a significant extent, similar protective actions
in corals and (2) as a corollary, the total betaine concentration in
tissues is likely a useful index of betaine functional significance.
Of course, looking forward, a full functional understanding of
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betaines in corals will ultimately require direct empirical study of
each specific chemical species.

For discussing betaines as potential protective compounds for
photosynthesis in reef-building corals, two interacting lines of
investigation on photosynthesis in vascular plants deserve
particular attention: first, studies of photosystem II (PSII) and,
second, studies of reactive oxygen species (ROS). Regarding PSII,
abundant evidence exists that when corals are exposed to heat
and photon stress sufficient to cause bleaching or
photoinhibition, damaging effects are directly or indirectly
exerted on PSII and/or the pathways of electron flow
downstream from PSII in the algal symbionts of the corals
(Warner et al., 1999; Fitt et al., 2001; Gorbunov et al., 2001;
Jones and Hoegh-Guldberg, 2001; Hill et al., 2004; Lesser and
Farrell, 2004; Weis, 2008; Warner and Suggett, 2016). Possibly
the D1 protein (PsbA) in the PSII reaction center in coral
symbionts – sometimes termed the Achilles heel of PSII
(Weis, 2008) – is particularly affected (Warner et al., 1999;
Hill et al., 2011; Warner and Suggett, 2016). As already
emphasized, potential protective actions of glycine betaine or
other QACs have not yet been directly studied in corals.
However, in vascular plants and free-living algae that have
been studied, glycine betaine has been demonstrated by many
studies to protect PSII against a number of abiotic stresses,
including photon stress and heat stress (Papageorgiou and
Murata, 1995; Yang et al., 1996; Schiller and Dau, 2000; Sakamoto
and Murata, 2002; Allakhverdiev et al., 2003; Klimov et al., 2003;
Prasad and Saradhi, 2004; Hema et al., 2007; Yang et al., 2007;
Allakhverdiev et al., 2008; Chen and Murata, 2011; Li et al., 2014;
Wang et al., 2014; Kurepin et al., 2015; Huang et al., 2020;
Li et al., 2021).

Regarding ROS, when corals are exposed to heat and photon
stress sufficient to cause bleaching or photoinhibition, abundant
evidence points to accumulation in the coral tissues of ROS,
which are generally judged to be principal agents of
photodamage (Lesser, 2006; Weis, 2008; Lesser, 2011; Oakley
and Davy, 2018). Again, potential protective actions of glycine
betaine or other QACs have not yet been directly studied in
corals. Glycine betaine, however, has repeatedly been
demonstrated to increase photosystem defenses against ROS in
vascular plants (Prasad and Saradhi, 2004; Yang et al., 2007;
Chen and Murata, 2011; Fan et al., 2012; Li et al., 2014; Gómez
et al., 2019; Zhang et al., 2020; Li et al., 2021).

The research on glycine betaine in vascular plants has often
had a very practical goal: to enhance the productivity of crop
plants by capitalizing on glycine betaine’s beneficial properties.
As part of this effort, glycine betaine has long occupied a focal
position in the overall effort to employ genetic modification, or
other deliberate manipulation, to offset the negative impacts on
crop plants of a variety of abiotic stresses, including photon stress
and heat stress (Alia et al., 1998; McNeil et al., 1999; Sakamoto
and Murata, 2002; Prasad and Saradhi, 2004; Yang et al., 2007;
Chen and Murata, 2011; Giri, 2011; Li et al., 2011; Li et al., 2014;
Kurepin et al., 2015; Castiglioni et al., 2018; Annunziata et al.,
2019; Dutta et al., 2019; Hasanuzzaman et al., 2019; Kido et al.,
2019; Zhang et al., 2020; Niazian et al., 2021). Recent review
Frontiers in Marine Science | www.frontiersin.org 4
papers provide overviews on the biology and manipulation of
glycine betaine from this perspective (Kurepin et al., 2015;
Annunziata et al., 2019; Hasanuzzaman et al., 2019; Huang
et al., 2020; Zulfiqar et al., 2020).

Ecological studies on coral reefs bolster the hypothesis that
glycine betaine and other betaines are important photoprotective
compounds in reef-building corals. The ecological studies
represent a second major line of investigation pointing in this
direction, in addition to the extrapolations from physiological
studies of vascular plants already discussed.

Hill et al. (2010) hypothesized that within a population of a
species of reef-building corals subject to potential photon stress,
if tissue betaines are in fact protective agents for algal symbiont
function [by providing either direct protection to the algal cells
or indirect protection (e.g., stabilization of the symbiosome
membrane)], betaine concentrations would be expected to vary
among individual coral colonies in direct relation to solar
irradiance experienced. For testing this hypothesis, Hill et al.
(2010) selected Madracis species in Curaçao reefs because the
light relations of those species had previously been studied in
exceptional detail (Vermeij and Bak, 2002). M. mirabilis occurs
over a wide range of depths and almost always occupies fully
exposed (unshaded) locations regardless of depth (Vermeij and
Bak, 2002). With this information, Hill et al. (2010) hypothesized
a priori that betaine concentrations in colonies of M. mirabilis
vary inversely with depth of residence. In fact, when measured,
the concentrations of glycine betaine and proline betaine
(Figure 2) – and also alanine betaine and hydroxyproline
betaine – were found to vary significantly with depth, being
37-94% higher in coral colonies at 5 m depth than ones at 20 m
(Hill et al., 2010). Glycine betaine and proline betaine are the
most abundant betaines in M. mirabilis. Another Madracis
species, M. pharensis, occupies both fully exposed and highly
shaded locations at most depths where it occurs (Vermeij and
Bak, 2002). Hill et al. (2010) hypothesized a priori that, at any
particular depth, betaine concentrations are higher in exposed
colonies than in shaded ones. In fact, whenM. pharensis colonies
at a single depth (10 m) were studied (Hill et al., 2010), glycine
betaine, proline betaine, and alanine betaine were found to be
significantly higher in concentration (by 30-44%) in exposed
colonies than in shaded ones. Glycine betaine and proline betaine
are by far the most abundant betaines in M. pharensis.

Reinforcing the ecological evidence for a protective role for
glycine betaine inMadracis, Swan et al. (2017a) studied osmolyte
concentrations in the branch tips of three Acropora species
(A. aspera, A. millepora, and A. valida) during summer
(February) and winter (August) in the Great Barrier Reef. They
observed a 3.7- to 7.8-fold increase in average glycine betaine
concentration in summer, compared with winter, in all three
species: the pattern predicted if glycine betaine is employed in
photoprotection. Although proline betaine was also abundant in
these species, it exhibited just relatively small, inconsistent
differences in concentration between the summer and
winter samplings.

In summary, existing physiological and ecological evidence
justifies a hypothesis that betaines play interacting
May 2022 | Volume 9 | Article 869739
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photoprotective and ROS-protective roles in reef-building corals.
In my view, recognizing the dire threats now faced by corals
(Frieler et al., 2013), it would be logical to place a high priority on
carrying out direct tests of this hypothesis in the near future (Hill
et al., 2010; Hill et al., 2017). Lesser (2011) and others have
emphasized that throughout the history of studies on
photosynthesis in reef-building corals, investigators have made
great progress by using prior studies on vascular plants and free-
living algae as guides. Today, based on a large literature (Mäkelä
et al., 2019), glycine betaine is well known in the study of vascular
plants as a metabolite that exerts multiple effects – notably
protein-stabilizing, membrane-stabilizing, and ROS-
ameliorating effects – that help defend plants stressed by high
irradiance, unusual temperatures, and other agents. Because this
knowledge has been sought principally with the practical
objective of defending crop plants against abiotic stress, many
published attempts have been made – often with successful
results – to manipulate glycine betaine to advantage, either by
exogenous application or by genetic manipulation of endogenous
synthesis (Alia et al., 1998; McNeil et al., 1999; Sakamoto and
Murata, 2002; Prasad and Saradhi, 2004; Yang et al., 2007; Chen
and Murata, 2011; Giri, 2011; Li et al., 2011; Li et al., 2014;
Frontiers in Marine Science | www.frontiersin.org 5
Kurepin et al., 2015; Castiglioni et al., 2018; Annunziata et al.,
2019; Dutta et al., 2019; Hasanuzzaman et al., 2019; Hossain
et al., 2019; Huang et al., 2020; Zhang et al., 2020;
Niazian et al., 2021). Perhaps this background of experience
will prove useful for the protection of coral reefs confronted with
photosystem and ROS stress (Van Oppen and Lough, 2018).

Just recently, trimethylamine N-oxide (TMAO; Figure 1) has
been discovered to be widespread in vascular plants, and
evidence from Arabidopsis and tomato indicates that TMAO,
like betaines, plays roles in protein stabilization and tolerance of
abiotic stress (Catalá et al., 2021). If TMAO proves to be present
in reef-building corals, it also should be investigated along with
betaines for actions that have potential to aid coral survival.
PHYSIOLOGICAL AND ECOLOGICAL
INTERACTIONS BETWEEN THE TSC
SYSTEM AND THE QAC SYSTEM

If we assume for the moment that glycine betaine and other
QACs exert protective effects in reef-building corals – paralleling
their demonstrated protective effects in vascular plants –
important potential interactions between QACs and TSCs in
corals become apparent. These interactions could be manifest at
an ecosystem level and/or within the tissues of particular
coral polyps.

At an ecosystem level, long-termmonitoring has revealed that
the atmospheric concentration of DMS varies significantly in
coral-reef ecosystems on hourly, daily, and seasonal time scales;
and as the atmospheric DMS concentration varies, the
atmospheric concentration of aerosols and the solar irradiance
at sea level sometimes vary in correlated ways (Jackson et al.,
2020a). At times when the atmospheric DMS concentration falls
and the irradiance at sea level accordingly increases, corals could
offset the increased risk of photosystem stress by upregulating
glycine betaine or other QACs in their tissues. To assess the
likelihood of this type of response, more research will be required
on the time scales on which corals are able to modulate
betaine expression.

At the level of an individual coral polyp, tissue QACs and
TSCs seem likely interact in ameliorating ROS damage, including
ROS-mediated damage to photosystem components such as
PSII. As earlier noted, tissue glycine betaine has repeatedly
been demonstrated to enhance defenses against ROS in
vascular plants and free-living algae (Prasad and Saradhi, 2004;
Hema et al., 2007; Yang et al., 2007; Chen and Murata, 2011; Fan
et al., 2012; Gómez et al., 2019; Li et al., 2021). Similarly, DMSP
and DMS are recognized as ROS scavengers in corals (Sunda
et al., 2002; Lesser, 2006; Deschaseaux et al., 2014; Jones and
King, 2015; Oakley and Davy, 2018; Jackson et al., 2020b). Thus
both tissue QACs and TSCs likely function in the amelioration of
ROS damage in corals, and they may be coordinated in various
ways. To illustrate, corals have been observed to outgas DMS
during air exposure or other stresses of low tide, when exposed or
nearly exposed corals are subject to relatively high solar
irradiance (Swan et al., 2017b). The corals might upregulate
tissue betaines to compensate for any reduction in tissue DMS.
FIGURE 2 | Abundance of glycine betaine and proline betaine in the tissues
of Madracis mirabilis as a function of depth of residence. Each symbol is for a
single, separate coral colony. All colonies grew in fully exposed, unshaded
locations. Lines were fitted by least-squares regression. Based on ANOVA,
differences among depths are statistically significant (p < 0.05). Betaine
abundance is expressed as a ratio of the coral surface area sampled. (Data
from Hill et al., 2010).
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These briefly described hypothetical scenarios help to
articulate the potential ways in which the QAC and TSC
systems interact in the lives of reef corals and other
photosynthetic reef inhabitants such as the tridacnid clams
(Hill et al., 2017).
CONCLUSION

In the study of photosynthesis, of all the focal topics receiving
frequent attention in vascular plants, the actions of betaines and
other QACs are among the most neglected in reef-building
corals. This neglect in corals is regrettable because corals are
existentially threatened by abiotic stresses, and betaines attract
interest in the study of crop plants precisely because of evidence
that they can reduce the impact of abiotic stresses.

Recent research demonstrates that betaines (particularly
glycine betaine and proline betaine) are abundant metabolites in
the tissues of reef-building corals. Their functions in corals have
not yet been directly studied. However, two lines of investigation –
physiological and ecological – point to a hypothesis that betaines
are photoprotective in corals. The physiological evidence focuses
on the fact that when corals are subjected to heat and photon
stresses sufficient to cause bleaching or photoinhibition, they
experience damage to photosystems (e.g., PSII) and they
accumulate photodamaging ROS: exigencies known to be
ameliorated by glycine betaine in vascular plants. The ecological
evidence is that when free-living corals have been examined to
detect correlations between betaine abundance and solar
irradiance, glycine betaine and (in some cases) other betaines
have been observed to be significantly more concentrated in the
tissues of coral colonies exposed to high irradiance than in
conspecific colonies exposed to lower irradiance.

Betaines are not simple to study, in part because of the
complexity of technologies available for quantification (e.g.,
Frontiers in Marine Science | www.frontiersin.org 6
LC/MS) and the challenges of calibration (Hill et al., 2010;
Swan et al., 2017a). Nonetheless, a large body of evidence
exists on their manipulation (e.g., exogenous application and
genetic manipulation) in crop plants to defend against abiotic
stresses, and with this background of experience, it is reasonable
to hypothesize that they could be manipulated to aid the survival
of corals exposed to heat and photon stresses.
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