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Globally, the continental shelf occupies less than 10% of the total sea surface, but
supports substantial primary production and fisheries. Photosynthetic picoeukaryotes
(PPE) are important primary producers in marine ecosystems, and chlorophytes make a
significant contribution to PPE abundance. Although the distribution of chlorophytes has
been widely studied, little is known about how their community composition varies along
the coastal-offshore gradient in subtropical continental shelf waters. To better understand
their spatial variations, we employed metabarcoding data of 18S rRNA V4 gene to
examine chlorophyte composition within the surface and deep chlorophyll maximum
(DCM) layers over the continental shelf in the East China Sea (ECS) with high-resolution
sampling. Our results indicate a higher chlorophyte diversity in the surface layer than in the
DCM. In addition, we found that chlorophytes in oligotrophic Kuroshio surface water were
the most diverse, with a higher percentage of Chloropicophyceae, prasinophyte clade V,
prasinophyte clade IX, Palmophyllophyceae and Chlorodendrophyceae. In more
eutrophic waters along the coast and within the DCM layer, chlorophytes were
dominated by Mamiellophyceae. A significant spatial variation in community
composition occurred along the nutrient gradient in the subtropical continental shelf
ecosystem, varying from Mamiel lophyceae-dominant in coastal water to
Chloropicophyceae-dominant in offshore water. Furthermore, at a low saline coastal
station, which had the lowest chlorophyte diversity, Picochlorum (Trebouxiophyceae) was
dominant. Overall, chlorophyte diversity was positively correlated with temperature, and
negatively correlated with silicate concentration. This study revealed that terrestrial input
into continental systems influences chlorophyte diversity in the subtropical northwestern
Pacific Ocean.
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INTRODUCTION

Phytoplankton, a primary producer in the ocean, may be
responsible for half of the global oxygen production (Field et al.,
1998). Based on cell-size, they can be roughly classified as either
picophytoplankton (< 2 or 3 mm), nanophytoplankton (~2-20 mm)
or microphytoplankton (~20-200 mm) (Sieburth et al., 1978).
Picophytoplankton, which are composed of eukaryotes and
prokaryotes, generally contribute a significant proportion of total
phytoplankton biomass in the oligotrophic open ocean (Li, 1995).
In marine ecosystems, photosynthetic picoeukaryotes (PPEs) are
less abundant in terms of cell density than prokaryotes, but make a
significant contribution to pico-size biomass and primary
production due to their greater volume (Worden et al., 2004).
Eukaryotes display greater genetic and morphologic variation than
prokaryotes, reflecting their multiple functions in marine
ecosystems (de Vargas et al., 2015; Caron, 2016). PPEs consist of
taxonomically diverse categories, including Chlorophyta,
Cryptophyta, Haptophyta (prymnesiophytes), and Orchrophyta
(diatoms and chrysophytes). Of these, Chlorophyta have been
better studied in terms of genomics (Derelle et al., 2006; Worden
et al., 2009; Moreau et al., 2012; Lemieux et al., 2019) and
ecological distribution (Not et al., 2004; Foulon et al., 2008;
Limardo et al., 2017).

Characteristics of chlorophytes include the use of
chlorophyll b as the main accessory pigment and chloroplasts
which are surrounded by two membranes. In taxonomic
classification, Chlorophyta comprise two major groups,
namely core chlorophytes and prasinophytes. The former
consists of the Ulvophyceae, Trebouxiophyceae and
Chlorophyceae clade (the UTC clade), while the latter is a
paraphyletic group consisting of more than 8 classes, including
the common ocean chlorophytes, Mamiellophyceae,
Nephroselmidophyceae, Pyramimonadales etc. (Guillou et al.,
2004; Tragin et al., 2016; Dos Santos et al., 2017a). Chlorophyta
have a widespread distribution and contribute more than half
of total PPE abundance in many marine regions (Not et al.,
2004; Not et al., 2005; Collado-Fabbri et al., 2011). However, its
dominants vary with geographic location. The ecological
distributions of Mamiellophyceae have been the most
extensively researched. Micromonas was found to be an
important component of eukaryotic picophytoplankton in
Arctic water, Atlantic temperate regions and in a variety of
coastal regions (Not et al., 2004; Lovejoy et al., 2007; Balzano
et al., 2012; Lin et al., 2017), while Bathycoccus is important in
the upwelling system of the eastern South Pacific and subarctic
Northeastern Pacific (Limardo et al., 2017), and Osterococcus is
important in Kuroshio fronts (Clayton et al., 2017). More
recently, Chloropicophyceae (previously referred to as
prasinophyte clade VII) has been established as another
important class (Dos Santos et al., 2017b), but little is known
about its ecological distribution in the oceans.

Many studies have revealed chlorophyte diversity, in
particular for Mamiellophyceae. Micromonas, with 9 clades,
exhibits greater species diversity than Ostreococcus and
Bathycoccus (Tragin and Vaulot, 2019). 18S rRNA gene
analysis has shown that Ostreococcus and Bathycoccus consist
Frontiers in Marine Science | www.frontiersin.org 2
of four and two clades, respectively (Simmons et al., 2016;
Limardo et al., 2017). The distribution patterns of Bathycoccus
and Ostreococcus clades are clearer than that of Micromonas
(Demir-Hilton et al., 2011; Simmons et al., 2016; Vannier et al.,
2016; Clayton et al., 2017; Limardo et al., 2017). Coastal/oceanic
ecotypes of Bathycoccus and Ostreococcus appear to occur
independently of each other most of the time, except within
mixing waters (Demir-Hilton et al., 2011; Clayton et al., 2017;
Limardo et al., 2017). Chloropicophyceae comprise three genera,
Chloropicon, Chloroparvula, and Picocystis (previously described
as prasinophyte clade VIIA and VIIB and VIIC, respectively). A
previous study found that Chloropicophyceae were better
represented in warm offshore waters (Dos Santos et al., 2017a).
However, l i tt le information is available about how
environmental variables influence the distribution of
Chlorophyta. A survey from coastal to offshore waters in a
subtropical continental shelf system would thus be helpful in
understanding their distribution patterns.

Although global surveys of eukaryotic composition have been
carried out, such as in Ocean Sampling date (OSD) and Tara
Oceans (Logares et al., 2018), relatively few sampling sites have
been located in the subtropical Northwestern Pacific. Previous
research reported that Mamiellophyceae were dominant in
coastal waters, while Chloropicophyceae dominated in offshore
waters (Tragin et al., 2016; Dos Santos et al., 2017a). The East
China Sea (ECS) is one of the largest continental marginal seas in
the northwest Pacific Ocean. The coastal region is influenced by
the Changjiang (Yangtze) River discharge, while the offshore
region is influenced by oligotrophic Kuroshio Water (Chen,
1996; Gong et al., 1996). Our study area was located in the
northwestern Pacific Ocean and comprised a coastal-offshore
gradient across a large continental shelf region in the ECS. We
used 18S rRNA gene metabarcoding to study chlorophyte
community composition in surface and DCM layers during
summer 2019, and examined how this composition varied
from coastal to offshore regions within these layers.
METHODS

Sample Collection and Processing
Grid sampling was conducted in the East China Sea (ECS) at a
total of 30 stations in July, 2019 (Figure 1). Surface water (4-6 m
at 30 stations) and DCM water (15-85 m at 20 stations) were
sampled. Seawater was collected using Go-Flo bottles mounted
on a CTD rosette (Sea-Bird Electronics, USA). Ten liters of
seawater was prefiltered using a 200 mm nylon mesh, and then
processed with size-fractions (20-200 mm, 3-20 mm and 0.2-3
mm). For DNA collection, 20 mm pore size was collected on 90
mm-diameter nylon membranes (Millipore) while 3 mm- and
0.2 mm- pore sizes were collected on 142 mm-diameter
polycarbonate membranes (Millipore). The filters were
immediately preserved in liquid nitrogen and transferred and
stored at -80°C until DNA extraction. In this study, chlorophyte
composition was studied exclusively in pico-sized fractions (0.2-
3 mm) due to the greater number of reads after subsampling.
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Environmental Parameters
Temperature and salinity were measured using a CTD profiler.
The concentrations of ammonium, nitrite, nitrate, phosphate
and silicate were measured according to standard methods used
in a previous study (Gong et al., 2000). To measure chlorophyll a
concentration, 1 L of seawater was filtered through 47-mm-
diameter GF/F filters and then stored at -20°C until analysis. The
chlorophyll on the filters was extracted with 90% acetone and
determined with a fluorometer (Gong et al., 2000). Flow
cytometry samples were preserved with paraformaldehyde
(0.2% final concentration), and stored at -80°C. PPEs were
quantified with chlorophyll red fluorescence using flow
cytometry at an excitation wavelength of 488 nm (CytoFLEX,
Beckman Coulter).
Frontiers in Marine Science | www.frontiersin.org 3
18S Amplicon Sequencing
PCR conditions and methods of DNA extraction are described in
Lin et al. (2021). Briefly, DNA was extracted using DNeasy
PowerWater Kit (Qiagen) following the manufacturer’s
instructions. The V4 region of the 18S rRNA gene was
amplified with the eukaryotic universal primer set
TAReuk454FWD1 (5’-[illumina adaptor]- CCAGCASCYGCG
GTAATTCC-3’) and TAReukREV3 (5’- [illumina adaptor]- AC
TTTCGTTCTTGATYRA-3’) (Stoeck et al., 2010). Amplicon
sequencing was carried out on an Illumina MiSeq platform
(pair-end 2 × 300 bp). The primers in raw paired-end reads
were trimmed with Cutadapt (Martin, 2011), and the reads were
analyzed using DADA2 pipeline (Callahan et al., 2016). The
taxonomic annotation was carried out in accordance with PR2
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FIGURE 1 | (A) Maps show the sampling stations. (B) The distribution of photosynthetic picoeukaryotes (PPEs, cells ml-1) (C) temperature (°C) and (D) salinity of
surface water during July, 2019. (E) The Temperature-Salinity (T-S) diagram shows the water types as defined by Gong et al., 1996. The yellow and turquoise circles
represent the surface water and DCM water, respectively. Dotted lines represent density (kg m -3). CDW, Changjiang Diluted Water; KW, Kuroshio Water; TWC,
Taiwan Warm Current; YSMW, Yellow Sea Mixed Water.
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version 4.12.0 database, resulting in 8 taxonomic levels:
Kingdom, Supergroup, Division, Class, Order, Family, Genus
and Species. DADA 2 infers exact amplicon sequence variants
(ASVs) instead of operational taxonomic units (OTUs) to obtain
an overall taxonomic composition for all samples (Supplemental
File 1).

Analysis of Chlorophyte Communities
Chlorophyte ASVs were selected from the eukaryotic ASV table
produced by DADA2 under Division level of “Chlorophyta”
(Supplemental File 2). Subsequently, 400 chlorophyte ASVs
were selected randomly and subsampled 100 times to avoid
sequencing depth variations (Yeh et al., 2015). Four out of 50
samples with <400 chlorophyte reads were excluded from
further analysis. We conducted multivariate and statistical
analysis on the subsampled data. R package phyloseq was
used to calculate the Chao1 and Shannon diversity indices.
Chlorophyte composition was then clustered based on Bray-
Curtis dissimilarity, used the Ward.D2 clustering method.
Canonical correlation analysis (CCA) was then carried out to
investigate the relationships between environmental variables
and the 20 most abundant chlorophyte ASVs. To explore the
relationships between niche distribution and environmental
variables in each ASV, we performed a generalized additive
model (GAM) to evaluate the 10 most abundant chlorophyte
ASVs using a mgvc package. Prior to GAM modelling, ASV
reads were natural log transformed. All statistical analyses were
done with R 3.6.1.

To study the phylogenetic relationships in Chloropicophyceae
and Mamiellophyceae, the 15 most abundant ASVs in each class
were used to analyze the V4 region of 18S rRNA gene (Figure S1,
S2). One ASV,O. tauri, was placed inOstreococcus clade E based on
phylogenetic analysis (Figure S1). The taxonomic annotation of this
ASV was then updated throughout the manuscript. Raw amplicon
data with three size fractions have been deposited in the NCBI
Sequence Read Archive under the BioProject number:
PRJNA738614. Samples of size 0.2-3 mm (library_ID contains
F002) from surface and DCM waters (library_ID contains -S
& -D) were analyzed in this BioProject.
RESULTS

Hydrographic Conditions in the ECS in
July, 2019
During the study period, temperature in the ECS increased north
to south, varying from 23.6°C to 29.7°C in the surface layer and
from 20.3°C to 28.3°C in the DCM layer (Figure 1, S3, S4). The
maximum temperature was observed in oligotrophic Kuroshio
Water (St. K). Salinity increased from northwest to southeast,
ranging from 29.8 to 34.4 at the surface and from 31.3 to 34.8 in
the DCM layer (Figure 1, S3, S4). Using a definition of water
types (Gong et al., 1996), most sampling sites were influenced by
the oligotrophic Taiwan Warm Current (TWC, temperature
>23°C and salinity >31) (Figure 1E). In addition, southern
offshore waters (Sts. K and 1) were influenced by Kuroshio
Frontiers in Marine Science | www.frontiersin.org 4
Water (KW). A topography-induced upwelling of colder saline
water caused by the westward subsurface intrusion of Kuroshio
water was observed at St. 1 (Figures 1C, D). The northern ECS
(St. 21) was influenced by eutrophic Yellow Sea Mixing Water
(YSMW) with high phosphate concentrations (Figure S3). The
freshest water appeared in the central coastal region of the ECS
(Sts. 30, 18 and 6; Figure 1), defined as Changjiang Diluted
Water (CDW) (Gong et al., 1996), which was located further
south of the Changjiang river mouth during the sampling period.
The average PPE abundance was 1.1 x 103 cells ml-1 in the ECS
with a maximum of 4,180 cells ml-1 on the central coast at St.
6 (Figure 1).

The Overall Composition of Small
Eukaryotes (0.2-3 µm)
Following DADA2 pipeline, a total of 2,933,769 eukaryotic reads
and 8,249 ASVs were obtained from 30 surface water samples
and 20 DCM samples. After removing Opisthokonta reads, the
major supergroups comprised Alveolata, Stramenopiles,
Archaeplastida, Rhizaria etc. Rhizaria showed a higher
amplicon contribution in the DCM than in the surface layer
(12% vs 4%, Figure S5). We simplified PPEs into Orchrophyta,
Chlorophyta, Haptophyta and Cryptophyta. Chlorophyta
contributed a higher percentage of total PPE reads in DCM
than in the surface layer (51% vs 40%, Figure S5), and were
important components among pico-size PPEs. Overall, the
amplicon of chlorophyta accounted for ~6% of total eukaryotic
reads and 3% of total ASVs (196,467 reads and 189 ASVs prior to
subsampling). The samples with low chlorophyte reads (<400
reads) were located in the northern ECS, where the temperature-
salinity conditions were similar to those in Yellow Sea Mixing
Water (Figure 1E). The following samples were excluded from
further analysis: St. 20 (surface & DCM), St. 21 (DCM), St.
22 (surface).

Chlorophyte Composition
Af t e r sub s amp l ing , Mamie l l ophyceae (42%) and
Chloropicophyceae (41%) contributed similar read numbers in
the surface water layer. Mamiellophyceae contributed slightly
higher reads in the DCM layer at the class level (67% in DCM
layer, Figures 2A, B). At the genus level, Chloropicon (32%) and
Chloroparvula (10%) were more important in surface water
whereas Bathycoccus (28%) and Ostreococcus (22%) were more
important in DCM water (Figures 2C, D). Micromonas
reads were similar in both layers. With respect to genetic
diversity, among Mamiellophyceae, Micromonas comprised 11
ASVs while Bathycoccus and Ostreococcus comprised 3
ASVs. Chloropicophyceae showed greater diversity than
Mamiellophyceae on 18S V4 region, with Chloropicon
and Chloroparvula comprising 16 and 22 ASVs, respectively.
Apart from Mamiellophyceae and Chloropicophyceae,
other chlorophyte classes included Palmophyllophyceae,
prasinophyte clades V and IX, Pyramimonadales, and
Trebouxiophyceae (Figure 2). The most abundant chlorophyte
ASVs in this study, after subsampling, included Bathycoccus
prasinos (ASV_11), Chloropicon roscoffensis (ASV_8),
July 2022 | Volume 9 | Article 865081
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Micromonas commoda clade A1(ASV_10) and Ostreococcus
clade B (ASV_13) (Figure 3).

Chlorophyte Diversity
The result of DADA2 pipeline produced a total of 189 chlorophyte
ASVs, of which 156 ASVs were exclusively from the surface layer,
74 ASVs were exclusively from the DCM, and 41 ASVs were found
in both layers. Prior to further analysis, subsampling was
conducted to correct for variations in read numbers between
samples. The Chao1 and Shannon indices were significantly
higher in the surface layer than in the DCM (P < 0.01,
Figure 4A). For surface water, the maximum Shannon index
occurred in KWwater (St. K). Both Chao1 and Shannon were at a
minimum in the central ECS, in coastal water defined as CDW (St.
6) (Figure 4). Where the amplicon of Picochlorum sp. (ASV_31)
among Trebouxiophyceae overwhelmingly dominated
chlorophyte reads (~90%), it occurred alongside maximum
chlorophyll a concentration and PPE abundance (chlorophyll a:
1.48 mg m-3 and PPEs: 4,180 cells ml-1, Figures 1, S3;
Supplemental File 3). Other eukaryotic reads at St. 6 were
dominated by Syndiniales in dinoflagellate (Supplemental File 1).
Picochlorummight therefore be major contributors to chlorophyll a
concentration and PPE abundance in our study.

Chlorophyte Composition and
Hydrographic Environments
To examine chlorophyte composition, we created a Bray-Curtis
dissimilarity matrix and grouped samples based on hierarchical
Frontiers in Marine Science | www.frontiersin.org 5
clustering (Ward.D2). The composition varied along the coastal-
offshore gradient, and also with vertical depth in offshore
samples. Based on geographic and vertical characteristics, four
clusters were identified and named as follows: surface water
(n=17), DCM water (n=15), coastal water (n=11) and Kuroshio
Water (n=3) (Figure 5).

The Surface Water Cluster
Most of the samples came from surface water, except for those at
St. 10 in DCM water (Figure 5). The samples in this cluster were
broadly distributed over the ECS, with Chloropicophyceae and
Mamiellophyceae together contributing a large proportion of
total chlorophyte reads (Figure 6). Dolichomastigale
(Mamiellophyceae) was slightly more abundant in this cluster
than in other clusters.

The DCM Cluster
This comprised mostly offshore DCM samples (Figure 5), with
the addition of three surface samples, one an upwelling sample
and the other two from the northern ESC. Mamiellophyceae
accounted for ~80% of total chlorophyte reads in this cluster
(Figure 6), with B. prasinos (ASV_11) and Ostreococcus clade B
(ASV_13) being the most abundant. Pyramimonadales were
more abundant here than in other clusters (Figure 5).

The Coastal-Water Cluster
This comprised 8 surface samples and 3 DCM samples at Sts. 3,
5, and 35 from the coastal region where depths of DCM layers
A B

DC

FIGURE 2 | Treemaps show chlorophyte community composition in the (A, C) surface layer and (B, D) DCM layer at (A, B) class level and (C, D) genus level in
PR2. The area of each taxonomic group is proportional to the number of reads after subsampling.
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were shallow (<30 m, Figure S6). The DCM samples were from
the southwestern ECS. Mamiellophyceae was dominant,
contributing ~50% of chlorophyte reads (Figure 6). The
important ASVs in this cluster were M. commoda clade A1
(ASV_10), C. roscoffensis (ASV_8) and Picochlorum sp.
(ASV_31) (Figure 5C).

The Kuroshio Cluster
This consisted of just three samples from the southeastern ECS,
one surface sample (St. K) and two DCM samples (Sts. 1 and 9).
St. K was characterized as typical Kuroshio water using Gong
et al. (1996). Upwelling at St.1 was caused by the subsurface
invasion of Kuroshio water. As a result, the chlorophyte
composition in the DCM layer at St. 1 resembled that in
Kuroshio water. The Temperature-Salinity diagram indicated
that St. 9 belongs to TWC (Figure 1E). However, the water is
characterized as high temperature and high salinity, and is
therefore similar to Kuroshio water. The chlorophytes in this
cluster were dominated by Chloropicophyceae, particularly the
genus Chloroparvula. We also observed a higher amplicon
number of prasinophyte clades V and IX, Palmophyllophyceae
and Chlorodendrophyceae. Dolichomastigales and Mamiellales
(Mamiellophyceae) were less important here than in other
clusters (Figure 5).
Frontiers in Marine Science | www.frontiersin.org 6
We further examined and compared the environmental
variables among these four clusters using One-way ANOVA
and post-hoc Turkey HSD. There were significant differences in
temperature, ammonium, phosphate and silicate (Figure S7).
Also, we found that chlorophyte clustering patterns were more
consistent with nutrient concentrations than with temperature,
and that Kuroshio water samples clustered more closely with
surface samples, while DCM samples clustered more closely with
coastal samples (Figure 5).
DISCUSSION

The Overall Distribution of Chlorophytes
There has been extensive discussion on the relative advantages of
choosing operational taxonomic units (OTU) and ASVs from
DADA2 (Xu et al., 2022). Generally, OTU is a consensus
sequence which can represent different sequences from
multiple species through clustering, typically using 97-99%
similarity. In contrast, an ASV represents an exact sequence by
running an error model to extract true sequences. The ASV
method has been broadly accepted for chlorophytes due to their
relatively low genetic diversity (Tragin and Vaulot, 2019). The
operational taxonomic units (OTU) method is unable to
FIGURE 3 | Rank-abundance for the 20 most abundant chlorophyte ASVs generated from the DNA of 0.2-3 mm size-fraction from the surface and DCM samples in the
ECS, with a minimum of 400 reads subsampled 100 times. Surface subsamples (28 samples) are shown in yellow, while DCM subsamples (18 samples) are shown in
turquoise. The pie charts show the reads prior to subsampling. The upper, middle and lower pie charts represent total (50 samples), surface (30 samples), and DCM (20
samples) samples respectively. The numbers next to the taxonomic annotations indicate the ASV.
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discriminate the distinct Ostreococcus clades, even with a 99%
identity threshold (Tragin and Vaulot, 2019). Thus, ASV is better
than OTU at representing the taxonomic groups for
chlorophytes. The distribution patterns of certain chlorophyte
groups have already been demonstrated, for example that
Mamiellophyceae is dominant in coastal water whereas
Chloropicophyceae and prasinophytes clade IX are dominant
in oceanic waters as well as in tropical regions (Tragin et al.,
2016; Dos Santos et al., 2017a; Charvet et al., 2021). This study
conducted grid sampling at surface and DCM layers on the
continental shelf region to provide a high-resolution
examination of chlorophyte community variation. Previous
studies have not discussed the distribution of chlorophytes
with respect to nutrient concentration. Our results show that
the DCM layer was dominated by Mamiellophyceae, indicating
that nutrient levels play an important role in determining
their composition. In surface water, the dominance of both
Frontiers in Marine Science | www.frontiersin.org 7
Mamiellophyceae and Chloropicophyceae might result
from the mixing of coastal and Kuroshio waters on the
continental shelf, with chlorophyte composition thus reflecting
the hydrographic dynamics (Figure 6). Some ASVs in surface
water resulted from the mixing of coastal and offshore water, e.g.,
C. roscoffensis (ASV_8), C. sieburthii (ASV_42) and Picochlorum.
On the other hand, some ASVs appeared exclusively in the
transitional mixing water and occupied a narrow ecological
niche, e.g., some ASVs in Dolichomastigaceae-B sp,
Chloroparvula clades B2 and B3 and prasinophyte clade
IX (Figure 5). Collectively, chlorophyte composition reflects
the hydrographic conditions and can thus be used as a model
for studying the dynamics of water masses in the ECS
shelf system.

Since the first Chloropicophyceae genome of Chloropicon
primus has been published, the differentiation of ecological
niches between Mamiellophyceae and Chloropicophyceae
-1.0

-0.5

0.0

0.5

1.0

Chao1

Shannon

Temperature

Salinity

NH4

NO3

NO2

PO4

SiO3

Chla

0.65**

-0.75*** -0.73*** -0.64**

-0.73***

0.92*** 0.81***

-0.58**

0.87***

Chla

Chao1

Shannon

Temperature

Salinity

NH4

NO3

NO2

PO4

SiO3

0.40* 0.66*** 0.65*** -0.42* -0.53** -0.47**

-0.47** -0.70***

-0.61***-0.50**-0.61***0.68***

-0.50**-0.73***-0.67***

0.69*** 0.51** 0.73*** 0.42* 0.70***

0.63*** 0.67*** 0.59** 0.65***

0.61*** 0.74***

0.78***

B            Surface C            DCM

surface DCM surface DCM

1

2

10

20

30
Al

ph
a 

di
ve

rs
ity

Water types
CDW
KW
TWC

A nonnahS1oahC

-0.39*

-0.39*

-0.38*

FIGURE 4 | (A) Comparison of chlorophyte diversity in surface and DCM samples. Subsampling data was calculated using Chao1 and Shannon diversity, and is
represented as box-whisker-plots with median values as horizontal lines, and interquartile ranges as boxes with whiskers extending to 1.5 times the interquartile
range. The definition of water masses is based on Gong et al., 1996. Green indicates the Chiang Dilution Water (CDW); purple indicates the Kuroshio Water (KW);
and yellow indicates the Taiwan Warm Current (TWC). (B, C) Pearson’s correlation coefficients between diversity indices and environmental variables for (B) surface
data and (C) DCM data. The colors indicate the strength of positive (red) and negative (blue) coefficients, and *, ** and *** indicate statistical significance at P < 0.05,
<0.01 and 0.001, respectively.
July 2022 | Volume 9 | Article 865081

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Lin et al. Chlorophytes in the East China Sea
might be indicated by genomic features (Lemieux et al., 2019).
Using genomic prediction, it has been hypothesized that C.
pr imus might be a bacter ivore s ince i t possesses
WASH complex and DNaes II genes which are associated
with phagocytic capacity (Bock et al., 2021). Although
Frontiers in Marine Science | www.frontiersin.org 8
C. primus was not an important species in the ECS, there is
still little genomic information about other species in
Chloropicophyceae. Additionally, visible vacuoles were
observed in Chloropicon during ultrastructure inspection
(Dos Santos et al., 2017b), but did not appear in either
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FIGURE 5 | (A) The four clusters generated by hierarchical clustering of chlorophyte ASV table after subsampling. (B) The colors in squares represent the clusters from
(A). The left and right half of each square represent surface and DCM samples, respectively. Black shows chlorophyte reads < 400 in amplicon data while grey indicates
that no DCM layer was observed at that station. (C) The average fraction of total chlorophyte amplicon in each cluster for the 50 most abundant chlorophyte ASVs. The
colors indicate the distinct classes and the numbers next to the taxonomic annotations indicate the ASV.
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Bathycoccus or Ostreococcus (Limardo et al., 2017). These
differences in genomic and physiological features might lead
to Mamiellophyceae and Chloropicophyceae occupying
different ecological niches.

Mamiellophyceae Community Composition
M. commoda clade A1, M. bravo clade B2 and Micromonas
clade B5 appeared more frequently in the ECS (Figure 3),
while Micromonas clade B3 and M. polaris were absent. A
previous study indicated that Micromonas clade B3 and M.
polaris were important in polar regions (Tragin and Vaulot,
2019). M. commoda clade A2 seems to be adapted to cold
water at high latitudes (Tragin and Vaulot, 2019), but rarely
appeared in the ECS, being present only in the northern
Yellow Sea Mixing Water (St. 23). It was absent in a survey
of the subtropical coastal water of Taiwan (Lin et al., 2017).M.
commoda clade A1 was common in our study, and was
detected in most of the samples. GAM prediction indicated
that M. commoda clade A1 increased with temperature >25°C
(Supplemental File 4). It has been suggested thatMicromonas
clade B5 is a warm-adapted clade as it is found in the warm
waters of the South China Sea and off the Philippines and
Taiwan (Wu et al., 2014; Lin et al., 2017; dela Peña et al.,
2021). Our results support this, and in our study Micromonas
clade B5 peaked at the edge of coastal water where salinity was
32-34 and silicate concentration was ~ 2 mM. (St. 5;
Supplemental File 4). It occurred a little more frequently in
the DCM layer than in surface samples, although the total
number of reads was the same in the two layers (Figure 3).
Overall, Micromonas clade B5 preferred nutrient-rich water.

Ostreococcus clade B was abundant in the ECS during the
summer (Figure 3) and was an important component of
chlorophyte composition in DCM water, appearing alongside
Bathycoccus prasinos (Figure 5). It has been described as an
oceanic ecotype, associated with low-light and deeper
environments (Rodrıǵuez et al., 2005; Demir-Hilton et al., 2011).
Ostreococcus clade E, which has two bases different from clade B in
Frontiers in Marine Science | www.frontiersin.org 9
18S V4 region, was established more recently (Tragin and Vaulot,
2019). In our study, Ostreococcus clade E had low reads and
peaked in more coastal waters (Figure 5; Supplemental File 2),
implying a preference for eutrophic warm waters. On the other
hand, O. lucimarinus belonged to a coastal ecotype (Simmons
et al., 2016), and its related reads were detected only at St. 31
(Supplemental File 2). Although its sequences were found to be
abundant in the Kuroshio front located off southeastern Japan
(Clayton et al., 2017), it was almost absent in the ECS during the
summer. Bathycoccus prasinos reads were negatively correlated
with temperature in the ECS (Supplemental File 4), but there
were no clear ecotypes based on 18S V4 amplicon data. Mamiella
gilva comprised 6 ASVs here and the dominant ASV showed a
preference for coastal surface water and was absent in the DCM
layer (Figures 3 and Supplemental File 4). Mantoniella clade B
was detected only in two offshore samples, represented by one
ASV (Supplemental File 2). Overall, the majority of
Mamiellophyceae ASVs seem to be more important in
eutrophic waters.

Chloropicophyceae Community
Composition
In marine environments, Chloropicophyceae comprises two
main genera, Chloropicon and Chloroparvula, both of which
were extensively represented in the ECS samples (Figures 3 and
Supplemental File 4). Notably, the phylogeny in the Chloropicon
species indicated by using V4 region of the 18S rRNA was
inconsistent with the taxonomic annotation with DADA2
(Figure S2). Therefore, we have pointed out the ASV number
among Chloropicon. So far, little is known about their
distribution, particularly in tropical-subtropical regions.
However, Dos Santos et al. (2017a) have reported that global
surveys indicate Chloropicophyceae has a preference for
oligotrophic and warm water. In our study, all clades in
Chloropicon and Chloroparvula were detected, apart
from Chloropicon maureeniae. C. roscoffensis (ASV_8) was the
most abundant ASV (Figure 3) having a wide distribution over
FIGURE 6 | A schematic showing currents and chlorophyte composition for each cluster in Figure 5. Earthy yellow and gray blue indicate the coastal currents and
offshore Kuroshio water, respectively. These two waters mixed on the shelf region over the East China Sea. The pie charts represent the average proportion of total
chlorophyte composition in each cluster (in Figure 5) at the “class” level in PR2.
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the continental shelf. In the ECS, C. roscoffensis reads correlated
negatively with silicate concentration (Supplemental File 4).
However, it was abundant in the Changjiang estuary at low
nutrient levels. The next most abundant ASV among
Chloropicophyceae was C. sieburthii (ASV_42), which was
slightly more abundant in the DCM layer than in the surface
layer (Figure 3), and was the most important ASV in KW
(Figure 5). Different C. roscoffensis ASVs exhibited different
distribution patterns. ASV_8 occurred in a wide range of
salinity, whereas ASV_84 appeared only where salinity was
>32. Chloroparvula clades B2 and B3 exhibited similar
distribution patterns and were found mainly in the central
offshore area of the ECS. Both clade B2 and clade B3 were
absent in the DCM layer (Figure 3), and generally peaked in low
chlorophyll a water (Supplemental File 4). A previous study
indicated that Chloropicon and Chloroparvula were important
in offshore water (Dos Santos et al., 2017a). Our results were
consistent with that study as the majority of Chloropicophyceae
ASVs were negatively correlated with silicate concentration and
inhabited more oligotrophic surface water than other
chlorophyte ASVs (Supplemental File 4).

Chlorophyte Composition and
Environmental Variables
In this study, we observed that chlorophyte diversity varied with
silicate concentrations in both surface and DCM layers. The
results of CCA showed that salinity, temperature and silicate
concentration had the greatest influence on the distribution of
Frontiers in Marine Science | www.frontiersin.org 10
abundant chlorophyte ASVs (Figure 7). Since chlorophytes
seldom uptake silicate directly, their diversity and communities
might be influenced by the diatom. The pico- and nano-sized
diatoms have been found to be important in many marine
systems recently (Leblanc et al., 2018; Charvet et al., 2021),
including in this study (Figure S5), and they might compete
with the chlorophyte communities due to their similar size range.
On the other hand, there may be other factors which covary with
silicate concentration, e.g., turbidity. Turbidity and irradiance
can significantly influence phytoplankton composition in
estuarine systems since chlorophytes are photosynthetic
organisms (Gameiro et al., 2011; Charvet et al., 2014).
However, the sampling design of our study made it difficult to
evaluate the impact of light. Nevertheless, we observed that
certain chlorophyte ASVs showed a preference for specific
water layers. Ostreococcus clade B, for example, was more
significant in the DCM layer than at the surface based on read
numbers (Figure 3), and its cultures were generally isolated in
deep water. A previous study demonstrated that the growth rate
of different Ostreococcus strains varied with light intensity
(Rodrıǵuez et al., 2005; Six et al., 2008). Additionally, some
ASVs were nearly absent in DCM water, for example,
Chloroparvular clades B2 and B3, Mamiella gilva and
prasinophyte clade IX (Figure 3). On the other hand, an ASV
in Pycnococcaceae (belonging to prasinophyte clade V,
ASV_218), contributed moderate reads in both surface and
DCM layers, and occurred frequently in the ECS summer,
particular in KW (Figures 3, 5). According to BLAST search,
this ASV is identical to a Pycnococcus provasolii sequence whose
genome has been reported to encode unique dual photoreceptors
of orange/far-red and blue to enable adaptation to a broad range
of ocean depths (Makita et al., 2021). Overall, our data illustrated
that chlorophyte communities seem to vary with terrestrial
inputs of silicate concentration and salinity.

In the ECS, chlorophyte communities showed higher
diversity in the surface layer than in the DCM layer. Chao1
and Shannon diversity indices were significantly correlated
with nutrient concentrations, particular in surface water
(Figure 4B). Temperature and salinity also play important
roles in surface water (Figure 4B), with the Chao1 index
being positively correlated with both temperature (r = 0.66, P
< 0.001) and salinity (r= 0.65, P < 0.001) (Figure 4B). In the
DCM layer, the diversity indices were related to few
environmental factors, suggesting there might be other factors
determining chlorophyte diversity, such as predators and
irradiance levels (Charvet et al., 2014; Yang et al., 2018). Our
data shows that the diversity indices were negatively correlated
with silicate concentrations, indicating that terrestrial input to
the ECS plays an important role in shaping chlorophyte
diversity. A previous study indicated that sudden pulses of
high nutrients can increase the growth of a single species, and
thus decrease community diversity (Spatharis et al., 2007). In
our study, the minimum chlorophyte diversity was observed in
the coastal water (St. 6) of the central ECS dominated by
Picochlorum (90% of total chlorophyte reads). We also
observed high PPE abundance and chlorophyl l a
concentration. With global warming, Picochlorum might lead
FIGURE 7 | Canonical correspondence analysis (CCA) biplot illustrating the
relationship between environmental variables and abundant chlorophyte
ASVs. The arrows show significant environmental variables, the pink
triangles represent the 20 most abundant chlorophyte ASVs, and the yellow
and turquoise circles represent the surface and DCM samples, respectively.
The CCA results show that salinity, temperature and silicate concentration
are the most significant factors driving the chlorophyte communities. The
numbers next to the taxonomic annotations indicate the ASV.
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to harmful algal blooms since GAM indicates its reads correlate
positively with temperature, ammonium and silicate
concentrations (Supplemental File 4). Foflonker et al. (2015)
have indicated that Picochlorum can acclimate to a wide range
of salinity and that excessive ammonium enhances their
growth, and that these ecological features can be explained by
genomic data. A recent study indicated that Picochlorum can be
grazers on picoplankton (Pang et al., 2022). More than that,
some taxa among chlorophytes have been reported as potential
mixotrophs, e.g., Chloropicon, Dolichomastix, Micromonas,
Nephroselmis, Pterosperma and Pyramimonas (McKie-
Krisberg and Sanders, 2014; Bock et al., 2021). These pico-
size chlorophytes are also predators on picoplankton, which
might result in an increase in the efficiency of energy flows
(Ward and Follows, 2016). On the other hand, being an
important prey for protists and zooplankton (Orsi et al.,
2018; Ma et al., 2021), their composition will influence the
community diversity of predators (Yang et al., 2018). Therefore,
as primary producers and consumers, chlorophyte community
structure plays a key role in determining the efficiency of energy
and nutrient flows in microbial food webs.

CONCLUSION

This study examined the community composition of chlorophytes
in surface and DCM layers in a subtropical North Pacific Ocean.
Mamiellophyceae was dominant in relatively nutrient-rich coastal
water and in the DCM layer, whereas Chloropicophyceae was
dominant in Kuroshio waters. We demonstrated that the mixing
of coastal and offshore waters played an important role in
determining the chlorophyte composition in the shelf surface
water of the ECS. Additionally, river input to continental systems
enables certain chlorophyte species to outcompete others, lowering
the overall chlorophyte diversity. For the purposes of coastal
management, and to maintain a healthy ecosystem, it is therefore
important to monitor excess nutrient input into the
continental system.
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