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Climate change directly influences species composition and distribution of macroalgae
on a global scale. Meanwhile, eutrophication and heavy metal pollution continue to be
major concerns in coastal areas. The objective of this study was to explore interactive
effects of these complex environmental conditions (high temperature, eutrophication
and heavy metal pollution) in the bloom forming green alga, Ulva prolifera. This study
evaluated the physiological characteristics of two strains of U. prolifera (Korean strain
and Chinese strain) at two temperature levels (20 and 25◦C), two nutrient concentrations
(low nutrient: 50 µM of N and 5 µM of P; high nutrient: 250 µM of N and 25 µM of P)
and three copper concentrations [Control (0.03 µM); 0.1 µM; 1 µM]. Under the 20◦C
and low nutrient condition, the Chinese strain grew significantly slower at 1µM copper
group compared to copper control group. Whereas there was no significant change in
the growth rate of the Korean strain. High nutrient significantly increased the growth
rate, photosynthetic and respiration rates, soluble protein and tissue N in both strains
at all copper groups under 20◦C compared to copper groups under 20◦C and low
nutrient condition. Both strains grew significantly slower at 1 µM copper group compare
to copper control group under high nutrient and 20◦C condition. 25◦C significantly
reduced the growth rate of both strains at each nutrient condition. Under 25◦C and low
nutrient condition, 1 µM copper had no effects on growth rate and all photosynthetic
parameters of both strains. Meanwhile, under 25◦C and high nutrient conditions, 1 µM
copper significantly inhibited growth and photosynthetic rates and increased soluble
protein content in the Chinese strain compared to copper control treatment. These
results suggest that the Korean strain had higher tolerance to the copper stress than
the Chinese strain. Higher nutrient levels enhanced the temperature tolerance and the
copper stress in U. prolifera. Increased temperature reduced the negative effects caused
by copper stress in U. prolifera.
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INTRODUCTION

Recent years, increased anthropogenic activities and climate
change have resulted in the formation of massive blooms of
macroalgae, which have caused huge environmental problems in
coastal areas (Smetacek and Zingone, 2013; Wei et al., 2018; Wu
H. L. et al., 2018). Green tides have received attention since 1970s
when green algae grew excessively and became a disaster along
coastal areas worldwide (Briand, 1987; Sfriso et al., 1987; Fletcher,
1990; Song et al., 2019; Sun et al., 2021). Since 2007, the world’s
largest green tides (Cui et al., 2018; Zhang J. H. et al., 2019), have
been observed every summer in the Yellow Sea with distribution
areas ranging from 13,000 to 30,000 km2 (Liu et al., 2009; Huo
et al., 2016, 2021; Zhang J. H. et al., 2019). Green tides have also
occurred in the southwest sea of Korea during the same period
(Kang et al., 2014). The amount of annual biomass produced from
green tides in Jeju Island, Korea was about 10,000 tons (Cho et al.,
2019). This is much smaller than those in the Yellow Sea, China,
where the biomass was as high as about 3.5 × 106 tons (Zhang
J. H. et al., 2019). The successive occurrence of green tides in these
regions have posed significant threats to the health of marine
ecosystems and lead to serious economic losses in aquaculture
and coastal managements (Zhao et al., 2018, 2021). For example,
in 2008, massive U. prolifera floated onto the coasts of Qingdao
right before the Olympic games. The estimated cost of removing
the green tides was more than US$100 million (Wang et al., 2009;
Ye et al., 2011; Zhang et al., 2014). The massive outbreak of
Ulva spp. has also changed marine community structures and
functions due to shading, biomass decomposition and anoxia
(Nelson et al., 2008).

The growth of macroalgae is strongly controlled by
temperature (Breeman, 1990; Lüning, 1991; Sunday et al.,
2012; Wu H. L. et al., 2018; Zhang Y. Y. et al., 2019). Seawater
temperatures are expected to rise 3–7◦C by the end of century
(Stocker et al., 2014). Generally, the increase in temperature is
expected to enhance growth and photosynthetic activities of
macroalgae within a certain range below thermal tolerance limits
(Pereira et al., 2006; Gao et al., 2016; Wu H. L. et al., 2018).
However, macroalgae from different locations may be adapted
to different temperature ranges (Lüning, 1991). Therefore, the
responses to global warming may be species specific and even
population specific (Poloczanska et al., 2013; Ji et al., 2016;
Wiens, 2016).

The estuarine and coastal areas are the regions with active
land-ocean interactions. In recent decades, with the development
of the coastal economies and the increase in populations,
marine pollutants, such as inorganic nutrients have flowed into
these areas causing coastal eutrophication and even harmful
algal blooms (Smith et al., 1999; Li et al., 2013; Wang et al.,
2018). Heavy metals and copper (Cu) in particular enter marine
ecosystems by air, domestic and industrial wastewater and natural
run-off (Sharp et al., 1988; Moenne et al., 2016). Copper is a
required trace element for marine macroalgae but can become
toxic if it occurs at a high concentration (Gao et al., 2017; Xu
et al., 2021). The photosynthetic apparatus is the primary target of
copper, resulting in reduced algal growth (Rocchetta and Küpper,
2009; Kumar et al., 2014; Moenne et al., 2016).

With the increase of marine pollution, high concentrations
of various pollutants, such as nutrients and heavy metals may
appear simultaneously in certain coastal areas. While global
warming is a constant environmental stress. Thus to better
manage and control the green tides in the Yellow Sea, it is critical
to understand interactive effects of the environmental stressors
(c.f. nutrients and heavy metals) and the global warming on
macroalgae, especially the green tide forming Ulva prolifera.

MATERIALS AND METHODS

Sample Collection and Acclimation
The Korean strain of Ulva prolifera was collected from
Anmogseom, Jawoldo, Korea in June, 2018. The Chinese strain of
U. prolifera was originally collected from a Neopyropia yezoensis
farm at Rudong, Jiangsu Province, China in May, 2011. This site
is known to be a source of the green tides bloom in the Yellow
Sea (Zhang et al., 2013). Both strains were propagated at Marine
Ecology and Green Aquaculture Laboratory, Incheon National
University, Korea. To induce spore release, both strains were pre-
cultivated in artificial seawater with von Stosch enriched (VSE)
medium (Ott, 1965) at 30 psu of salinity, 150± 10 µmol photons
m−2 s−1 of photosynthetically active radiation (PAR) provided
by light-emitting diode (LED) lamps, and the photoperiod of
12:12 h light: dark. The temperature was maintained at 20◦C.
The medium was renewed every 5 days during the period of
pre-cultivation. After spores were released and seedlings grew
approximately 2–3 cm long, the Ulva samples were placed in the
experimental conditions.

Experimental Setup
Approximately 0.2 g fresh weight of Ulva prolifera were cultivated
in a 250 mL conical flask containing 200 mL of artificial
seawater enriched with VSE. This stocking density is known
to be optimal for the growth of this species (Sun et al., 2021).
Ulva prolifera was exposed to two levels of temperature (20◦C;
25◦C), two levels of nutrient (low nutrient: 50 µM nitrate and
5 µM phosphate; high nutrient: 250 µM nitrate and 25 µM
phosphate) and three levels of copper (Control; 0.1 µM; 1 µM).
The temperature, nutrients and copper levels were determined
according to the environmental data in different regions and
seasons that U. prolifera blooms occurred (Wu et al., 2015; Gao
et al., 2017). Ulva prolifera were cultivated in von Stosch-enriched
(VSE) medium (Ott, 1965), with adjustment of nitrogen and
phosphorus to the experimental levels. The seawater without
the addition of CuSO4 (Sigma) was considered as the control.
The background concentration of copper was 0.03 µM in the
artificial seawater, which was measured by Inductively Coupled
Plasma Mass Spectrometer (Thermo Scientific iCAP Q ICP-MS;
US). All other conditions were the same as mentioned above.
Each treatment had three replicates, and the culture medium was
replaced every 2 days during the cultivation period of 2 weeks.

Growth Rate
The relative growth rate of Ulva prolifera was determined by
measuring thallus weight. Fresh weight (FW) was measured every
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2 days after removing surface water from thalli with paper towels
when the medium was changed. Relative growth rate (RGR) was
calculated according to the formula as follows:

RGR(%day−1) = (lnWt2–lnWt1)/t× 100,
Where Wt2 and Wt1 are the fresh weight at day t2 and t1,

respectively. t represents the cultivation period.

Photosynthesis and Respiration
Net photosynthetic and dark respiration rates of Ulva prolifera
were measured using optical DO sensors at the end of the
experiment (ProODO-BOD, YSI, United States). Approximately
0.2 g FW of U. prolifera from each treatment were placed
in a 100 mL BOD bottle containing cultivation medium. The
temperature was maintained at the cultivation temperature,
20 or 25◦C, respectively. The dissolved oxygen (DO) sensors
were inserted into the bottles, and no bubbles were trapped.
Water in the bottle was stirred continuously during the period
of measurement. DO contents (mg L−1) were recorded every
minute during dark and light (150 µmol photons m−2 s−1)
conditions. The net photosynthetic and dark respiration rates
were determined as mg O2 L−1 FW−1 h−1.

Pigment Contents
Chlorophyll a (chl a), b (chl b) and carotenoids from Ulva
prolifera were extracted and estimated based on the method
reported by Wellburn (1994). Briefly, approximately 0.02 g FW
of U. prolifera thalli was placed in 5 mL of methanol (100%)
solution and kept at 4◦C for 24 h at dark (Gao and Xu, 2008).
The absorbance was measured using a spectrophotometer (Orion
AquaMate 8000, Thermo fisher Scientific Solutions LLC, Korea)
at 470, 653 and 666 nm, respectively. Pigment contents were
expressed as mg g−1 FW.

Soluble Protein
The soluble protein contents of the Ulva prolifera thalli were
measured following Bradford protein assay (Bradford, 1976).
Briefly, approximately 0.05 g of FW algal thalli from each
treatment was ground on ice with 5 mL extraction buffer
(0.1 mol L−1, potassium phosphate buffer, pH 7.0) containing
0.25% Triton X-100 and 1% polyvinylpyrrolidone, and then
centrifuged for 20 min at 12,000 g. The supernatant was mixed
with Bradford’s reagent and allowed for 5 min prior to measuring
absorbance using a spectrophotometer (Orion AquaMate 8000,
Thermo Fisher Scientific Solutions LLC, Korea) at 595 nm.
Soluble protein content was calculated with bovine serum
albumin as a standard and expressed as mg g−1FW.

Tissue Carbon and Nitrogen Contents
Approximately 0.05 g of FW algal samples were collected from
each treatment at the end of the experiment to measure tissue
carbon and nitrogen contents. Ulva prolifera samples were
oven-dried at 60◦C until constant weight, and then ground
to powder by MM400 Ball Mill (Retsch, Germany). About
2–3 mg dry weight (DW) sample was made into capsule,
and tissue carbon and nitrogen contents were analyzed using
a CHN analyzer (Thermo ScientificTM Flash 2000 CHNS/O
Analyzers, United States).

Data Analysis
The results were expressed as the mean of triplicate ± standard
deviation. Data were processed using Origin 9.0 and SPSS 25.0
software. The data conformed to a normal distribution from each
treatment (Shapiro–Wilk, P > 0.05) and the variances could be
considered equal (Levene’s test, P > 0.05). Three-way multivariate
ANOVAs (M-ANOVAs) were conducted to assess the effects of
temperature, nutrient and copper levels on relative growth rate,
net photosynthetic and dark respiration rates, pigment contents,
soluble protein contents, tissue carbon and nitrogen, and C:N.
While three-way analysis of variance (Three-way ANOVA) was
used to analyze the interactive effects of temperature, nutrient
and copper levels, Tukey’s honest significant difference (Tukey
test) was used for post hoc investigation. In addition, the Pearson
correction coefficients were conducted between all variables
to determine statistical relationship between physiological and
biochemical parameters. A confidence interval of 95% was set
for all analyses.

RESULTS

Growth Rates
Relative growth rates (RGR) of both strains of Ulva prolifera
were significantly affected by temperature (P < 0.001), nutrients
(P < 0.001), copper (P < 0.001), and the interactions between
temperature and nutrients (P < 0.001), nutrients and copper
(P < 0.05), and temperature and copper (P < 0.05). RGR of the
Chinese strain was also significantly affected by the interactive
effects of temperature, nutrients and copper (P < 0.001)
(Supplementary Table 1). In terms of copper, 0.1 µM copper
has no significant effect on RGR in both strains at each nutrient
and temperature conditions (P > 0.05) (Figures 1A,B). However,
the effects varied at the 1 µM copper condition. Under 20◦C
and low nutrients condition, 1 µM copper only significantly
decreased RGR in the Chinese strain (P < 0.05) (Figure 1B).
High nutrients significantly enhanced RGR in both strains among
all copper conditions under 20◦C (P < 0.001). Under 20◦C and
high nutrient condition, 1 µM copper significantly decreased
RGR of both strains compared to copper control treatment
(P < 0.05) (Figures 1A,B). RGR of both strains was decreased
in the 25◦C treatment at each nutrient condition (P < 0.05),
and no differences among these three copper treatments was
observed under 25◦C and low nutrient condition (P > 0.05)
(Figures 1A,B). RGR f both strains were significantly higher at
25◦C and high nutrient condition than that under 20◦C and
low nutrient condition (P < 0.05) (Figures 1A,B). Meanwhile,
1 µM copper significantly inhibited RGR of Chinese strain
compared to control under 25◦C and high nutrient condition
(P < 0.05) (Figure 1B).

Photosynthesis and Respiration
Net photosynthetic rates (NPR) of both strains of Ulva prolifera
were significantly affected by temperature (P < 0.001), nutrients
(P < 0.001). NPR of Chinese strain was also significantly
affected by copper (P = 0.001), the interactions between
temperature and nutrient (P < 0.001), and the interactions of
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FIGURE 1 | Relative growth rate (RGR) in a Korean strain (A) and Chinese strain (B) of Ulva prolifera cultivated under various experimental conditions. The error bars
represent the standard deviation (n = 3). Low nutrient = 50 µM nitrate and 5 µM phosphate (LN); high nutrient = 250 µM nitrate and 25 µM phosphate (HN).
Different letters above the error bars represent statistical significance (P < 0.05) among different treatments.

FIGURE 2 | Net photosynthetic rate (NPR) in a Korea strain (A) and Chinese strain (C), and dark respiration rate (Rd) in a Korea strain (B) and Chinese strain (D) of
Ulva prolifera cultivated under various experimental conditions. The error bars represent the standard deviation (n = 3). Low nutrient = 50 µM nitrate and 5 µM
phosphate (LN); high nutrient = 250 µM nitrate and 25 µM phosphate (HN). Different letters above the error bars represent statistical significance (P < 0.05) among
different treatments.

temperature, nutrients and copper (P = 0.004) (Supplementary
Table 2). Under 20◦C, 1 µM copper had no effect on NPR
in both strains under each nutrient condition (P > 0.05)
and high nutrients significantly increased NPR in both strains
(P < 0.05) (Figures 2A,C). Meanwhile, compared to 20◦C and
low nutrients, NPR of both strains were not affected by high
temperature (25◦C) and copper stresses under low nutrient
(P > 0.05) (Figures 2A,C). No extra enhancing effect was
observed in the interactions between 25◦C and high nutrient
in the Korean strain (P > 0.05) (Figure 3A). The highest
NPR in the Chinese strain was observed at 25◦C and high
nutrient groups (P < 0.05) (Figure 2C). Meanwhile, under

25◦C and high nutrient condition, net photosynthetic rate
decreased by 0.1 and 1 µM copper in Chinese strain (P < 0.05;
Figure 2C).

Dark respiration rates (Rd) of both strains of Ulva prolifera
were significantly affected by (P < 0.001), Rd of the Chinese
strain was also significantly affected by temperature (P < 0.05)
and the interactions between temperature and copper (P < 0.05)
(Supplementary Table 2). In the Korean strain, high nutrients
increased Rd at each temperature (P < 0.05) while temperature
had no effect on Rd (P > 0.05) (Figure 2B). However, compared
to low nutrient and 20◦C, Rd of the Chinese strain was increased
by high nutrient or 25◦C conditions alone. But no extra
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FIGURE 3 | Pigments contents in a Korean strain [Chlorophyll a (A); Chlorophyll b (B); Carotenoids (C)] and a Chinese strain [Chlorophyll a (D); Chlorophyll b (E);
Carotenoids (F)] and of Ulva prolifera cultivated under various experimental conditions. The error bars represent the standard deviation (n = 3). Low nutrient = 50 µM
nitrate and 5 µM phosphate (LN); high nutrient = 250 µM nitrate and 25 µM phosphate (HN). Different letters above the error bars represent statistical significance
(P < 0.05) among different treatments.

FIGURE 4 | Soluble protein contents in a Korean strain (A) and a Chinese strain (B) of Ulva prolifera cultivated under various experimental conditions. The error bars
represent the standard deviation (n = 3). Low nutrient = 50 µM nitrate and 5 µM phosphate (LN); high nutrient = 250 µM nitrate and 25 µM phosphate (HN).
Different letters above the error bars represent statistical significance (P < 0.05) among different treatments.

enhancing effect was observed in the interactions between 25◦C
and high nutrients (P < 0.05) (Figure 2D).

Pigment Contents
Chlorophyll a (chl a) content was significantly affected by
temperature (P < 0.001), nutrients (P < 0.001), copper

(P < 0.05), the interactions between nutrients and temperature
(P < 0.001), and interactions between nutrients and copper
(P < 0.05) in both strains (Supplementary Table 3). Copper
treatments had no significant effect on chl a contents of
both strains compared to the copper control at each nutrient
and temperature conditions (P > 0.05) (Figures 3A,D). High
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FIGURE 5 | Tissue contents in a Korean strain [Tissue Carbon (A); Tissue Nitrogen (B); C:N (C)] Chinese strain [Tissue Carbon (D); Tissue Nitrogen (E); C:N (F)] and
of Ulva prolifera cultivated under various experimental conditions. The error bars represent the standard deviation (n = 3). Low nutrient = 50 µM nitrate and 5 µM
phosphate (LN); high nutrient = 250 µM nitrate and 25 µM phosphate (HN). Different letters above the error bars represent statistical significance (P < 0.05) among
different treatments.

nutrients and 25◦C alone induced higher chl a contents in
both strains (Figures 3A,D). The highest chl a content in both
strains were found at 25◦C and high nutrient conditions, which
were significantly higher than those at other three nutrient and
temperature conditions (P < 0.05) (Figures 3A,D). Chlorophyll
b (chl b) and carotenoids contents were significantly affected
by temperature (P < 0.001), nutrients (P < 0.001), and the
interactions between temperature and nutrient (P < 0.001) in
both strains, and carotenoids were affected by copper (P < 0.05)
(Supplementary Table 3). Same to chl a, the highest chl b and
carotenoids contents in both strains were found at 25◦C and
high nutrient conditions (Figures 3B,C,E). Besides, copper only
increased carotenoids content of Chinese strains at the copper
concentration of 1 µM under 20◦C and high nutrient conditions
(P < 0.01) (Figure 3F).

Soluble Protein
Soluble protein contents were significantly affected by nutrients
(P < 0.001) in both strains (Supplementary Table 4). Soluble
protein content of Chinese strain was also significantly affected

by temperature (P < 0.001), the interactions between nutrients
and copper (P = 0.039), temperature and copper (P = 0.028),
and the interactions of temperature, nutrients and copper
(P = 0.014) (Supplementary Table 4). In the Korean strain, high
nutrient increased soluble protein content at each temperature
(P < 0.05), while temperature and copper had no effect on it
(P > 0.05) (Figure 4A). Similar to the Korean strain, under
20◦C condition, high nutrient increased soluble protein content
of the Chinese strain (P < 0.05), and copper had no effects
on soluble protein content under each nutrient conditions
(P > 0.05) (Figure 4B). High temperature increased soluble
protein content at all copper conditions under low nutrient
(P < 0.05), but no difference was found among these three
copper treatments (P > 0.05) (Figure 4B). Soluble protein
content of the Chinese strain was enhanced by 25◦C and
high nutrient condition under both 0.1 and 1 µM copper
conditions (P < 0.05). Meanwhile, soluble protein content
was significantly higher at 1 µM copper group compare
to copper control group under 25◦C and high nutrient
(P < 0.05) (Figure 4B).
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Tissue Carbon and Nitrogen Contents
Tissue C content of both strains showed no difference at
any one of temperature, nutrients and copper treatments
compared to 20◦C, low nutrient and copper control group
(P > 0.05) (Figures 5A,D). Tissue nitrogen (N) content was
significantly affected by temperature (P < 0.001), nutrients
(P < 0.001), and the interactions between temperature and
nutrients (P < 0.05), and nutrients and copper (P < 0.05) in
both strains (Supplementary Table 5). High nutrients or 25◦C
alone significantly increased tissue N content in both strains
at all copper conditions compared to 20◦C and low nutrient
condition (P < 0.05) (Figures 5B,E). The highest tissue N content
in both strains was observed at 25◦C and high nutrient condition
(P < 0.05) (Figures 5B,E). 1 µM copper only significantly
increased tissue N in the Chinese strain compared to control
under high nutrient and 25◦C conditions (P < 0.05) (Figure 5E).

C:N ratio was significantly affected by temperature (P < 0.001)
and nutrients in both strains (P < 0.001). C:N ratio of the
Chinese strain was also significantly affected by the interactions
between temperature and nutrients (P < 0.001), nutrients and
copper (P < 0.05), and temperature and copper (P < 0.05)
(Supplementary Table 5). Copper had no significant effects on
C:N in both strains at each temperature and nutrient conditions
(P > 0.05) (Figures 5C,F). High nutrient significantly decreased
C:N ratio in both strains at all copper conditions under 20◦C
condition (P < 0.05) (Figures 5C,F). High temperature had no
effect on C:N ratio in the Korean strain (P > 0.05) (Figure 5C).
While, high temperature significantly decreased C:N ratio of
Chinese strain at high nutrient condition (P < 0.05) (Figure 5F).

Pearson Correlation Coefficients
Pearson correlation coefficients between physiological and
biochemical parameters were varied in both strains of Ulva
prolifera (Table 1). Net photosynthetic rates, soluble protein
and tissue N contents were positively correlated with growth
(Table 1). Additionally, pigment contents (chlorophyll a and
chlorophyll b) were positively related with growth only in the
Korean strain, not in the Chinese strain. Correlation analysis
demonstrated that photosynthetic activities were positively
related with pigment levels (chlorophyll a, chlorophyll b, and
carotenoids), soluble protein, and tissue N, but negatively related
with C:N ratio in both strains (P < 0.01) (Table 1). Pigment
levels were positively related with soluble protein and tissue N,
but negatively related with C:N ratio. Soluble protein contents
were positively related with tissue N (P < 0.01), and negatively
related with C:N ratio (P < 0.01) in both strains (Table 1).

DISCUSSION

The biological role of copper is concentration dependent.
Elevated copper (Cu2+) concentrations are toxic to algal
cells and inhibit their growth (Han et al., 2008; Gao et al.,
2017). In this study, two Ulva prolifera strains had different
physiological responses to the high concentration copper stress.
Under the 20◦C and low nutrient group, the growth rate of
the Chinese strain was significantly reduced by 1 µM copper

treatment compared to copper control treatment. While there
was no significant change in the growth rate of the Korean
strain, suggesting that the Korean strain had higher tolerance
to the copper stress than the Chinese strain. The previous
study reported that the adaptive characteristics are genetically
determined and have not been obliterated by acclimatization to
seawater (Russell and Bolton, 1975). Thus, the different tolerance
of the Chinese and Korean strains should be linked with the
conditions in the original habitats. Additionally, the result of
net photosynthetic rate measurement also showed the similar
trend with growth rate, indicating that copper stress affected
the growth of U. prolifera by inhibiting photosynthesis. This
result is consistent with the observation in a previous study,
in which copper stress significantly reduced the photosynthesis
rate in other two Ulva species: U. pertusa and U. armoricana
(Han et al., 2008).

Nevertheless, high nutrients significantly increased the
photosynthetic rates in all copper treatments of two strains
compared to copper treatments under 20◦C and low nutrient
condition, as well as respiration rates, soluble protein, growth
rates and tissue N content. This result suggests that high
nutrient enhanced the tolerance to copper stress in both strains.
The enhancement of growth by high nutrients has also been
previously observed in different algal species (Luo et al., 2012;
Li et al., 2016; Wu H. et al., 2018; Lee and Kang, 2020). For
instance, high nitrogen and phosphorus concentration increased
the nutrient uptake and growth in two Ulva species: U. prolifera
and U. linza (Luo et al., 2012). However, among all groups
under 20◦C and high nutrient condition, the enhancement of
growth by 1 µM copper was the lowest in both strains. These
results suggest that 1 µM copper negatively affected growth
of U. prolifera under high nutrients. High nutrient conditions
enhance the assimilation and accumulation of heavy metal ions
(Wang and Dei, 2001). For example, high concentrations of
nitrate, ammonium, and phosphate have been shown to increase
the accumulation of trace metals (Cd, Cr, Zn and Se) in Ulva
fasciata (Lee and Wang, 2001). Furthermore, the growth rate
of the Chinese strain increased 75.7% under a high nutrient
condition compared with a low nutrient condition, while the
Korean strain increased only 44.2%, suggesting a high capacity
of nutrient assimilation in the Chinese strain. A previous study
also reported that the rapid growth ability of U. prolfiera was
due to the high nutrient uptake efficiency (Luo et al., 2012).
The high capacity of the nutrient assimilation is associated to
the efficient nutrient transport through membranes, which also
causes the influx of non-essential heavy metal ions due to the
non-selective ion transport (Clarkson and Lüttge, 1989; Lee and
Wang, 2001). These results suggest that the low tolerance to
copper stress in Chinese strain might be due to its high nutrient
assimilation capacity.

In this study, high temperature significantly reduced the
growth rate of two Ulva prolifera strains. It has been reported
in several studies that a temperature higher than 20◦C inhibits
the growth of U. prolifera (Cui et al., 2015; Wu H. L. et al.,
2018). These results suggest that the increasing temperature in
marine environment caused by global warming may reduce the
U. prolifera blooms. Meanwhile, a series of studies reported a
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TABLE 1 | Pearson correction coefficients (n = 36) between physiological and biochemical parameters between a Korean strain (A) and Chinese strain (B) of
Ulva prolifera.

Korean strain (A) RGR NPR Rd chl a chl b Carotenoids SP Tissue C Tissue N C:N

RGR 1

Photosynthetic rate (NPR) 0.799** 1

Respiration rate (Rd) 0.371* 0.739** 1

Chlorophyll a (chl a) 0.415* 0.838** 0.807** 1

Chlorophyll b (chl b) 0.439** 0.850** 0.785** 0.992** 1

Carotenoids 0.263 0.700** 0.753** 0.943** 0.903** 1

Soluble protein (SP) 0.881** 0.900** 0.679** 0.688** 0.692** 0.553** 1

Tissue C 0.285 0.328 0.225 0.358* 0.347∗ 0.305 0.404* 1

Tissue N 0.765** 0.954** 0.749** 0.857** 0.863** 0.737** 0.918** 0.435** 1

C:N −0.801*** −0.954** −0.741** −0.817** −0.818** −0.695** −0.934** −0.368* −0.990** 1

Chinese strain (B) RGR NPR Rd chl a chl b Carotenoidss SP Tissue C Tissue N C:NN

RGR 1

Photosynthetic rate (NPR) R 0.667** 1

Respiration rate (Rd) 0.205 0.739** 1

Chlorophyll a (chl a) −0.034 0.694** 0.776** 1

Chlorophyll b (chl b) −0.044 0.688** 0.775** 0.994** 1

Carotenoids −0.113 0.623** 0.738** 0.983** 0.984** 1

Soluble protein (SP) 0.448** 0.852** 0.826** 0.761** 0.745** 0.702** 1

Tissue C −0.455** −0.301 0.092 0.009 −0.012 0.026 −0.016 1

Tissue N 0.360* 0.892** 0.775** 0.870** 0.867** 0.825** 0.892** −0.054 1

C:N −0.512** 0.953** −0.787** −0.808** −0.8** −0.746** −0.931** 0.130 −0.970** 1

*indicates p < 0.05, **indicates p < 0.01.

higher temperature enhanced the sensitivity of algae to metals
and promoted the inhibition effects of metal ions (Lewis and
Horning, 1991; Wang and Wang, 2008; Zhong et al., 2021).
The increased metabolic rate caused by higher temperature may
induce more metal ions transfer across membranes, causing more
accumulation of metal ions inside of cells (Miao and Wang,
2004; Sarı and Tuzen, 2008; Zhong et al., 2021). For example,
the growth of Fucus serratus was reduced by 50% under a
high temperature (22◦C) and high copper (1 µM) conditions
(Nielsen et al., 2014), and the growth of Gelidium floridanum was
reduced by 85% with high temperature (30◦C) and high copper
concentration (3 µM) (Kreusch et al., 2018). Interestingly, in
this study, no negative effect on growth, photosynthetic rate and
other metabolic activities caused by copper stress was observed
in groups exposed to 25◦C and low nutrient condition. In
U. prolifera, high temperature stress increases the gene expression
and enzyme activities related to antioxidative responses (Yang
et al., 2019). High temperature can also increase the rate of
metabolism and regeneration of photosynthetic system (Huner
et al., 1996; Zeng and Wang, 2011; Nielsen et al., 2014). Therefore,
the possible explanation to this result is that high temperature
activated some responses of stress resistance, which reduced the
negative effects caused by copper stress.

When the nutrient concentration was elevated, the
enhancement of growth rate was also observed even under
the high temperature conditions. Among all treatment groups,
the pigment contents and photosynthetic rates were the
highest in groups under 25◦C and high nutrient conditions,
suggesting that high nutrient condition might enhance the high
temperature tolerance in U. prolifera by increasing pigments

and photosynthesis. Similar results have been observed for
U. conglobata in which the pigments and proteins synthesis
were enhanced by higher temperature (25◦C) and high nutrient
(200 µM NO3

−) (Zou and Gao, 2014). Among the three groups
under 25 ◦C and high nutrient conditions, the growth rate of
the Chinese strain at 1 µM copper condition was the lowest,
because high nutrient enhanced the negative effect of copper
stress on growth, but, photosynthetic rate was significantly
decreased in 0.1 and 1 µM copper treatment groups. The results
indicate that the interaction of high temperature and copper
stress inhibited photosynthesis of the Chinese strain under a
high nutrient treatment. On the other hand, the content of
soluble protein was significantly increased by 1 µM copper
under 25◦C and high nutrient condition. Similarly, increased
soluble proteins due to heavy metal treatment has been reported
in other green alga, Chlorella vulgaris (Afkar et al., 2010).
Soluble proteins are related to various metabolic processes and
the previous study reported that the accumulation of protein
may be one of the ways to abolish the metal toxic effects on
algae (Osman et al., 2004; Afkar et al., 2010). In this study,
the soluble protein content had a positive correlation with
copper conditions under the 25◦C and high nutrient condition,
suggesting that the combination of a higher temperature and
a high nutrient level might maximize the toxicity of copper
in U. prolifera. However, under 25◦C and high nutrient
condition, growth and photosynthetic rates in the Korean
strain were not affected by 1 µM copper compared to control
copper treatment. The result suggests that the Korean strain
has high tolerance to copper stress under 25◦C and high
nutrient condition.
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In summary, the results of this study indicate that as global
warming continues to increase and approach the upper thermal
limits, Ulva prolifera blooms will decline. However, this decline
may be moderated by higher levels of eutrophication. Under
laboratory conditions, high nutrient concentration enhanced
the thermal tolerance and copper stress in U. prolifera.
Furthermore, two U. prolifera strains had different nutrient
assimilation capacities, suggesting that the different response of
geographically separated populations to environmental factors
might be due to genetic differentiation, which still needs further
exploration in the future.
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