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Molluscs produce rigid shells to protect their soft bodies from predators and
physiochemical violations. The soft tissues attach to shells via the myostracum layer
(also called adductor muscle scar, AMS) which bears tremendous contract force and is of
vital importance to the survival of the molluscs. Considering the prevalence of tissue-shell
attachment in molluscs, we speculate that certain homology may be shared among varied
species. To test this speculation, scanning electron microscopy and Raman spectrum
were applied to analyze the microstructure and calcium carbonate polymorphs of the
myostracum in most of the molluscan classes. It was found that all the tested molluscan
classes and genera contain similar columnar prisms which aligned vertically and were
composed of aragonite. Moreover, this structure was found in ammonoid fossils dating
back to the Permian period. Such peculiar mineral structure may contribute to the loading
contract force, thus being evolutionally conservative among varied species and for
hundreds of millions of years. Our study underscores the vital impact of physiological
functions on the evolution of the shell structure.

Keywords: molluscs, AMS, myostracum layer, microstructure, aragonite
INTRODUCTION

Biominerals formed by living organisms exhibit excellent mechanical properties such as strength
and stiffness (Raut et al., 2020). These organic-inorganic composites play a role in body supporting,
protection, feeding, and directionality (Weaver et al., 2010; Addadi and Weiner, 2014; Guzman-
Lastra et al., 2016; Deng et al., 2020). Characterizing biominerals with specific functions is
fundamental for understanding how organisms make use of inorganic materials to orchestrate
exquisite structures, and in return one can be inspired to build artificial analogous materials.

Molluscs can produce myriad shells with extraordinary morphology and microstructures. For
example, one of the most adopted microstructures in Gastropoda is crossed-lamellar structure, and
similar structure has been reprinted in plywood to improve its fracture resistance (Pramreiter et al.,
2020). Nacre, also called mother of pearl, has been found in pearl oyster, mussel, abalone, and
nautilus genera (Jackson et al., 1988; Sun and Bhushan, 2012). The salient feature of nacre is the
mortar-and-brick arrangement consisting of stacking sheets of aragonite tablets separated by
organic matrix, which leads to the dissipation of stress and results in extremely high toughness
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(Jackson et al., 1988; Marin et al., 2008; Huang et al., 2019; Deng
et al., 2020). Therefore, intensive efforts have been made to
reproduce nacre-like biomaterials to gain strength (Mao et al.,
2016; Raut et al., 2020). Other microstructures, such as prismatic
layer and homogeneous fine grains have been found in various
molluscan species (Bayerlein et al., 2014; Checa et al., 2016; Zhu
et al., 2016).

Most molluscan shells form exoskeletons except that some
Cephalopoda genera have evolved endoskeletons inside the soft
tissue (Mao et al., 2021). For the exoskeleton, the soft tissue is
attached to the mineral surface via the myostracum layer which
is also called the adductor muscle scar. The adductor muscle is
responsible for shell closure in the Bivalvia and retraction of the
soft body (such as in the Gastropoda) (Gilman, 2007; Castro-
Claros et al., 2021). Therefore, the myostracum layer mainly
bears internal stress compared with the outer shell layers which
withstand external damages. The microstructure of the
myostracum has been reported in several bivalves (Nakahara
and Bevelander, 1970; John and Taylor, 1973; Zhu et al., 2016)
and Gastropoda (Suzuki et al., 2010). In previous studies,
myostracum layers were usually described as “prismatic
aragonite” (Weiner, 1989); however, exceptions were reported
(Zhu et al., 2016). In addition, it remains unclear whether all
molluscs share similar features in this particular shell layer.

Since all the molluscs with exoskeleton have myostracum
layers of similar function, we speculate that some similarities
may be shared among various species. In this study, shell samples
from five classes (Polyplacophora, Bivalvia, Gastropoda,
Cephalopoda, and Scaphopoda) were collected and examined
using scanning electronic microscopy and Raman spectroscopy.
It was found that myostracum layers in these classes share a
striking similarity in both microstructure and mineralogy,
indicating that these shell structures are evolutionarily
conserved or resulted from convergent evolution for
similar functions.
MATERIALS AND METHODS

Sample Collection
Abalone Haliotis discus, Arcoida Tegillarca granosa, mussels
Mytilus edulis and Pinna rudis, scallop Chlamys farreri, Pacific
oyster Crassostrea gigas, Unionoida Cristaria plicata, clams
Ruditapes philippinarum, Sinonovacula constricta (Lamarck),
Dosinorbis japonica and Panopea abrupta were purchased
from a seafood market in Beijing City, China. Limpets Cellana
toreuma were collected from the intertidal zone of Zhoushan
Island in Zhejiang Province, China. Unionoida Hyriopsis
cumingii was provided by Shanghai Ocean University in
Shanghai City, China. Pearl oyster Pinctada fucata were
purchased from Guangdong Ocean University in Guangdong
Province, China. Mud snail Bullacta exarata (Philippi, 1848),
chiton Ischnochiton comptus (Gould) and tusk shell
Pictodentalium vernerdi were collected from the Eastern China
Sea. Fresh water snails Bradybaena ravida (Benson) were
collected in Zhuhai City of Guangdong Province, China.
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Ammonoidea sp. was collected in Pearl River Delta of
Guangdong Province, China. All samples were living animals
except the P. vernerdi and Ammonoidea sp. which were shell
specimens. The soft tissues were removed by scalpel, the shells
were thoroughly washed with deionized water, and air-dried.

Scanning Electronic Microscopy
The shell samples were cut into small pieces with scissors and a
diamond cutter. The resultant shell samples were coated with
gold in a vacuum sputtering apparatus and examined with a
scanning electronic microscope (FEI Quanta 200) with an
accelerating voltage of 30 kV in a high vacuum mode.

Raman Spectrum Analysis
Laser Raman Spectroscopy (Evolution, 111 HORIBA, France)
was performed to determine the calcium carbonate polymorph
with the detected wavenumber ranging from 100 cm-1 to 1200
cm-1. For each shell sample tested, more than three sites were
randomly selected in the myostracum layers or the shell layers
underlying myostracum layers.
RESULTS

Living molluscs contain seven classes, namely Aplacophora,
Polyplacophora, Monoplacophora, Gastropoda, Scaphopoda,
Cephalopoda, and Bivalvia. Since most of the bivalves have
adductor muscle for the shell closure, we first examined the
myostracum layer in this class. Interestingly, all the studied species
contained a similar microstructure at the muscle-shell attachment
(Figure 1 and Supplementary Figure 1). Though there exist some
slight variations, the myostracum layers in bivalves consisted of
simple regular prisms. Raman spectra showed that the mineral
counterparts were all aragonite (Table 1 and Supplementary
Figures 3, 7). Most of the species have a monolayer myostracum
(Figures 1A–T). However, multilayered myostracum was observed
in the Myoida P. abrupta (Figures 1U, V), thus forming regular
alternate microstructure of prisms and fine granules. Usually,
the height of the prismatic myostracum is 10-20 µm, except those
in the P. abrupta and Arcoida T. granosa could reach more than
50 µm or even 200 µm in the latter (Figures 1W, X). Moreover,
the myostracum in T. granosa differed from others in that the
columns were much larger. The columns could reach 10 µm in
diameter, while those in other species were only around 1 µm (e.g.,
in the C. gigas and P. fucata).

The marvelous similarity of the myostracum layers among
various bivalves suggest that such microstructure might have
evolved in the ancient bivalve ancestor and remained
conservative once that occurred. When considering the vast
diversity of the shell layers underlying the myostracum, such a
scheme was more convincing. In mussels, pearl oyster, and
Unionoida, the shell layer underlying the myostracum adopt a
sheet nacreous microstructure, and in scallop and Pacific oyster,
foliated sheets could be seen, while both fine-grained
homogeneous structure and crossed lamellar were found in
clams (Table 1). Moreover, the polymorphs of these shell
May 2022 | Volume 9 | Article 862929
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FIGURE 1 | Microstructure of the myostracum layer in bivalve molluscs. (A, B) pen shell Pinna rudis; (C, D) mussel Mytilus edulis; (E, F) Pacific oyster Crassostrea
gigas; (G, H) scallop Chlamys farreri; (I, J) pearl oyster Pinctada fucata; (K, L) Dosiniinae Dosinorbis japonica; (M, N) solen Sinonovacula constricta (Lamarck); (O, P)
clam Ruditapes philippinarum; (Q, R) freshwater mussel Cristaria plicata; (S, T) freshwater mussel Hyriopsis cumingii; (U, V) geoduck Panopea abrupta; (W, X) ark
shell Tegillarca granosa. In each sample, the latter image is the magnification of the former (black boxes), except that in (U–X), different positions of myostracum
layers are shown. The myostracum layer is indicated by a purple star, and the boundary between the myostracum and the underlying shell layers is indicated by the
yellow dashed line. The scale bar is 50 µm in the former image of each sample and 10 µm in the latter (magnification) as shown in (A, B), except (U–X) which are
marked in the images.
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structures could be either aragonite or calcite (Supplementary
Figure 4). For example, the nacreous layers in P. fucata were
aragonite while foliated layers C. farreri were calcite, although
both species belong to Pterioida. Therefore, the bulk shell
structures in bivalves underwent divergent evolution which
leads to the myriad microstructures. Oppositely, the
myostracum layer might be under enormous evolutionary
pressure and remain conservative in bivalves.

Then we wonder whether other molluscs have similar
myostracum arrangement and when such shell structure
evolved. Strikingly, prism columns were present in the
innermost shell layer of the tested genera (Figure 2 and
Supplementary Figure 2), and the mineral counterparts were
all aragonite (Table 2 and Supplementary Figure 3). It should be
noted that the fine structures were varied among different classes.
In chiton, which belongs to Polyplacophora, the myostracum
layer did not showcase regular prisms, instead, composite prisms
were vertically aligned. The Gastropoda and Scaphopoda have
more regular aligned prisms in the myostracum layer
(Figures 2C–J) except that in the mud snail B. exarata, the
prisms were irregular to some extent. Strikingly, a simple regular
prismatic structure was found in the fossil specimen of
ammonoid. Previous studies have proved that ammonoid
fossils in south China dated back to the Permian period
around 250 million years ago (Shen et al., 2019). The location
was in the inner shell surface (Supplementary Figures 2, 8), and
this microstructure was supposed to be the adductor muscle scar
according to previous studies (Kazushige Tanabe and Mapes,
1998; Zhu et al., 2016). Unfortunately, it was technically difficult
to determine the polymorph of this myostracum layer.
Nevertheless, the absence of magnesium implied that the
aragonite was more likely the case (Supplementary Figure 8)
because calcite in molluscan shell usually contained a certain
amount of magnesium (Cuif et al., 2012). We also examined the
Brachiopod L. anatine whose shells are similar to those of
Frontiers in Marine Science | www.frontiersin.org 4
molluscs but consist of calcium phosphate. It was shown that,
although they contain multilayers, the myostracum layer with
columnar aragonitic prisms was absent in the L. anatine shells
(Figures 2O, P and Supplementary Figures 5, 6).

Similar to Bivalvia, shell structures underlying the
myostracum layer in the Polyplacophora, Gastropoda,
Scaphopoda, and Cephalopoda exhibited a diverse display.
Columnar nacreous were present in both Gastropoda and
Cephalopoda, while composite prismatic, crossed lamellar, and
simple lamellar were also found as the bulk microstructure of
tested shells. Moreover, both calcite and aragonite were found to
be the composition of the main part of the shell layers.
DISCUSSION

Molluscs have elaborate rigid shells to protect the soft bodies,
and when encountered with danger, the shells are closed or the
soft bodies retract into the shell tube. Therefore, it would be of
significant importance to control the shell movement and
maintain the firm attachment of soft tissues and mineral
organs. Our study showed that the myostracum layer in most
molluscs adopt a conservative microstructure and crystal
polymorphism, namely columnar prisms (or composite prisms
in some individual cases) of aragonitic calcium carbonate. The
result was consistent with previous studies in mussel, oyster, and
scallop (Lee et al., 2011; Song et al., 2013; Zhu et al., 2016).
Although myostracum is considered as prismatic aragonite in
general in some archives (John and Taylor, 1973; Weiner, 1989;
Zhu et al., 2016), most are focused on bivalves, and our present
study extended this conception to most molluscs.

Zhu et al. (2016) reported that no distinguishable
myostracum layer could be found in the clam R.
philippinarum, at odds with our study (Figures 1O, P). Such
TABLE 1 | Summary of the microstructure and texture of tested shell layers in bivalves.

Species Myostracum layer Beneath the myostracum layer

Microstructure Polymorph Microstructure Polymorph

Arcoida
Tegillarca granosa Radially elongate simple prismatic Aragonite Simple crossed lamellar Aragonite
Mytioida
Mytilus edulis Regular simple prismatic Aragonite Sheet nacreous Aragonite
Pinna rudis Regular simple prismatic Aragonite Sheet nacreous Aragonite
Pterioida
Pinctada fucata Regular simple prismatic Aragonite Sheet nacreous Aragonite
Chlamys farreri Regular simple prismatic Aragonite Foliated sheet Calcite
Osteroida
Crassostrea gigas Regular simple prismatic Aragonite Foliated sheet/chalk Calcite
Unionoida
Cristaria plicata Regular simple prismatic Aragonite Sheet nacreous Aragonite
Hyriopsis cumingii Regular simple prismatic Aragonite Sheet nacreous Aragonite
Veneroida
Ruditapes philippinarum Regular simple prismatic Aragonite Fine-grained homogeneous Aragonite
Sinonovacula constricta (Lamarck) Regular simple prismatic Aragonite Cone canplex crossed lamellar Aragonite
Dosinorbis japonica Regular simple prismatic Aragonite Fine-grained homogeneous Aragonite
Myoida
Panopea abrupta Multilayered regular simple prismatic Aragonite Fine-grained homogeneous Aragonite
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an inconsistency might be due to the different sampling methods.
Because in Zhu’s work, they examined the fracture surface
perpendicular to the shell growth direction, which might lead
to their missing the myostracum. Indeed, the myostracum in R.
philippinarum was only 5 µm in height (Figures 1O, P), which
was quite difficult to figure out. It would be much easier to image
this structure in the fracture surface along the shell growth
direction, as we did in the present study.

In all the selected living species, the myostracum layers adopted
aragonite polymorphs, coincident with previous studies (Lee et al.,
2011; Wang et al., 2014; Zhu et al., 2016), except the scallop.
Frontiers in Marine Science | www.frontiersin.org 5
Reported data showed that myostracum in scallop C. farreri
contained both aragonite and calcite (Zhu et al., 2016). The
authors used FTIR to analyze the shell powder collected in
myostracum, which might contain contaminated foliated layer
(calcite) underlying the object. Because it was near impossible to
completely separate the myostracum layer and the foliated layer, we
applied in situ measurement (Raman spectrum) to analyze the
mineral composition, and only aragonite was present.

The highly conserved myostracum in most molluscan classes
suggested that such shell structure may be a primitive signature of
their ancient ancestors. Indeed, evidence from this study (Figure 2
FIGURE 2 | Microstructure of the myostracum layer in some molluscan classes. (A, B) chiton Ischnochiton comptus (Gould); (C, D) abalone Haliotis discus; (E, F)
Limpets Cellana toreuma; (G, H) mud snail Bullacta exarata (Philippi, 1848); (I, J) fresh water snail Bradybaena ravida (Benson); (K, L) Scaphopoda Pictodentalium
vernerdi; (M, N) Ammonoidea sp.; (O, P) Brachiopod Lingula anatine, serving as a comparison. In each sample examined, the latter image is the magnification of the
black box in the former image. The myostracum layer was indicated by a purple star, and the boundary between the myostracum and the underlying shell layers was
indicated by the yellow dashed line. The white dashed line in (N) shows the boundary between the myostracum and the filled impurities in the shell lumen.
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and Supplementary Figure 8) and archive [Figure 4Ain Reference
(Kazushige Tanabe and Mapes, 1998)] revealed that prismatic
myostracum structures already existed in molluscan shells dating
back to the Permian and Jurassic periods. An interesting finding
reported by Porter showed that calcite and aragonite seas have a
strong influence on the mineralogy of carbonate skeletons at the
time they first evolve (Porter, 2010). In that case, skeletons evolved
in calcite sea would be composed of calcite, and skeletons evolved
in aragonite sea would be composed of aragonite. Because there
were two aragonite seas before the Permian period (Porter, 2010),
unique myostracum structure might have evolved in early
Cambrian or Carboniferous periods or both.

The prismatic microstructures of the myostracum seemed to be
more advanced in Bivalvia class compared with other classes
(Figures 1, 2). Most of the bivalve genera have myostracum of
simple regular prisms. In some particular samples, the myostracum
layers could growmore than 200 µm in height (Figures 1W, X). This
phenomenon may be due to the evolutionary pressure on closure of
the two shell valves. As a result, the tissue-shell attachment in
Bivalvia was one of the strongest ligaments in invertebrates
(Castro-Claros et al., 2021). Nevertheless, Aplacophora completely
lost their calcified shell, and some Gastropoda and Cephalopoda
evolve endogenous skeletons or lose the shell. For example, slug
Agriolimax agrestis (Linnaeus) is a terrestrial molluscs without a shell
(Jiang et al., 2021). Some cuttlefish and squids have internal shells
serving as buoyancy regulatory organs (Yang et al., 2020; Liu et al.,
2021). We surmise that adductor muscle degenerated in these
genera, although more studies are needed for verification.
CONCLUSION

In this study, we examined most of the molluscan genera to
reveal the shell microstructure of the myostracum layers where
the adductor muscle (soft tissue)-mineral attachment is located.
The results showed that myostracum layers are composed of
vertically aligned aragonitic prisms, and such microstructure is
conserved among most molluscan classes and genera. Such
Frontiers in Marine Science | www.frontiersin.org 6
evolution conservation implies pivotal functions of the unique
myostracum layer with similar microstructure and mineralogy.
How such shell structures are correlated with their physiological
function remains elusive and deserves more in-depth studies.
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862929/full#supplementary-material
TABLE 2 | Summary of the microstructure and texture of tested shell layers in the species examined.

Species Myostracum layer Beneath the myostracum layer

Microstructure Polymorph Microstructure Polymorph

Monoplacophora nd nd nd nd
Polyplacophora
Ischnochiton comptus (Gould) Composite prismatic Aragonite Composite prismatic Aragonite
Gastropoda
Haliotis discus Regular simple prismatic Aragonite Columnar nacreous Aragonite
Cellana toreuma composite prismatic Aragonite Simple lamellar Calcite
Bullacta exarata (Philippi,1848) Irregular simple prismatic Aragonite Aragonite
Bradybaena ravida (Benson) Irregular simple prismatic Aragonite Simple cross-lamellar Aragonite
Scaphopoda
Pictodentalium vernerdi Regular simple prismatic Aragonite Intersected cross-acicular Aragonite
Cephalopoda
Carboniferous goniatite Regular simple prismatic (Kazushige Tanabe and Mapes, 1998) nd Probably nacre (Landman et al., 2007) nd
Ammonoidea sp. Regular simple prismatic nd Columnar nacre nd
Aplacophora Shell-less
Caudofoveata Shell-less
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