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Natural processes and anthropogenic activities are vital in dictating the amount and
character of organic carbon (OC) input into large river deltas and adjacent shelves.
Previous studies have indicated that sediment from the Huanghe River (HR) has
significantly affected the formation of the northern Yangtze River subaqueous delta
(YRD) over the past several hundred years. However, whether this process has
changed sedimentary OC burial in the YRD remains unclear. A sediment core was
collected from the YRD in 2018 CE for optically stimulated luminescence and 210Pb dating
as well as grain size, total OC, total nitrogen, and stable-isotope analyses to investigate
temporal changes in sedimentary OC over the past 2000 years. The results indicate that
changes in terrestrial OC inputs to the YRD have been controlled mainly by the East Asian
summer monsoon and anthropogenic influences in the past 2000 years. However, the
decreased terrestrial OC inputs after 1385 CE, have been significantly affected by
increased contribution of HR sediment to the YRD when the HR lower courses shifted
to enter the southern Yellow Sea. This study demonstrates that sediment source changes
should not be neglected in analyses of mechanisms and variations in OC burial in estuarine
and coastal areas.

Keywords: sedimentary organic carbon, sediment source, OC burial, Huanghe River sediment, Yangtze River Delta
1 INTRODUCTION

A major current research emphasis in climate change is the reduction of carbon emissions to the
atmosphere and sequestration of greenhouse gases (Bianchi, 2011; Leithold et al., 2016). Large river
delta systems are interfaces between terrestrial, continental, and oceanic systems and their treatment
of organic carbon (OC) plays an important role in the global carbon cycle and mitigation of global
warming (Sun et al., 2020b; Zhao et al., 2020). As a coastal region with the large amounts of carbon
buried in sediments, a large river delta system contains significant amounts of OC from both
terrestrial and marine sources. The transport and deposition of terrestrial OC in such systems
are affected by human activities and hydrological and climatological settings (Yu et al., 2011;
in.org May 2022 | Volume 9 | Article 8678201
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Hu et al., 2014; Sun et al., 2020a; Zhang et al., 2020). However,
changes in OC burial are driven by historical changes in natural
processes and anthropogenic impacts and have not been well
addressed. Reconstruction of the origins, distribution, and fate of
historical sedimentary OC variations in large river delta systems
is key to understanding the historical global carbon cycle (Yang
et al., 2011b; Li et al., 2015).

As the largest river in the Asian continent, the Yangtze River
(YR) has experienced significant anthropogenic influence and
dramatic climate changes during the last 2000 years (Hori et al.,
2001; Wang et al., 2011; Wu et al., 2015; Sun et al., 2020a). In
recent decades, the YR has suffered from intensive human
activities, including dam construction, development of levees,
soil conservation, water diversion, and sand extraction (Yang S
L et al., 2002; Yin and Li, 2001; Dai et al., 2008; Yang et al., 2011a).
These alterations have greatly reduced sediment load and
terrestrial OC input to the YR Estuary (YRE) (Yang et al.,
2011b; Li et al., 2015). Some organic geochemical studies have
suggested that, on a millennial scale, human activities have
significantly altered terrestrial OC input to the YR subaqueous
delta (YRD) over the last 700–800 years (Wang et al., 2011; Hu
et al., 2014). Holocene sediment records for the Yangtze Delta
plain indicate an abruptly increased delta progradation rate after
2000 CE due to human activities (Hori et al., 2001). In addition,
centennial-scale studies indicate that the various materials
transported by the YR to the YRD and East China Sea (ESC)
are primary controlled by East Asian summer monsoon (EASM)
(Wang et al., 2005; Xu et al., 2020). But other factors (El Niño-
Southern Oscillation (ENSO) and Pacific Decadal Oscillation
(PDO) also significantly influence the dynamics East Asian
Frontiers in Marine Science | www.frontiersin.org 2
summer monsoon (EASM) system and causes changes on
terrestrial OC input to the YRD (Li et al., 2015; Meng et al.,
2015; Sun et al., 2020a; Sun et al., 2020b). However, some studies
suggested that the sediment source–to–sink process from East
Asia continent to the marginal seas is significantly influenced by
ENSO at centennial-millennial timescale (Bi et al., 2017; Wang
et al., 2017). Overall, variations in historical terrestrial OC delivery
to the YRD and its possible association with these factors over the
past 2000 years are poorly understood and remain subject to
debate (Yang et al., 2011b; Hu et al., 2014; Li et al., 2015).

The abandoned Huanghe River delta (AHD; Old Huanghe
River delta), to the north of the YRD (Figures 1A, B), developed
during 1128–1855 CE when the Huanghe River (HR) changed
course southward to the Yellow Sea. Historical records indicate
that the HR transported >109 tonne (t) yr−1 of sediment to the
Yellow Sea (Ren, 2015). Earlier sedimentary studies and
historical documents suggest that AHD sediment has been
transported southward by the Subei Coastal Current (SCC) as
an important additional sediment source contributing to the
development of the northern YRD (e.g., Zhang, 2005; Wang
et al., 2020; Shang et al., 2021). However, the contribution of
AHD sedimentary OC to the YRD has not been well addressed.

TOC/TN ratios and organic stable C–N isotopic
compositions (indicated by d13C and d15N values) have been
widely used in studies of carbon-cycle processes and in
distinguishing between sedimentary OM sources in estuarine
and coastal zones. We used an organic geochemical method to
reconstruct historical variations in OC sources in the YRD over
the past 2000 years and to elucidate the factors influencing
historical OC variations in the YRD.
FIGURE 1 | (A) Map of the study area; (B) variations in the YRD and AHD coastlines over the past 1000 years (modified from Zhang, 1984; Liu et al., 2010) and the
location of the Core C2 site. The SCC line denotes the Subei Coastal Current, and the ECSCC line is the East China Sea Coastal Current; YDW,q Yangtze River
Diluted Water.
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2 MATERIALS AND METHODS

2.1 Sampling and Grain Size
A sediment core 4.8 m long (Core C2) was collected from a water
depth of ~25 m in the YRD (31°00′N, 122°44.4′E; Figure 1B) in
2018. The core comprises mainly gray or grayish yellow silty clay
and clayey silt (Figure 2) interbedded with occasional shells and
shell fragments. The core sediment was stored at room
temperature (20°C) pending analysis, with working halves
being photographed, lithologically described, and continuously
sampled at 2 cm intervals.

Grain-size analysis involved a Malvern Mastersizer 2000
Laser Particle Analyzer with a measurement range of 0.02
−2000 mm. Before measurement, samples were dispersed and
homogenized by ultrasonic agitation for 30 s. Grain-size
parameters (mean grain size (Mz), standard deviation
(sorting), skewness, and kurtosis) were analyzed using the
GRADISTAT program (Blott and Pye, 2001) by the method of
Folk and Ward (1957).

2.2 Geochemical Analysis
2.2.1 Organic Geochemical Analysis
Sediment sub-samples (99) were ground after freeze-drying and
decalcified using 0.1 mol L−1 HCl to remove carbonate material.
Total organic carbon (TOC), and total nitrogen (TN) contents
were determined using an elemental analyzer (CHNOS Vario EL
III) with a measurement error of <5%. Analysis of 20 duplicate
samples yielded a precision of 0.1% for TOC and 0.02% for TN.
d13C and d15N values were determined using a Thermo Delta
Frontiers in Marine Science | www.frontiersin.org 3
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relative to the Peedee Belemnite (PDB) standard. Precision based
on replicate determinations for d13C and d15N was better than
±0.1‰ and ±0.3‰, respectively.

Sediment dry bulk density (rdry, g cm−3) was determined
(Gao and Jia, 2004) as:

rdry = rsrw= wrs + rwð Þ (1)

where rs is sediment particle density; rw is water density (1.02 g
cm−3); and w is water content wt.%). The vertical OC flux (Fc; g
cm2 yr−1) was determined as:

Fc = OcSrrdry (2)

where Oc is sediment OC content (wt.%); and Sr is
sedimentation rate (g cm−2 yr−1).

2.2.2 Geochemical Elements
Rare Earth Element (REE) content were measured using
inductively coupled plasma mass spectrometry (ICP-MS;
Perkin-Elmer ELAN 5000). The results were obtained in mg/g.
Before measurement, the bulk sediments were oven-dried at 60°
C for 2-3 days, and then about 0.15 g of powdered sample was
digested with concentrated 10 ml HF, 10 ml HNO3, and 2 ml
HClO4 in an airtight Teflon vessel. The solution was then eluted
with 10 ml 1% HNO3 (Yang S. Y. et al., 2002).

C2 was also analyzed using the Core Scanner (MSCL, XRF
core scanning) at the Nanjing Institute of Geography and
Limnology Chinese Academy of Sciences. Measurements were
FIGURE 2 | Vertical variations in grain size distribution and OSL age (A), 137Cs and 210 Pbex activity (B), variations in sand, silt and clay content (C), and mean
grain size (D) in core C2.
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performed at 1 cm intervals over a 1 cm2 area. And test run
calibration resulted in the use of 15 s count time and an X-ray
current of 0.15 mA to obtain statistically significant data of the
elements we were interested in (e.g., Al, Ca).

2.3 Chronology
Core chronology was based on OSL dating and 210Pb and 137Cs
dating methods. OSL dating of seven samples was undertaken at
the Luminescence Dating Laboratory, East China Normal
University (ECNU), Shanghai, China, using a Risø TL/OSL-
DA-20 system. Individual OSL dose values were determined by
single aliquot regenerative protocols (Murray and Wintle, 2003).
Details of sample pretreatment procedures and fine-grained
quartz (4–11 mm) OSL age calibration methods have been
provided by Zhou et al. (2021). OSL dating yielded ages of 80
± 10 yr. BP (years prior to CE 2017) at 0.23 m depth, 210 ± 20 yr.
BP at 0.8 m, 500 ± 40 yr. BP at 1.6 m, 765 ± 60 yr. BP at 2.2 m,
1240 ± 90 yr. BP at 3.5 m, 2070 ± 150 yr. BP at 4.1 m, and 2150 ±
150 yr. BP at 4.7 m (Zhou et al., 2021; Figure 2).

A high-resolution gamma spectroscopy system with a low-
energy HpGe detector (Canberra Be3830) was used to determine
226Ra, 137Cs, and total 210Pb (210Pbtot) activities at 2–10 cm
intervals for the top 130 cm of the core. Samples were sealed
in a plastic box for one month and analyzed following the
methodology of Wang et al. (2016). 210Pbex activity was
obtained by subtracting 226Ra activity from 210Pbtot activity.
These analyses were undertaken at the State Key Laboratory of
Estuarine and Coastal Research, ECNU. A constant initial
concentration model (CIC; Appleby and Oldfield, 1978) was
applied in calculating the average sedimentation rate. Using the
210Pb, 137Cs, and OSL ages, an age–depth model was constructed
using the R package “Bacon” (Blaauw and Christen, 2011).
Activities are reported in Becquerel (Bq or Bq kg–1).

2.4 Endmember Mixing Models
Previous studies have indicated that the YRD is an important
source of organic matter (OM) for the YRE (Zhang et al., 2007; Li
et al., 2012). A three-endmember mixing model was used to
estimate temporal OM source variations in Core C2 and to
elucidate historical sedimentary environmental changes in the
YRD. This mixing model (Li et al., 2012; Hu et al., 2014) uses
TOC/TN ratios and d13C values as source markers to track the
relative contributions of three different sources of OM in YRD
sediments: riverine (OCriverine), deltaic (OCdeltaic), and marine
(OCmarine) sources. The following equations were applied:

fRiverine � TOC=TNRiverine + fDeltatic � TOC=TNDeltatic

+ fMarine � TOC=TNMarine

= TOC=TNSample (3)

fRiverine � d 13CRiverine + fDeltatic � d 13CDeltatic + fMarine

� d 13CMarine

= d 13CSample (4)
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fRiverine + fDeltatic + fMarine = 1 (5)

where fRiverine, fDeltatic, and fMarine are the fractions of OCriver,
OCdeltaic, and OCmarine, respectively. Based on the results
of Zhang et al. (2007), the endmember d13C values for
OCriver, OCdeltaic, and OCmarine are −28.7‰, −22.10‰, and
−20.00‰ , with TOC/TN ratios of 12.50, 17.54, and
6.49, respectively.
3 RESULTS

3.1 Sediment Chronology
In the upper part of Core C2 (0–56 cm depth), the 210Pbex activity
is exponentially and negatively correlated with depth (R2 = 0.84;
Figure 2B). The average sediment accumulation rate based on the
CIC model is 0.73 cm yr−1 (Figure S1; Zhou et al., 2021). The
210Pb deposition rate can be affected by many factors (e.g.
the absence of physical and chemical calibrations, grain size, and
the uncertainty of 210Pb measured data) in the subaqueous YR
delta (Liu and Fan, 2011), so sedimentation rates here are based on
137Cs activity. There are 137Cs peaks at 19 cm (1986 CE) and 36 cm
(1963 CE) depth in the profile (Figure 2B), with 137Cs activity
decreasing to zero at 51–53 cm depth at 1953–1954 CE
(Figure 2B; Leslie and Hancock, 2008). The core sedimentation
rate over 0–50 cm depth is thus estimated to be 0.74 cm yr−1 after
1963 CE, and 1.74 cm yr−1 during 1953–1963 CE.

For depths below 50 cm, a chronology sequence based on
137Cs and OSL ages was established using the Bacon program
(Blaauw and Christen, 2011; Figure S1). The calculated average
sedimentation rates varied little from 70 BCE to ca. 1000 CE
(0.18–0.19 cm yr−1), and increased to 0.25 cm yr−1 from 1000 CE
to 1950 CE (Figure S1).

3.2 Trends in Grain Size and
Organic Geochemistry
Sediment clay, silt, and sand contents are in the ranges of 8.4%–
11.19%, 83.16%–90.62%, and 0.01%–7.30%, with averages of
11.82%, 87.08%, and 1.09%, respectively (Figure 2C). Mean
varies over the range of 6.20–10.58 mm (average 7.77 ± 0.79
mm), fluctuating more over depths of 480 cm (70 BC) to 50 cm
(1950 CE) and increasing to the present.

TOC and TN contents exhibit an upwardly decreasing trend
from the bottom to a depth of 355 cm (ca. 640 CE) with a range
of 1.09%–0.55% for TOC and 0.09%–0.06% for TN, with a
relative steady trend during the period of 640-1765 CE, and a
more marked decrease from 97 (1765 CE) to 25cm (1970 CE),
and abnormal increase from 1970 CE to the present (Figures 2
and 3). TOC/TN ratios vary in the range of 6.6–14.08 (mean 9.40
± 1.38), increasing from 6.67 to 14.08 (mean 9.91 ± 1.82) during
the period of 70 BC-640 CE, fluctuating slightly around 9.00
during 640-1765 CE, then increasing to 10.55 after 1765 CE
(mean 9.57 ± 1.23; Figure 3). d13C and d15N values are in the
ranges of −23.26‰ to −25.13‰ (mean −24.10 ± 0.42‰) and
3.46‰ to 5.93‰ (mean 4.95 ± 0.52‰), respectively (Figure 3).
The d13C values decrease up to 640 CE (mean −24.29 ± 0.42‰),
May 2022 | Volume 9 | Article 867820
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FIGURE 3 | Profiles of TOC, TN, TOC/TN, d13C, and d15N in core C2. Dashed lines mark evolutionary stage divisions as discussed in Section 4.2.
A B C

FIGURE 4 | Variations in sedimentary contributions (%) of riverine (A), deltaic (B), and marine (C) OC in Core C2. Dashed lines mark evolutionary stage divisions as
discussed in Section 4.2.
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are relatively stable during the period 640-1385 CE, increase
through 1385-1765 CE (mean −24.23 ± 0.36‰), then show
relative stable since 1765 CE(−23.98 ± 0.34‰). d15N values
increase slightly up to 1385 CE before decreasing toward to the
present (mean 4.49 ± 0.38‰; Figure 3).

3.3 OC Endmember Variations
Riverine OC made the greatest contribution to sedimentary OC in
Core C2, at 36%–52% (mean 44% ± 5%; Figure 4A), and the
contributions of marine and deltaic OC were in the ranges of 4%–
84% (mean 43% ± 15%) and <1%–56% (mean 17% ± 13%),
respectively (Figure 4C). Before 640 CE, the relative contribution
of riverine OC had an increasing trend (mean 45.62 ± 4.78%),
while the contribution from marine OC decreased (mean 37 ±
14.19%) and the deltaic OC contribution fluctuated widely (mean
20 ± 15.70%; Figure 4B). During the period 640–1385 CE, riverine
and marine OC contributions were relatively stable, whereas the
deltaic contribution fluctuated widely. During 1385–1765 CE, both
riverine and marine OC contributions decreased sharply, with
minimum values of 32% and 27%, respectively, whereas deltaic OC
increased. After 1765 CE, riverine and deltaic OC contributions
increased upward (means of 41± 3.57% and 19± 11.78%,
respectively), whereas marine OC decreased (mean 41 ± 12.75%).

3.4 Element Geochemistry
Temporal variations of major-element (Ca/Al) ratios and trace-
metal (Li, Ti, Ni, Zr, Ho, Mo, Th, Sr, and Mn) contents in Core
C2 are shown in Figure S2. Before 1385 CE, there was a slight
decrease in Li, Ti, Ni, Zr, and Ho contents, followed by a
significant decrease during 1385–1765 CE, although Zr and Ho
contents increased upward. Mo, Th, Sr, and Mn contents were
relatively stable before 1385, increasing during 1385–1765 CE,
right to the top of the core for Sr and Mn. The trend in Ca/Al
ratio was consistent with those of Sr and Th (Figure S2).

To understand the deposition pattern of these four
evolutionary stages, the rare earth element (REE) patterns
normalized for the upper continental crust were drawn
Frontiers in Marine Science | www.frontiersin.org 6
separately (Figure S3; McLennan, 2001). The results show
similar variation trends, indicating the relative the relative
consistency of the sediment source of the Core C2 in the past
2000 years. However, the sediments in 1385-1675 CE showed the
lower pattern in most REE elements (Figure S3).

3.5 OC Burial Flux
According to the formula in Section 2.2, the OC burial flux (Fc)
was calculated from the TOC content, bulk density, water
content, and sedimentation rate, with a range in Core C2 of
11–70 g m2 yr−1 (mean 21 g m2 yr−1; Figure 5). Before 640 CE,
the burial rate had an increasing but widely fluctuating trend
(mean 16 ± 2.19 g m2 yr−1); during 640–1385 CE, it was higher
but more variable (mean 17 ± 3.13 g m2 yr−1); during 1385–1765
CE, it decreased from 18 to 13 g m2 yr−1 (mean 16 ± 1.60 g m2

yr−1); and after 1785 CE (particularly after 1940 CE), the burial
flux increased from 14 g m2 yr−1 to 70 g m2 yr−1.
4 DISCUSSION

4.1 Source of Sedimentary OM in Core C2
d13C values and TOC/TN ratios have been widely used to
identify sediment OM sources in estuarine and coastal marine
environments. Terrigenous OM usually has higher TOC/TN
ratios (>12) and lower d13C values (~−27‰) than OM of
marine origin, which has TOC/TN ratios of 6–8 and d13C
values of ~−20‰ (Meyers, 1997; Lamb et al., 2006). Previous
studies in the YRD area (Zhan et al., 2012) have indicated that
values of OM proxies (TOC and TN contents, d13C and d15N
values) for surficial sediments, soil, and suspended particulate
matter were not significantly different in riverine settings with
higher TOC/TN ratios (12.0–18.9) and more negative d13C
values (−28.7‰ to −24.4‰), whereas surficial sediments and
suspended particle matter have lower TOC/TN ratios (3.8–7.6)
and higher d13C values (−22.7‰ to −20.0‰) in shallow
marine settings.
FIGURE 5 | The TOC burial flux of core C2 over the past 2000 years.
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Sedimentary OM is affected by many factors in estuarine–
coastal zones, including inorganic nitrogen and grain-size effects.
There is a no obviously linear relationship between TOC and TN
in Core C2 (R = 0.38; Figure 6A), so the effect of inorganic
nitrogen on the sediments is negligible (Hu et al., 2014).
Furthermore, the organic proxies are not linearly correlated
with mean grain size (Figures 6C–E), with sedimentary OM in
the study area likely being affected predominantly by OM
provenance. Here, TOC/TN ratios range from 14.1 to 6.7
(mean 9.4 ± 1.4; Figure 3), suggesting a predominantly
terrestrial OM contribution. The d13C value of Core C2 ranges
from −25.13‰ to −23.26‰ (mean 24.10‰ ± 0.42‰), with OM
in the core sediment thus being derived from a mixture of
terrestrial and marine sources, as indicated by previous organic
Frontiers in Marine Science | www.frontiersin.org 7
geochemistry studies of the YRD (Deng et al., 2006; Gao et al.,
2008; Zhan et al., 2012; Li et al., 2015).

However, the correlation between the d13C values and
TOC/TN ratios is weak (R = 0.52; Figure 6B), implying
that the OM source of the core cannot be distinguished by a
simple binary mixing model (Zhang et al., 2007; Gao et al.,
2008; Hu et al., 2014). There is a possible OC contribution
from the YRD (Zhang et al., 2007; Li et al., 2012), with its
unique hydrodynamic conditions related to preservation and
circulation of sediment OM in the YRD (Zhang et al., 2007;
Li et al., 2012; Hu et al., 2014). Therefore, a three-endmember-
mixing model (riverine, deltaic, and marine) is likely more
suitable for estimating temporal OM source variations for
the core.
A B

D

E F

C

FIGURE 6 | Correlation plots for TOC and TN (A), TOC and d13C (B), d13C and mean grain size (C), d15N and mean grain size (D), TOC and mean grain size (E),
and TN and mean grain size (F).
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4.2 Natural and Anthropogenic Effects on
Terrestrial OC Input

Previous sedimentological studies have shown that there are
various natural (e.g. , EASM, ENSO, and PDO) and
anthropogenic factors that have altered variations in
terrestrially derived OC in the YRE on decadal, centennial, and
millennial scales (Yang et al., 2011b; Hu et al., 2014; Xu et al.,
2021). EASM plays the dominate role in controlling the transport
and burial of YR organic carbon (Wang et al., 2005), and
ENSO and PDO are important climate factors which affected
on the variation of EASM system and OC input into the Sea
Frontiers in Marine Science | www.frontiersin.org 8
(Meng et al., 2015; Zhou et al., 2021). However, there is a lack of
understanding of the continuous centennial scale variability of
OC in the YRE and its adjacent shelf, and its response to these
factors. Here, we aim to reconstruct historical OC variations,
analyzing factors influencing carbon burial in the YRE over the
last 2000 years.

During the period of 2000–640 CE, there was an increasing
trend in fRiverine and Fc (Figures 7A, B) and decreasing trend of
fMarine (Figure 4C), suggesting increased terrigenous OC input to
the core site. The relative stronger EASM during this period
(Figure 7D) likely strengthened precipitation in the YR basin,
thus increasing YR basin OM input to the YRE.
A

B

D

E

F

G

H

C

FIGURE 7 | (A) Fractional variations (%) in riverine OM in Core C2. (B)stacked IRD index (hematite-stained grains) in the North Atlantic (Bond et al., 2001) (C)
Proportion of YR freshwater to the northern ESC over the last 2000 yr (Kubota et al., 2015). (D) d18O records of stalagmites from Heshang Cave (Hu et al., 2008).
(E) ENSO activity recorded by sedimentation at Laguna Pallcocha, Ecuador (Moy et–al., 2002). (F) fractional variations in riverine OM of core THB-2 from the Min-
Zhe coastal mud area of the East China Sea. (G) population variation in the YR basin (Zhang et al., 1994). (H) The Ca/Al ratio variations of core ECS-0702 (Liu et al.,
2010) Dashed lines mark evolutionary stage divisions as discussed in Section 4.2.
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From 640 to 1385 CE, the proportions of fRiverine OC and Fc
in Core C2 were relatively high, and fMarine was stable. A
high fRiverine OC supply to the YRE is also indicated by the
frequent occurrence of severe hypoxia there during this
period (Ren et al., 2019). However, the declining trend of
EASM is likely reflected in reduced input of OC to the YRE
(Figure 7D). This may be linked to frequent flood events
caused by El Niño events (Figure 7E) and weakened EASMs
(Figure 7D) (Zhou et al., 2021). During weak EASM years
and El Niño phases, the subtropical high in the western
Pacific locates more southern than in normal years, and the
rainband stagnates over the middle–lower reaches of the YR
basin for long periods, resulting in heavy precipitation
and flood events in the YR basin (Jiang et al., 2006; Zhou
et al., 2021) and leading to increased supply of OC to the sea.
The increased coarseness and variability of the mean grain size
in the core (Figure 2D) also indicate increased freshwater
discharge and frequent flood events during 640–1385 CE.
Furthermore, plant species from which pollen was derived
changed markedly after ca. 700 CE in association with
increased anthropogenic activity in the YR basin (Yi et al.,
2003), which may also have increased soil erosion and resulting
sediment load in the YRE.

During 1385–1765 CE, the proportions of fRiverine OC, and Fc
and the mean grain size were sharply reduced, likely in
association with a cold and dry climate during the Little Ice
Age (LIA, Figure 7C). The North Atlantic cooling (Figure 7B;
Kubota et al., 2015) during the LIA period can significantly
weaken the EASM intensity (Wang et al., 2005; Zhang H et al.,
2018; Figure 7D). Porter et al. (2021) suggest that the LIA was
primarily defined by a weak, negative IPO (Inter-decadal Pacific
Oscillation). Climate simulations suggest that a huge cyclone
occupies the North West Pacific in the negative period of the
IPO. And La-Niña periods can strengthen the cyclone by
weakening the trade winds, which leads to a weak Meiyu front
(weak EASM) (Zhang X et al., 2018). Therefore, weak EASMs,
negative IPO (Porter et al., 2021), and less frequent El Niño
events (Figure 7E) may reduce riverine discharge and hence the
supply of OC to the YRD. However, the abrupt increase in
sedimentation rate indicated by Core C2, from 0.19 to 0.25 cm
yr−1 (Figure S1), suggests a significant sediment supply to the
study site during the period. This is supported by the abrupt
increase in shoreline progradation of the YRD over the last 1000
years (Hori et al., 2001). An increased OM supply to the ESC is
also indicated by organic geochemical records for the ECS inner
shelf (Hu et al., 2014). Debate continues regarding the
contribution of HR sediment (Section 4.3) and human
activities during this period.

After 1765 CE, the fRiverine of Core C2 remained low; however,
Fc increased significantly in association with the high
sedimentation rate (Figure S1). The higher temperatures,
enhanced EASM (Figure 7D), increased TOC content
(Figure 3A), frequent flood events (Zhou et al., 2021), and
intensive anthropogenic impacts (Figure 7G) in the YR basin
after 1765 CE were all conducive to increased OM input to the
YRE and the adjacent ECS inner shelf.
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4.3 Huanghe River Influence on
Sedimentary OC in the YRD
Channel geomorphic dynamics of the HR and its huge sediment
discharge have significantly affected the coastal evolution of the
Bohai and Yellow seas over the past 3000 years (Chen, 2019).
During 1128–1855 CE, the lower HR was diverted southward to
the Huaihe River, with its sediment discharging into the Yellow
Sea (Figure 1B). In the winter of 1128 CE, the Song army broke
the HR levee to ward off advancing Jurchen troops. This led to a
major avulsion, with large amounts of HR sediment being
transported southward through the Huaihe River (Zhang,
1984; Chen, 2019), especially after 1194 CE. During 1194–1494
CE, ~40% of the HR discharge flowed into the Huaihe River, with
the sediment load being trapped mainly in HR channels and with
the shoreline progradation rate being relatively low (~50 m yr−1;
Zhang, 1984). During 1494–1855 CE, massive amounts of
sediment were transported to the Yellow Sea, resulting in rapid
shoreline progradation of 100–500 m yr−1. After the lower HR
shifted northward in 1855 CE, the Abandoned Yellow Delta
suffered rapid erosion of 20–300 m yr−1 (Zhang, 1984).
Southward transport of HR sediment by the SCC was
enhanced, promoting YRD aggradation and progradation
(Wang et al., 2019).

Based on previous studies of mineralogical and geochemical
proxies (Liu et al., 2010), environmental magnetism (Wang et al.,
2020), and zircon U–Pb dating (Shang et al., 2021), YR sediment
transport to the YRD increased greatly at ~600 yr BP. Surface
sediment studies (Zhang et al., 2020; Qi et al., 2020) have
indicated that the low OM content of AHD sediment
contributed to the distribution and composition of OM in the
YRE. In addition to organic geochemistry, elemental
geochemistry has been widely applied in distinguishing
between YR sediment and its form in the coastal zone (Yang
et al., 2002; Yang et al., 2003; Xu et al., 2009), with HR sediments
being relatively enriched in Ca and Sr but lower than that of YR
sediments in most trace elements (e.g., Li, Ti, Ni, Ho; Yang et al.,
2002; Yang et al., 2003). The sudden increase in Ca/Al ratios and
Sr contents during 1385–1765 CE is illustrated in Figure S2. Ti
and Zr are naturally found in the earth crust and are widely used
in the reconstruction of lithogenic flux records as indicators of
terrestrial debris (Di Leo et al., 2002). The positive correlations
(Figure S4) between Ca and Ti contents (R = 0.54), Ca and Zr
(R = 0.56), and Sr and Ca (R = 0.62) indicate that the Sr and Ca in
the Core C2 sediments are sourced mainly from natural
carbonate debris rather than bioclastic material. This is
supported by variations of fRiverine, which coinciding well with
the trends of Zr. Most trace elements (e.g. Ti, Li, Ni) displayed a
decreasing trend during 1385–1765 CE, with the fRiverine of Core
C2 also decreasing sharply. Additionally, the river sediments
from the YR catchment generally have higher REE values,
because of the wide occurrence of basic rocks in the basins.
Relatively, the river sediments from the HR catchment have
lower REE values because of the widely distribution of
Quaternary loess in the HR middle reach (Yang et al., 2002;
Mi et al., 2017). The relative lower REE values in the period of
1385–1765 CE, indicating that there are other sediment sources
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on the YRD during this period. However, terrigenous sediments
from Minjiang, Taiwan, and Okinawa Trough have higher REE
concentrations than the sediments from the YR (Mi et al., 2017).
Therefore, we infer that the southward transport of HR sediment
by the SCC to the YRD has increased since 1385 CE, changing
the composition of sedimentary OM and reducing OC burial
at the core site because of the relatively low contents of HR
(0.11% ± 0.13%; Zhang and Wang, 2019) and AHD sediments
(0.35% ± 0.13%; Qi et al., 2020) in the AHD. This is also
supported by the abrupt increase Ca/Al values during this
period (Figure 7H) from the core ECS-0702 near the core
C2 (Figure 1A).

To further identify OM source changes in the C2 sediment,
organic proxy results were compared with potential HR, YR,
AHD, and marine OM sources (Figure 8). Organic geochemical
data for the period 1385–1765 CE are more similar to those of
AHD (Figure 8A) and HR (Figure 8B) sediments than those of
YR sediments, confirming that OM-deficient HR sediments
contributed significantly to the Core C2 site, reducing OM
burial during this period.

The fRiverine values of Core C2 are not consistent with the
fraction of riverine OM from core THB-2 in the southern part of
Frontiers in Marine Science | www.frontiersin.org 10
Zhe-Min Mud zone (Hu et al., 2014) after 1385 CE
(Figures 7A, E). The increased fRiverine of Core THB-2 since
1260 CE may have resulted from the combined effects of
intensive human activities and different sediment sources.
Intensive human activities have enhanced sediment OM
delivery to the sea since 1385 CE, increasing terrigenous OM
deposition in the Zhe-Min Coastal Mud zone, with sedimentary
OM there being sourced predominantly from the YR (Milliman
et al., 1985; Liu et al., 2007). Although HR sediment may have
affected the composition of sedimentary OM in the southern part
of the Zhe-Min Coastal Mud zone, its overall influence may be
neglected (Qi et al., 2020) because of the distance between the
AHD and Core THB-2. In contrast, the significant contribution
of AHD sediment (average 26%; Shang et al., 2021) with a low
OM content reduced the OM content of the YRD, even though it
involves mainly YR sediment. The timing of AHD sediment
effects on sedimentary OM in the YRD is of interest. Coarse-
grained-zircon U–Pb dating in the northern YRD indicates a
significant influence of the AHD since ca. 500 yr BP (Shang et al.,
2021). However, sedimentary records for the YRD indicate that
AHD sediment has contributed greatly to the YRD over the last
600 years (Liu et al., 2010; this study). This inconsistency may
have resulted from the OM tending to be enriched in fine-
grained particles, with the clay–silt fraction being suspended
more easily and transported further than that of the silt–sand
fractions. The finer-grained sediment was thus carried earlier to
the southern YRD, as suggested by Shang et al. (2021).
Considering the chronological uncertainty, we conclude that
the significant contribution of AHD sediments to the YRD
began at least 600 years ago.
5 CONCLUSION

Historical variations in terrigenous OC reconstruction based on
organic geochemical proxies for Core C2 from the YRD indicate
four major stages over the past 2000 years: A significantly
increasing trend in OC fRiverine during 2000–640 CE; a
relatively stable but high fRiverine during 640–1260 CE; a sharp
decrease in the fRiverine contribution with high variability during
1385–1765 CE; and a gradual return to an increasing trend after
1765 CE. The driving force of terrigenous fRiverine OC variation
may be associated with the EASM, ENSO, human activities, and
flood events. Organic and elemental geochemical records
indicate that large amounts of AHD sediment were delivered
to the YRD by longshore coastal currents, with reduced carbon
burial in the YRD 600 years ago. Sediment source changes should
thus not be neglected when determining the causes of variations
in sedimentary OC sources in estuarine and coastal areas.
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