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In marine larviculture, farmed larvae mainly rely on the alimentation of a group of small-
sized phytoplankton and zooplankton referred to as live feed. Under the diversifying
demands of human consumption and ornamental aquarium industry, new species of
live feed and their innovative production methods are essential focuses for sustainable
larviculture of many emerging fish and invertebrate species. The selection of proper
live feed for larval feeding is based on several parameters, such as size, morphology,
nutritional value, stock density, and growth rate. This review aims to highlight the
biological characteristics, production approach, common larviculture applications as
well as recent innovations in the aquaculture technology of live feed organisms
(microalgae, ciliated protists, rotifer, Artemia, copepod, and others).

Keywords: marine larviculture, live feed, microalgae, ciliate, rotifer, Artemia, copepod

INTRODUCTION

The percentage of world aquaculture production over the total fishery resource has increased
from 14.6% in 1986 to 46% in 2018 (FAO, 2020). Although aquaculture is a fast-growing
industry, one of the bottlenecks is proper rearing of the early life stages of many farmed fish
and invertebrate species (Hu et al., 2018; Gallardo et al., 2022). The significant difficulty is the
first feeding at larval weaning stage. When larvae deplete yolk reserves and experience transition
from endogenous to exogenous feeding, they do not benefit from a well-developed gastrointestinal
tract to efficiently digest the formulated diets (Infante and Cahu, 2001; Yúfera and Darias, 2007).
The young larvae have limited capacity of predation (detection and capture) due to its immature
jaw, muscle, and optical developments (Hu et al., 2018). Moreover, the specific larval feeding
behaviors and nutritional requirements should be considered when selecting suitable first feeding
ingredients to achieve a successful larviculture production (Rønnestad et al., 2013; Mejri et al.,
2021). Contrary to formulated diets, motile and viable phytoplankton and zooplankton provide
more bioavailable nutrients and trigger higher predatory responses, and have been recognized
as promising exogenous nutrients for marine larvae (Conceição et al., 2010; Nielsen et al., 2017;
Kandathil Radhakrishnan et al., 2020). These dietary planktons could live with the farmed larvae in
the rearing system, and be ingested by the larvae whenever desire, are thus referred as live feeds.

Most emerging species in marine aquaculture and aquarium industries have a sensitive and
small-mouthed larval stage, and their larviculture are very challenging due to a lack of appropriate
first feeding protocols. It is of a crucial interest to enhance diversification and innovation within live
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feed production programs to advance the fast-growing marine
larviculture industry. Consequently, the aquaculture technologies
of live feed productions are a focus point worldwide (Hansen
and Møller, 2021). Here we review recent trends of live feed
production at laboratory and industrial scales and discuss
challenges and perspectives of its applications.

MICROALGAE

Microalgae plays a fundamental role in aquatic food webs by
converting solar energy into bioavailable organic compounds and
trophic resources. These micro-sized autotrophs are sustainable
food item for aquaculture (Hemaiswarya et al., 2011), and
are used as live feeds for several marine organisms such as
bivalves (Tahir and Ransangan, 2021; Hassan et al., 2022),
zooplankton (Pan et al., 2018; Dayras et al., 2021), larvae of
crustacean (Sharawy et al., 2020; Sandeep et al., 2021), and
echinoderm (Militz et al., 2018; Gomes et al., 2021). In marine
hatcheries, the usage of microalgae could be categorized in
three scenarios: (i) direct diet to provide nutrients to early
developmental stages (Camus et al., 2021; Dayras et al., 2021);
(ii) natural enrichment ingredients to zooplankton live feed
organisms (Fu et al., 2021); (iii) water conditioners: microalgae
are added to create “green water” which conditions water
quality, reduces bacterial loads, increases visual contrast, and prey
detection (Basford et al., 2021). Based on a variety of microalgal
characteristics (Table 1) several aspects should be considered
in applications: (i) cell size: that should be compatible to the
ingestion capacities of the larvae; (ii) cell structure: property of
cell walls or skeletons (e.g., cellulose, SiO2, or CaCO3) could
affect the efficiency of ingestion and digestion; (iii) nutritional
profile: content (actual amount) and composition (percentage)
of various bioactive nutrients should be taken into account
according to the nutritional requirements of their consumers
(Borowitzka, 2013; Pan et al., 2018; Dayras et al., 2021). In
general, the production of marine microalgal Chlorophytes (e.g.,
Nannochloropsis sp. and Tetraselmis sp.) can easily be sustained
at high cell concentration and wide environmental conditions.
Nevertheless, the thick cellulose cell wall and nutritional
deficiency [i.e., low docosahexaenoic acid (DHA), 22: 6n-3, DHA
or eicosapentaenoic acid (EPA), 20: 5n-3, EPA] hinder their
applicability as live feed for some phytoplankton feeders (Pan
et al., 2014). On the contrary, haptophyte and cryptophyte species
(e.g., Isochrysis sp., Tisochrysis sp., and Rhodomonas sp.) provide
superior nutritional values and higher digestibility due to their
balanced polyunsaturated fatty acid (PUFA) profiles and soft cell
structures (Latsos et al., 2020; Mai et al., 2021). Unfortunately,
those microalgal species are relatively fragile and sensitive toward
environmental stressors (e.g., temperature, salinity, and pH
variations), and require more time and experienced labor to
achieve successful productions. Recent studies focused on how
to technically enhance their cell densities by manipulating the
culture environments at automated regulations. In the past
decade, photobioreactors (PBR) have been developed to produce
microalgal biomass for biodiesel production (Peter et al., 2022).
Currently many programs of biomass production are used to

extract bioactive compounds with an increasing use of diverse
systems such as mesh ultra-thin layer, tubular glass, plastic bag,
and flat-plate PBRs (Sandmann et al., 2021; Tayebati et al., 2021;
Wurm and Sandmann, 2021). Although the PBR might increase
production cost, these well programmed systems could realize
extremely high cell density for aquaculture purposes (Vu et al.,
2019; Tibbetts et al., 2020; Leal et al., 2021). Biotechnology has
opened new avenues for microalgal applications, where strain
selection including non-genetic as well as genetic modifications
facilitate beneficial bioactive compounds (e.g., anti-pathogenic,
anti-oxidant, etc.) for farmed aquatic larvae (Kiataramgul et al.,
2020). Yet the biosecurity of transgenic microalgae should be
carefully evaluated before their large-scale utilization.

CILIATED PROTISTS

Ciliates are a group of single-celled protist, which commonly
exist in marine environments worldwide. Some ciliate species
are pathogenic for fish, because they experience partially or
completely their life cycle in or on the host (Jahangiri et al., 2021).
Another group of ciliates appear to be planktonic and they have a
potential as live feed in marine hatcheries (Wan-Mohtar et al.,
2021). Culture techniques for Euplotes sp. and Fabre sp. have
been developed in recent studies (Table 1). Ciliates could rapidly
increase their populations by fission when fed on baker’s yeast,
fermented fish meal, and photosynthetic bacteria (de Freitas
Côrtes et al., 2013; Balamuralir, 2020; Teiba et al., 2020). The
production of these fast-growing protists does not necessarily
rely on a microalgal diet, which greatly enhance the feasibility
and convenience for culture maintenance. Most importantly,
ciliates are known for their tiny cell size (20–60 µm), which
is particularly favorable for small-mouthed larvae (Hill et al.,
2020). Indeed, ciliate-based diets have been acknowledged to
successfully sustain larvae rearing of several marine ornamental
or edible fish species (Nagano et al., 2000; Rhodes and Phelps,
2008; Madhu and Madhu, 2014; Leu et al., 2015). On the other
hand, the use of bacteriovorous ciliates for pathogen removal has
recently emerged. Lin et al. (2020) noted the remarkable increase
of survival rate (approx. 60%) in pathogen challenge trials of
grouper larvae when the water containing rich Vibrio campbellii
was prefiltered by the ciliate Strombidium sp.

ROTIFERS

Rotifers are a group of multicellular microorganisms making up
a phylum Rotifera. Since the 1970s, species and strains of the
genus Brachionus have been used as live feed for the first feeding
of marine larvae during 3–10 days post hatching (dph) (Lubzens
et al., 2001). Although the taxonomy of Brachionus plicatilis and
Brachionus rotundiformis complex remains inconclusive, they are
normally referred as SS, S, and L type rotifer based on their size.
Rotifers are highly demanded in the current larviculture industry
due to the following reasons: (1) reasonable size spectrum (100–
250 µm) and slow cruising swimming pattern for first feeding
of commercially important fish species (e.g., sea bream and sea
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TABLE 1 | Characteristics of different live feed organisms used in marine larviculture.

Size range as
live feed

General culture
conditions

Common nutrient/diet Applications as live feeds Key nutritional advantages
(% total FA or AA)

References

Isochrysis sp. 3–6 µm 15–30◦C, SNS 1–9% EPA; 8.1–12.5% DHA Pan et al., 2018; Balakrishnan and
Shanmugam, 2021; Shekarabi

et al., 2021

Tisochrysis sp. 3–7.5 µm 18–30◦C, SNS 0.6–0.8% EPA; 10–11% DHA Tato and Beiras, 2019; Dayras
et al., 2021; Mai et al., 2021

Microalgae Walne’s, f/2 medium, agricultural
fertilizers

Diet for copepod, rotifer, larvae
of bivalves, echinoderms, and

phytoplanktivorous fish
Pavlova sp. 4–6 µm 23–20◦C, SNS 17.8–33.9% EPA; 3.6–10.2% DHA Rehberg-Haas et al., 2015; Yang

et al., 2020; Dayras et al., 2021;
Hassan et al., 2022

Nannochloropsis sp. 2–4 µm 26–30◦C, SNS 26.2–35.2% EPA; 0–0.52% DHA Pan et al., 2018; Yang et al., 2020

Tetraselmis sp. 13–15 µm 26–30◦C, SNS 4.2–5.2% EPA; 23.6–27.9% ALA Pan et al., 2018; Lee et al., 2021

Rhodomonas sp. 7–14 µm 15–25◦C, SNS 8–15.8% EPA; 6–8.8% DHA Latsos et al., 2020; Oostlander
et al., 2020; Dayras et al., 2021

Brachionus sp. 90–320 µm 25◦C, 15–35 ppt Snell et al., 2019

Rotifer

Microalgae (fresh cells, lipolyzed
powder or concentrated paste)

First-feeding (2–10 dph) of larval
fish and crustacean

Nutritional profile could be
manipulated by enrichment

Colurella sp. 48–99 µm 22–28◦C, 15–34 ppt Chigbu and Suchar, 2006; Madhu
et al., 2016

Proales sp. 82.7 ± 10.9 µm 25◦C, 2–25 ppt Wullur et al., 2011; Hagiwara et al.,
2014

Ciliated Protist

Euplotes sp. 60–110 µm 25–32◦C, 20–30 ppt Baker yeast, fermented fish diet, and
microalgae

First-feeding (2–10 dph) of
small-mouthed larval fish

Nutritional profile could be
manipulated by enrichment

Tarangkoon et al., 2018; da
Annunciação et al., 2020

Metacylis sp. 37–50 µm 30◦C, 33 ppt Lee and Choi, 2016

Artemia

Artemia sp. Newly-hatched:
400–500 µm;

Enriched:
500–700 µm

28◦C, 25–33 ppt No feeding: nauplii used after hatch
or enrichment (fish oil, fish soluble

emulsions)

Fish or crustacean larvae at
second-stage feeding (>10 dph)

Nutritional profile could be
manipulated by enrichment

Figueiredo et al., 2009

Pseudodiaptomus
annandalei/
P. inopinus

150–1,100 µm/
200–800 µm

25–30◦C,
15–20 ppt/20◦C, 17 ppt

Live microalgae cell (Isochrysis,
Rhodomonas/Phaeodactylum,

Pavlova, Tisochrysis, and Chlorella)

2.9–12.8% EPA, 12.6–57% DHA/
0.6–24.4% EPA, 1.3–12.7% DHA

Golez et al., 2004; Rayner et al.,
2015; Matsui et al., 2021; Nielsen

et al., 2021

Acartia bilobata/
A. tonsa

100–1,100 µm/
100–1,200 µm

25–30◦C, 15–20 ppt/
17–23◦C, 27–34 ppt

Live microalgae cell
(Isochrysis/Rhodomonas)

ND/ 16.5% EPA, 7.9% EPA Drillet et al., 2008; Pan et al., 2014;
Chi et al., 2018; Torres et al., 2022

Apocyclops royi 100–1,000 µm 25–30◦C, 15–20 ppt Live microalgae (Isochrysis,
Rhodomonas, and Dunaliella), baker

yeast

1.8–13.4% EPA; 4–35.3% DHA Chang and Lei, 1993; Pan et al.,
2018; Nielsen et al., 2021

Copepod Several developmental stages
(size range: 60–1,200 µm) for
larval fish and crustaceans at

different feeding stages

Parvocalanus
crassirostris

60–400 µm 21–27◦C, 20–36 ppt Live microalgae (Tisochrysis,
Isochrysis, Rhodomonas,

Tetraselmis, and Heterocapsa)

2.8–5.4% EPA; 6.1–22.3% DHA McKinnon et al., 2003; Alajmi,
2015; Kline and Laidley, 2015;

Jackson and Lenz, 2016

Paracyclopina nana 70–600 µm 18◦C, 15 ppt Live microalgae (Tisochrysis,
Rhodomonas, and Pavlova)

2.3–5.5% EPA; 8.9–13.3% DHA Lee et al., 2006; Dayras et al.,
2021

Bestiolina similis/
B. amoyensis

70–560 µm/
<100–<1,000 µm

26–28◦C, 29–31 ppt/
24–26◦C, 28 ppt

Live microalgae (Isochrysis, Pavlova,
Rhodomonas, and

Tetraselmis/Isochrysis)

0.6% EPA; 2.5% DHA/ ND McKinnon et al., 2003; Lian et al.,
2018; Camus et al., 2021

Other live feeds

Moon jellyfish
Aurelia aurita

5 ± 1 cm 22◦C, NS 9.88–17.5% EPA; 1.3–1.8% DHA,
0.8–14.5% glycine

Liu et al., 2015; Wakabayashi et al.,
2016bArtemia nauplii/wild-captured

zooplankton
Lobster phyllosoma larvae,

Juveniles of silver pomfret, and
threadsail filefish

Flame jellyfish
Rhopilema esculentum

2 ± 0.5 cm 22◦C, NS 7.8% EPA; 1.36% glycine Liu et al., 2015

Fungal-like protists
Schizochytrium sp.

9–14 µm 30◦C, FW Glucose solution Diet or enrichment products for
copepod, rotifer, and Artemia

40–54% DHA Ramos-Vega et al., 2018; Guo
et al., 2020

Oyster fertilized egg or
trochophore

50-70 µm 27.5-29◦C, 35 ppt No feeding: trochophore used after
fertilization

First-feeding (2–10 dph) of
small-mouthed larval fish

2.2–5.4% EPA; 2–3.3% DHA Hur et al., 2008; Basford et al.,
2019

FA, fatty acid; AA, amino acid; SNS, sterilized natural seawater; NS, natural seawater; FW, fresh water; EPA, eicosapentaenoic acid (20: 5n3); DHA, docosahexaenoic acid (22: 6n3); ALA, α-Linolenic acid; dph,
days post hatching; ND, no data.
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bass) (Conceição et al., 2010); (2) parthenogenetic reproduction
facilitates high duplication rates (Fu et al., 2021); (3) capacity of
tolerating high population densities and environmental variation
(Suantika et al., 2003); (4) vector of nutrients or medicine
delivery for fish larvae (Eryalcin, 2018; Fu et al., 2021; Safiin
et al., 2021). In common batch culture systems, the density of
Brachionus rotifer peaks during 4–7 day-post-inoculation, then
the partial harvest and water exchange are carried out until
subsequent inoculation (Sales et al., 2019). A semi-continuous
recirculating aquaculture systems (RAS) has been developed
to sustain superintensive rotifer cultures (>5,000 ind./mL) for
periodic harvest (Suantika et al., 2000; Suantika et al., 2003). The
maintenance of superintensive culture, however, increase the cost
of rotifer production due to the equipment requirements of a
recirculating aquaculture system (Suantika et al., 2003). Besides
environmental control, antioxidants could be fed to rotifers to
further improve their stress resistance in high density cultures
with deteriorating water quality (Gao et al., 2021). The nutritional
enrichment of rotifers is necessary due to the lack of many
essential fatty acids for fish larvae at the first feeding stage
(Ferreira et al., 2018; Ghaderpour and Estevez, 2020). Several
enrichment products and protocols have been developed and
evaluated to enhance larval growth and survival by improving
ω3 highly unsaturated fatty acid (HUFA) content, and a high
DHA/EPA ratio in rotifers (Abu-Rezq et al., 2002). Recently,
cultures of very tiny rotifer species (<100 µm), such as Proales
similis and Colurella adriatica, have been established (Table 1)
and used particularly for the first feeding of small-mouthed larvae
of marine ornamental species (Hagiwara et al., 2014; Madhu et al.,
2016; Rebolledo et al., 2021).

ARTEMIA

Artemia is a genus of aquatic crustaceans in the class
Branchiopoda, which dominates in hypersaline habitats (e.g.,
inland salt lakes). During dry seasons, Artemia starts to produce
floating resting eggs (aka cysts) due to extreme hypersaline
stress. The cysts are collected and processed (purification and
dehydration), then canned in dark and cold conditions for
further storage and distribution. Although Artemia are not
naturally accessible food items for most marine or brackish
larvae, they are extensively used in larviculture industry due to
the following reasons: (i) durable cysts and manipulable hatching:
obtain nauplii at desirable timepoints for larval feeding; (ii)
size suitability: first naupliar stage of various Artemia species is
ranging 400–500 µm offering preferable size for second-staged
larval feeding (7–14 dph); (iii) vector of nutrients or medicine
delivery systems (enrichment needed before use) (Eryalcin,
2018). Artemia franciscana (Table 1) is one of the most utilized
species due to its smaller body size and first-ranked annual
production (1,000–2,000 tons) from the Great Salt Lake of Utah,
United States. Whereas the production from hypersaline lakes in
West Siberia, Russia and Kazakhstan, and salt works at Bohai
Bay, China are ranked second or third cyst production areas
of Artemia parthenogenetica and A. franciscana, respectively
(Litvinenko et al., 2015). Other production areas, such as Brazil

(Camara, 2020), Vietnam (Le et al., 2019), Iran (Manaffar et al.,
2020), and Tunisia (Sellami et al., 2020), also contribute certain
amounts of cyst production. Due to the high market demand,
Artemia Reference Centers have been established at Ghent
University, Belgium in 1978, and at Tianjin University of Science
and Technology, China in 2018 to promote applications of
Artemia globally. Climate change and pollution have significant
impacts on the harvest yield of cysts and consequently the
price (Guong and Hoa, 2012; Santos et al., 2018; Van Stappen
et al., 2020). Proper managements of culture conditions in salt
work production (especially in Bohai Bay, China and Mekong
Delta, Vietnam) should be addressed to stabilize both cyst
and salt production, which might encourage a better socio-
economic perspective for Artemia farming and their global
supply (Manaffar et al., 2020).

COPEPODS

Planktonic copepods are naturally accessible and preferable live
feeds for fish or invertebrate larvae in the marine environment
and are used as live feeds in aquaculture hatcheries (Drillet
et al., 2011; Santhanam et al., 2019; Fernández-Ojeda et al.,
2021). Species from the orders Calanoida, Cyclopoida, and
Harpacticoida are commonly selected and cultivated for larval
feedings. Copepods provide wide windows of prey size (60–
1,500 µm) due to their species diversity and 12 developmental
stages (six nauplii, five copepodites, and adult). Their jerky
swimming pattern attracts a higher predatory response of
fish larvae (Burbano et al., 2020). Remarkably, the nutritional
advantages (great contents of ω3 HUFA) make these zooplankters
favorable for larviculture even without an additional enrichment
process (Matsui et al., 2021). In Taiwan and Vietnam, copepods
are commonly harvested from outdoor earthen ponds after
fertilization (Su et al., 2005; Blanda et al., 2015; GrØnning
et al., 2019). Outdoor combined-species cultures might be feasible
and cost effective, but the concerns of unstable production,
species composition, and risks in pathogenic transmission have
hindered the applications of copepods (Chang et al., 2011; Blanda
et al., 2017). On the other hand, mono-species indoor copepod
cultures of various species were established at either laboratory
or intensive scales (Table 1), which facilitate copepod biomass
of economic feasibility and biosecurity for larviculture industry
(Abate et al., 2016; Santhosh et al., 2018). Particularly, the
success in “micro-sized” copepod production (i.e., adult < 1 mm
and nauplii < 80 µm, such as in Parvocalanus sp., Bestiolina
sp., and Paracyclopina sp.) have opened bright avenues for
the larviculture of marine ornamental fish (Kline and Laidley,
2015; Callan et al., 2018; Zeng et al., 2018; Dayras et al., 2021;
Wang L. et al., 2021), which are considered as challenging
but necessary for trade and conservation demands. Instead of
maintaining the culture, resting eggs and cryopreservation are
alternative approaches to obtain alive copepods (Kaviyarasan and
Santhanam, 2019; Pan et al., 2020; Wilson et al., 2021). Although
the cold stored production of a specific copepod species (Acartia
tonsa) seems to be applicable and commercialized, induction and
storage protocol of various dormant copepod species and stages
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should be further optimized to universally apply their novelties
by the industry.

OTHER LIVE FEEDS

Heterotrophic Schizochytrium sp., Halophytophthora sp., and
Salispina sp. (Table 1) are a group of unicell or filamentous
microorganisms containing great amounts of PUFAs (Estudillo-
del Castillo et al., 2009; Su et al., 2021). The spray-dried
powder of these microorganisms implicates great potential as
alternative or supplementary diets to microalgae for the feeding
and enrichment of zooplanktonic live feeds (Eryalçın, 2019).
Besides holoplankton, some sessile marine organisms could be
used as live feeds at their early developmental stages of planktonic
life forms. Fertilized eggs and trochophore of bivalves, such as
oyster (Crassostrea sp.) and blue mussel (Mytilus sp.), could be
obtained by strip spawning (Scarpa, 2002; Turan and Kling,
2018). They are of a suitable size (40–60 µm) and great ω3
HUFAs contents, thus particularly supportive for the first-feeding
of small-mouthed fish such as grouper and other reef species
(Liao et al., 2001; Basford et al., 2019). Planktonic barnacle nauplii
(100–150 µm) are also considered as potential live feeds (López
et al., 2010; Basford et al., 2019). Cladocera species (e.g., Daphnia
sp., Moina sp., and Ceriodaphnia sp.) could be cultivated with
low cost using aquaculture biofloc technology and fermented
animal wastes (da Silva Campos et al., 2020; Rasdi et al., 2020;
Turcihan et al., 2022), and serve as live feeds for many freshwater
fish larvae such as tilapia (Herawati et al., 2015), catfish (Vu
and Huynh, 2020), and ornamentals like Betta fish (Kwon et al.,
2013) and freshwater angelfish (Farhadian et al., 2014). Notably,
studies have also indicated the feasibility of using water flea as
live feed in marine larviculture of fish (Kamrunnahar et al., 2019)
and shrimp (Mona et al., 2017). Jellyfish are used as live feed
for the phyllosoma larvae of lobster (Palinuridae and Scyllaridae)
(Goldstein and Nelson, 2011; Wakabayashi et al., 2012, 2016a),
Threadsail filefish (Miyajima et al., 2011), and silver pomfret
juveniles (Wang Q. et al., 2021).

DISCUSSION AND FUTURE
PERSPECTIVES

Despite their wide applications in marine larviculture, the widely
used live feeds (Brachionus rotifers and Artemia) show several

limitations. The diversification and establishment of new live
feed culture (especially micro-sized copepod and rotifer species)
is promoting research programs and industrial applications.
Production of dormant live feed (e.g., copepod resting eggs) is
an ongoing program, and this is expected to pave the road for
the marine larviculture industry. Future programs should target
both indoor and outdoor aquaculture systems using appropriate
RAS techniques with artificial intelligence (AI) technology to
optimize both prey and larval culture performances. Developing
technology and management of both virus free and bacterial free
live feed for larviculture. Transferring scientific technology of live
feed from academic achievements to stakeholders such as the
aquaculture industry and farmers. Both scientists and farmers
should work closely together to ensure the upscaling of pilot
studies and maintain a required feedback cycle between industrial
needs and their declination as scientific research challenges.
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