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Key biological processes that are related to feeding, growth, and mortality in corals and
other benthic organisms, depend on the flow field around them. For example, in the
absence of flow, oxygen is accumulated inside and around photoautotrophic organisms
such as algae and corals, and the rate of photosynthesis is therefore reduced. When
mixing by turbulence and by streamline separation is suppressed, nutrient supply is
reduced and prey capture becomes insufficient. Despite the overwhelming ecological
impacts of flow on corals, almost no in-situ studies focused on the hydrodynamics at the
scale of the coral polyps and their tentacles. Here we report on in-situ measurements
obtained by an underwater Particle Image Velocimetry (PIV) above the tentacles of the
massive coral Dipsastraea favus. The tentacles in this species, approximately 5-10 mm
long, extend during the night and contract during the day. A comparison was made
between the flow field around the coral when the tentacles were contracted and
extended. As in large-scale canopy flows such as forests or urban areas, we found that
when the tentacles were extended, a mixing layer rather than a boundary layer was formed
above the coral. Velocities in between the tentacles were reduced, resident time
increased, and velocity instabilities developed around the tentacle tips. Our in-situ
measurements under the conditions of contracted tentacles agreed well with laboratory
measurements obtained above dead skeletons of D. favus. When the tentacles were
extended, a velocity profile typical for canopy flows developed, having a clear inflection
point near the interface between the tentacles and the layer of free flow. The relative
velocity fluctuations increased up to 3.5-fold compared with the state of contracted
tentacles. The highest mixing was around the distal ends of the tentacles, where knob-like
spheres named acrospheres contain extremely high concentrations of nematocytes. The
intense mixing, the ensuing slowing down of prey movement, and its longer residence
time within that zone may augment prey capture by the coral. These findings can explain
the ubiquitous occurrence of acrospheres in benthic cnidarians.
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INTRODUCTION

Sessile animals such as corals depend on the flow of water to
sustain many of their biological processes (Kaandorp et al., 1996;
Finelli et al., 2006; Mass et al., 2010; Goldberg, 2018; Davis et al.,
2021). Water flow determines the supply of metabolites from the
adjacent water (Patterson and Sebens, 1989; Patterson, 1992;
Thomas and Atkinson, 1997), delivers food particles (Sebens
et al., 1998), and carries nutrients that eventually cross the coral
tissue by diffusion (Sheppard et al., 2018). Flow controls the
supply of CO2 and the removal of oxygen excess to allow
photosynthesis (Mass et al., 2010), it influences the rate of heat
transfer (Jimenez et al., 2011 and van Woesik et al., 2012) and
plays a role in the dispersion and settlement of larvae
(Reidenbach et al., 2021). It was suggested that flow, and
therefore the rate of mass transfer, change the ability of
microbes to settle on coral surfaces and thereby altering the
competition between corals and other benthic organisms (Barott
and Rohwer, 2012). It is apparent that there is almost no single
function that is not affected by the flow of water, including
respiration (Nakamura et al., 2005), reproduction (Patterson,
1992), calcification (Dennison and Barnes, 1988), growth (Jokiel,
1978; Mass et al., 2011), and morphological adaptation (Gardella
and Edmunds, 2001; Todd, 2008; Mass et al., 2011).

The flow-animal interaction is a multiscale process that
depends on the time and length scales of the flow and on the
scales of the animals and their surroundings. These latter scales
are geometrical in nature and include, among others, the shape of
the coastline, the local bathymetry, obstacles that alter the flow in
the upstream, and the detailed geometry of the coral reef, coral
colonies, coral branches, and their fine roughness elements
(Johnson and Sebens, 1993). In a series of review papers,
Monismith (2007), Lowe and Falter (2015), and Davis et al.
(2021) summarize the current knowledge about the role of flow
and its forcing on coral reefs. The three reviews share the
understanding that the impact of flow is a result of scale’s
superposition of regional circulation, mesoscale currents, water
movement due to tide, upwelling and internal waves, the velocity
field generated by surface waves, and the turbulent scales.
Starting from far away, each of these flows carries the
metabolites along different distances, from the large ocean far
away from the reef, down to the coral tissue finest scales. Each
stage in the transport chain is important and any missing stage
might prevent the metabolites from reaching the coral.
Advection carries solutes and particles along the main flow
direction while other processes, such as turbulent mixing, wake
flows, and gravity are needed to cross streamlines and move
perpendicular to the main currents (e.g., Reidenbach et al., 2021).
The interplay between the advection and the lateral mixing
occurs at different scales. For example, large turbulent
structures that are generated in the flow above the reef
penetrate the reef through its top interface. Smaller turbulent
structures are generated by the flow interaction with the coral
colonies and branches and penetrate the top interface of each
colony. And finally, local roughness elements along individual
coral branches augment mixing and lateral fluxes. This complex
Frontiers in Marine Science | www.frontiersin.org 2
geometry, including the height of the roughness elements and the
distance between them, controls the mixing intensity as address
by previous studies (Stocking et al., 2018 and Davis et al., 2021).
Studies that focused on coral hydrodynamics analyzed the role of
reef scales (Hench et al., 2008; Lowe et al., 2009), colony scales
(Rosman and Hench, 2011), and branch scales (Asher et al., 2016
and Asher and Shavit, 2019), but only a few studied the role of
smaller scales (Shapiro et al., 2014). The analysis is crucial for
mass transfer estimates at these large scales but might miss the
governing mechanisms that occur at smaller scales. For example,
depth-integrated transport equation, commonly used to analyze
mass transfer inside coral reefs (e.g., Falter et al., 2008), cannot
distinguish between processes that occur at different heights
within the reef. The same is with studies that treat the coral
colonies and coral branches as roughness elements (Hench and
Rosman, 2013). They provide quantitative estimates for the
mixing between the ambient water and the space between the
colonies but ignore the stage of mass transfer from the water
between the colonies and between the coral branches to the
actual living tissue.

Most stony corals are modular animals, forming colonies of
numerous polyps that are connected by a common gastrovascular
system. The polyps, ranging in size from sub-millimeter to a few
centimeters, are fleshy and flexible. The polyps themselves, like
miniature anemones, have tentacles that capture zooplankton by
hydrodynamics-dependent, filter-feeding mechanisms (Patterson,
1991; Sebens and Johnson, 1991). Coral tentacles demonstrate
different extension/contraction patterns. In most species,
especially those with large polyps (Levy et al., 2006), the
tentacles are extended only during the night. In some species, all
with minute polyps, the tentacles are always extended, while in
some rare species the expansion is only during the day (Eguchi,
1936; Abe, 1939; Kawaguti, 1954; Porter, 1974; Lewis and Price,
1975; Sweeney, 1976; Levy et al., 2001; Levy et al., 2006).

Coral tentacles are used for prey capturing, as a defense tool
against predators, and when competing on territory against other
corals. Levy et al. (2001) reports that tentacles that extend during
the day are rich in symbiotic algae and postulate that they extend
to increase photosynthesis. However, the large number of corals
that contract during the day suggests that photosynthesis does
not serve as the prime reason for extension. Zooplankton, on the
other hand, is more abundant at night (Sorokin, 1990),
suggesting that the reason most corals extend at night is prey
capture. Shashar et al. (1993) and Levy et al. (2001) also found
that tentacles expansion increases with water velocity and
proposed that respiration gains from the increase in surface
area. According to Levy et al. (2003), extended tentacles increase
the tissue surface area of the Goniopora. lobata by ~8 fold
compared to the contracted tentacles state. Such an area
increase allows higher uptake when the tentacles are extended.
Many corals use their tentacles to host numerous stinging cells
(nematocytes), used mostly for prey capture (Sheppard et al.,
2018). These nematocytes are often distributed as clusters along
the tentacle and in a knob-like sphere, called acrosphere,
positioned at the tentacle tip. The acrospheres contain an
extremely high concentration of stinging cells (Acuña and
May 2022 | Volume 9 | Article 857109
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Garese, 2009). By adopting the description of mass transfer as a
chain of stages, solutes and particles that reach the space near the
corals need extra means to be mixed and approach the coral
tissue, the tentacles, and their nematocytes.

In the current study we focus on the role of coral tentacles as a
mean to increase lateral mixing. We will show that the tentacles
impose hydrodynamic mixing and therefore support the lateral
motion towards the coral tissue. We present in-situ velocity
measurements of the flow above two stony D. favus corals under
a wide variety of natural conditions and compare the flow field
when the tentacles are contracted and when they are extended
(Figures 1, 2).
METHODS

Measurement Site and the Dipsastraea
favus Corals
In-situ velocity measurements were taken above two Dipsastraea
favus colonies, a stony species commonly found in the northern
parts of the Gulf of Aqaba (Red Sea). It is the dominant species on
the reef back margins. Colonies are massive, rounded, or flat with
large polyps (average polyps’ diameter is more than 12 mm) and
long tentacles (the average tentacles length in the current study
was ~ 0.6 cm, Table 1) (Figure 1). We found that the length of the
extended tentacles, ℓ, was longer (6−8 mm) in Coral I and shorter
(4−5 mm) in Coral II (Table 1). The colonies length (in the
dominant flow direction), width, and height were L = 120, W =
115, andH = 65mm in the first colony (Coral I) and L = 100,W =
80, and H = 60 mm in the second (Coral II). The velocity
measurements were collected at a depth of f 4 − 5 m in the reef
adjacent to the Interuniversity Institute for Marine Sciences (IUI),
Eilat, Israel (29°30′N, 34°55′E). They were collected at night when
the coral tentacles are naturally extended. Tentacle’s contraction
(Figure 2A) was achieved by scuba divers that gently touched the
corals. Once contracted, it took 20-30 minutes for the tentacles to
re-extend (Figure 2B), giving us enough time to measure the
velocity field around the contracted coral and enough contraction/
extension cycles during a measurement night.
Frontiers in Marine Science | www.frontiersin.org 3
Underwater Particle Image
Velocimeter (UPIV)
A self-design Underwater Particle Image Velocimeter (UPIV)
was constructed and deployed for in-situ velocity measurements.
The system consists of two 200 mJ per pulse Nd: YAG lasers
(Quantel), a 12-bit 1024 × 1392 pixels dual shutter CCD camera
(PCO, Pixelfly qe), and a 200 mm Nikkor lens. Both the lasers
and camera were set to operate at 5 frames per second. The lasers
and camera were installed inside waterproof housings that were
manufactured in-house and mounted on a stable metal frame
(1.85m long, 1.5m wide and 1.6-2.0m flexible height) positioned
on the seafloor (Figure 2C). The freedom to change the frame
height was achieved by using four adjustable scaffolding legs,
allowing fine adjustment of their height while underwater. Fine
adjustment of the housings lateral position was achieved by
homemade linear translation screws that were fixed to the
frame. The system’s control station was positioned on the IUI
pier. It was connected to the underwater lasers and camera
through three 15 m long waterproof umbilical hoses. Two hoses
were connected to the lasers housing and used to deliver water
for laser cooling and electrical wires for laser triggering, power
supply, heat dissipation by an internal fan, and monitoring the
housing inner temperature and relative humidity (read by
sensors that were installed inside the housing). The third
umbilical hose was connected to the camera housing to
provide power supply, triggering, and image acquisition (using
StreamPix software, Norpix). Before deployment and before
sealing the housings, the laser light sheet (532 nm wavelength
and ~1mm thick) was aligned and its intensity was optimized.
Simultaneously, the camera iris and focus were adjusted using a
large glass container filled with seawater that was positioned on
the pier under the laser.

The assembled sealed system was deployed from the pier
using a crane and then positioned and anchored to the sea
bottom by scuba divers. The scuba divers focused the laser beam
and the camera image using the linear translation screws. They
positioned the vertical laser light sheet above the coral center,
and together with the team on the pier, performed a calibration
procedure by capturing images of a vertical ruler, positioned
A B

FIGURE 1 | Pictures of the D. favus coral during the day when its tentacles are contracted (A) and during the night when the tentacles are extended (B).
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such that z = 0 was set at the top of the coral when contracted
(Figure 2D). Communication between the underwater and pier
teams was made possible by an underwater monitor, which
mirrored the camera vision and allowed the pier team to send
text instructions to the divers. The measurements were typically
collected from sunset to sunrise, as dark conditions provide a
black background and high contrast needed for the PIV grayscale
images. Working at night also helps to prevent casual swimmers
from approaching the measurement area, maintaining high
operational safety.

We noticed that following a few hundred laser pulses, the coral
tentacles started to contract. In some cases, the length of the
tentacles became shorter and in others the coral contracted its
tentacles all the way to a full contraction. After such a contraction,
we turned the laser off and paused for 10-20 minutes before the
Frontiers in Marine Science | www.frontiersin.org 4
tentacles were extended again and measurements could be
resumed. The number of collected image pairs when the
tentacles were extended or contracted is reported in Table 1.
Since the ambient velocity varied between measurements, the
time delay between the first and second PIV images was
continuously adjusted, providing a particle shift of ~10 pixels.

Velocity vectors were calculated using a modified version of
the MatPIV open-source code (Sveen, 2004). Image
magnification was 52.7 pixels mm−1 in Coral I and 47.1 pixels
mm−1 in Coral II, yielding a field of view of about 25×20 mm2. In
some cases, light reflection occurred when the elongated
tentacles appeared at the bottom of the images. The reflection
was more severe during the measurements above Coral II than
above Coral I. Even without reflection, the white color of the
tentacles often reduced the quality of the PIV results. To
eliminate this effect, we masked out these white regions
(typically 2-4 lines of vectors out of 29 horizontal lines) and
analyzed only the non-masked regions. Naturally occurring
particles were used as tracers and therefore, prior to the PIV
processing, intensity capping (Shavit et al., 2007) was applied to
reduce the noise due to large particles that do not follow the
water flow. A multi-pass cross-correlation was applied using
square interrogation areas of 128×128, 128×128, 64×64 and
64×64 pixels. At the current magnification, a smaller
interrogation area could not be used because of the small
density number of the natural particles. An overlap of 50%
results in a distance between neighboring velocity vectors of 32
pixels, equivalent to 0.6 - 0.68mm. Outliers were identified by a
detailed examination of a signal-to-noise ratio filter followed by a
global filter and a local filter. When rejected, the empty vector
was filled by a kernel-based interpolation linear scheme, based on
3×3 and 5×5 neighbor vectors. The threshold values of the
signal-to-noise ratio, standard deviation of the global filter, and
that of the local filter were 1.05-1.1, 2.5-4.0, and 2.2-3.2,
respectively, rejecting an average of 10.8% of the velocity vectors.

Spectral analyses of the velocity time series have shown that
the time and length scales of the wave and turbulent components
often overlap. We therefore decompose the instantaneous
velocity ui as,

ui = uci   +  uwti (1)

where uci is the current velocity and uwti is the sum of the wave
contribution uwi and the turbulent contribution uti (u

wt
i = uwi + uti).

The index i is used to represent the velocity components, u and w
in the x and z directions.We found that while the separation of uwti
into the wave and turbulent contributions involves some
ambiguities, the current component is well distinct and can be
separated by a low-pass filter for frequencies below 0.03Hz. In a
few cases, a clear separation was possible between the wave and
turbulent fluctuations for which uwi and uti were computed (see
Supplementary Material).

Laboratory PIV
Velocity measurements were obtained in a laboratory hydraulic
flume around a D. favus skeleton (L = 87, W = 81, and H ≅ 50
mm) under steady unidirectional and wave flow conditions (at a
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FIGURE 2 | (A, B) PIV image samples when the tentacles were contracted
and extended. (C) A picture of the underwater PIV system (UPIV) with the first
D. favus coral (Coral I) marked by a black arrow. (D) A schematic drawing of
the coral, the x-z coordinate system, and the measurement rectangular domain.
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wave frequency of 0.5 Hz). The experimental setup, including the
flume, flow rate measurements, and the laboratory PIV are
described in Moltchanov et al. (2015). Since the ambient
velocities during the in-situ measurements around coral II were
higher than during the coral I measurements, a high and low flow
rates were tested in the laboratory (Q = 0.0036 m3s−1 and Q =
Frontiers in Marine Science | www.frontiersin.org 5
0.011m3s−1 ). In addition to the 200mmNikkor lens that was used
also in-situ, a 50mm lens (Goyo Optical Inc.) was used to illustrate
the flow around the whole colony (Figure 3). For the wave flow
case, we superimposed surface waves on a steady flow rate of Q =
0.0036 m3s−1 using a paddle wave generator that was positioned
near the flume inlet. Figure 3 shows the time average velocity field
TABLE 1 | Experimental conditions including the spatial and temporal mean (in space and time) velocity in the x direction (positive is north to south), the mean velocity
at the top of the measured domain, the root mean square of the wave and turbulent fluctuating velocity, uw + ut, the number of realization, the tentacle length, the
dominant wave frequency, and two Reynolds numbers.

Set # Mean velocity Velocity at top Wave & turb RMS Number of realizations Tentacle length Wave frequency Reynolds numbers

�u
(cm s−1)

�utop
(cm s−1)

(uwtRMS )top
(cm s−1) (-)

ℓ

(cm)
f

(s−1)
Re Rd

Coral I, Contracted tentacles:
C1 -3.60 -3.57 2.12 1000 0.42 4302 19
C2 -2.67 -2.63 2.01 1000 0.34 3169 20
C3 4.38 4.43 0.95 500 0.41 5339 8
C4 3.61 3.72 0.87 500 0.29 4483 9

Coral I, Extended tentacles:
E1 -3.80 -3.93 5.63 250 0.6 0.26 4736 63
E2 1.65 1.80 3.92 500 0.65 0.28 2169 42
E3 1.27 1.47 4.27 250 0.7 0.32 1772 43
E4 -1.83 -1.96 4.25 500 0.8 0.31 2362 44
E5 -2.74 -2.78 3.78 500 0.8 0.25 3350 43

Coral II, Contracted tentacles:
C11 8.06 7.97 1.47 1000 0.37 7357 14
C12 8.95 9.03 2.71 1000 0.47 8335 23
C13 11.8 11.8 3.11 1000 0.41 10892 28
C14 8.48 8.62 2.61 1000 0.43 7957 23

Coral II, Extended tentacles:
E11 9.34 9.74 1.33 200 0.5 0.37 8991 12
E12 6.71 7.03 1.96 500 0.45 0.45 6489 17
E13 6.23 6.48 2.00 500 0.45 0.44 5982 17
E14 11.4 12.1 3.75 500 0.5 0.40 11169 34
E15 -5.61 -5.61 0.94 1000 0.4 5178

Skeleton
S1 3.41 3.85 0.49 1000 1703
S2 9.69 10.1 0.72 1000 4845
May 2022 | Volu
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under unidirectional flow (Figure 3A) and wave flow conditions
(Figure 3B). Notice the different flow conditions in the wake
region of the unidirectional and wave flow conditions (see for
example Figure 2 in Yu et al., 2022).

Experimental Conditions
In situ measurements were obtained above two corals (coral I and
coral II) under extended (E) and contracted (C) tentacle
conditions, a total of four measurement groups. Table 1 lists the
experimental conditions of these four groups. It includes the mean
velocity (�u), obtained by averaging the velocity x-component over
time and space within the whole measured field, the mean velocity
at the top of the domain (�utop), obtained by averaging the temporal
mean along the x coordinate (the flow direction) at the highest
measured location of the flow field, the root mean square of the
turbulent + wave velocity fluctuations at the top of the domain
½(uwtRMS)top�, the number of realizations in each group (at 5 Hz), the
average length of the tentacles (ℓ) observed during the experiments,
and the wave dominant frequency (f). Two Reynolds numbers
were chosen to represent the flow; Re = �utopH=n where H is the
coral height and v = 9.75·10−3 cm2s−1 is the kinematic viscosity of
seawater at 24.5°C representing the mean flow around the coral
colony, and Rd = (uwtRMS)topd=v with d =

ffiffiffiffiffiffiffiffiffiffiffi
2v=w

p
as a measure of

the thickness of the viscous bottom boundary layer (Mazzuoli et al.,
2017) where w = 2pf is the angular frequency of the velocity
oscillations. A comparison between the two corals shows that while
coral II is smaller and has shorter tentacles than in coral I, most of
the mean velocities were higher when measured around coral II.
The overall larger Re around coral II reflects the higher velocity
more than the coral size. The results obtained for Rd serve as an
indication of the waves and velocity fluctuations above the corals.
The table shows that Rd of coral II is similar in both contracted and
extended cases, however Rd of coral I is low when the tentacles
were contracted and high when the tentacles were extended.
RESULTS AND DISCUSSION

Levy et al. (2001) reports thatDipsastraea favus corals do not extend
their tentacles in still water even if light is low and prey levels are
high enough. It suggests that the coral extended tentacles are useful
only if the flow conditions are adequate. They also found that if no
prey is present, the corals will still extend, but only if light is low and
flow speed is medium to high, suggesting that prey capture is
probably one of several benefits gain by tentacle extension. Here we
show how the flow is modified by the extended tentacles.

The flow of sea water around the Dipsastraea favus colonies is
influenced by the oblate spheroid shape of the coral (Figure 3). It
involves a small region of reduced velocities on the upstream
(windward) side of the coral, followed by a region of crowded
streamlines and high velocities, a flow region that is roughly
parallel to the coral surface, and then, depending on the wave
conditions, separation of streamlines and recirculation in the
wake side of the colony. Each of these flow regions experiences
different flow conditions and different mass transfer processes,
however they share the need to transfer commodities across
Frontiers in Marine Science | www.frontiersin.org 6
streamlines. The reported measurements focus on the region at
the top of the colony where the flow is approximately parallel to
the coral surface (yellow rectangle in Figure 3). In addition to the
influence of the coral geometry, the flow near the coral is affected
by the action of surface waves, by the extension of the polyps’
tentacles, and by their flexibility and potential bending by the
flow. Under these complex flow conditions, the in-situ study
aims at quantification the role of the tentacles extension by
comparing the flow near the coral when the tentacles are
extended (Figure 2B) and when they are contracted (Figure 2A).

Figure 4 shows the x-component of the mean velocity
(temporal averaged) as a function of vertical distance from the
coral surface, z (Figure 2D). The mean velocity was averaged
along x and then normalized by its’ value at the top, �utop (Table 1).
The measurements above both corals (Figures 4A, B) indicate
that when the tentacles are contracted (sets C1-C4 and C11-C14),
the velocity profiles are nearly uniform. The velocities near the
skeleton (Q1 and Q2, both under unidirectional flow) show the
influence of the non-slip condition as they were measured close to
the surface, suggesting that the velocity profiles resemble a
boundary layer with no inflection point. Gardella and
Edmunds (2001) measured the shear velocity, u∗, above
scleractinian corals and analyzed the boundary layer that
develops above the coral as a function of colony size and
roughness. Their findings are relevant when the coral tentacles
are contracted, however no flow information is available when the
tentacles are extended. The results in Figure 4 show that when the
tentacles are extended (sets E1-E5 and E11-E15), the relative
velocity is reduced (to ~60% in set E3 of coral I and < 10% in set
E12 of coral II), developing profiles that resemble a mixing layer
rather than a boundary layer. This reduction was observed in all
the elongated sets except for two profiles (E1 and E5).

The reduced velocities slow down the food particles. The
reshaping of their profiles augment mixing and help the coral
polyps to capture them. The rate of mass transfer is expected to be
affected by the increase in resident time, the increase of surface area,
and the increased mixing intensity. The mixing layer that appears
when the tentacles are extended is typical to larger scale canopy
flows such as forest canopy (Kaimal and Finnigan, 1994, Chap. 3),
urban canopy (Coceal et al., 2006), and flow above branched coral
reefs (Davis et al., 2021). Such mixing layers are characterized by an
inflection point near the canopy top, that leads to hydrodynamic
instabilities such as Kelvin-Helmholtz instabilities (Ghisalberti and
Nepf, 2002). As shown, inflection points in sets E2, E3, E11, and
E15 are found at z/ℓ =1.7, 1.8, 0.9 and 1.1, respectively. The
inflection points indicate that the extension of the tentacles
generate a change in the velocity gradient, forming a region of
mixing. As expected, the location of the inflection point was found
in the sets of coral II around the tip of the extended tentacles, z/ℓ =
1. In coral I, the inflection location was higher (z/ℓ > 1), but we
assume that it reflects an under estimation of the tentacle length (ℓ).
These instabilities are known to be a source of intensive exchange
motion of fluid across the canopy interface (Nepf, 2012) and large
fluctuations of the measured velocity.

The ve l o c i t y fluc tua t i ons a r e shown by th r e e
representations: the root mean square (RMS) of the velocity
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fluctuations, RMS(ui − �ui) = uRMS, shown in Figure S1 (see
Supplementary Material); the RMS of the sum of the wave
and turbulent components, RMS(uwti ) = uwtRMS, shown here in
Figure 5; and when available, the RMS of the turbulent
c ompon en t , RMS(uti ) = utRMS, s h own i n F i gu r e S 2
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(Supplementary Material). As uRMS is contaminated by the
low frequencies of the ambient flow (uc) and utRMS is ambiguous
due to the difficulty to separate the scales of the turbulent signal
from the scales of the wave signal, we chose to show here the
results of uwtRMS (Figure 5) and leave the other two to the
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Supplementary Material (Figures S1, S2). As in Figure 4,
uwtRMS=�u was averaged along x and normalized by the value at the
top. Figure 5 shows that (uwtRMS=�u)=(u

wt
RMS=�u)top is small in all the

contracted cases and high when the tentacles are elongated.
The shape of the profiles in the contracted cases is nearly
uniform with somewhat higher values near the bottom where
shear stress is high. Such profiles characterize boundary layer
flows, where the velocity gradient and the velocity fluctuations
are the highest when approaching the boundary. However, in
the canopy flow generated by the extended tentacles, the highest
shear and strongest fluctuations are measured around the tip of
the tentacles, at a distance of z ≅ ℓ from the surface. Moreover,
uwtRMS reaches a maximum in sets E2, E11 and potentially in E15
with an excellent agreement with the location where inflection
points appeared in the mean velocity profiles (Figure 4). The
results in Figure 5 are impressive when considering the large
relative increase in uwtRMS relative to (uwtRMS)top, with a ratio ~2
and ~3.5 in coral I and coral II, respectively. Such a large
increase in fluctuations leads to intensive mixing between the
ambient water and the water between the tentacles.

The literature of canopy flows is rich and includes studies of
air flow through forests (Finnigan, 2000 and Belcher et al., 2012),
air flow through urban areas (Britter and Hanna, 2003, and
Ramponi et al., 2015), and water flow through aquatic vegetation
and kelp forests (Nepf, 2012 and Rosman et al., 2007), to name a
few. The identification of the flow around the coral tentacles as a
canopy flow allows us to use the literature to describe the flow
between the tentacles, where the access of the PIV was limited.
The flow structure inside the canopy is typically classified by two
layers; the wake zone (Böhm et al., 2013) and the exchange zone
(Ghisalberti and Nepf, 2006). Momentum from the high
velocities above the canopy penetrates the exchange zone,
generating mixing that drives the flux of momentum, mass,
and energy. At around half the canopy height, where most of
the momentum was adsorbed by the local drag in the exchange
zone, wake turbulence is generated by the local obstacles (the
coral tentacles in our case). The mean and turbulent velocities are
reduced from their peak at the interface down to zero at the
bottom (Moltchanov et al., 2015; Asher et al., 2016). This is the
case in flows above forest canopies, aquatic vegetation, and
branched coral reefs. We suggest that this is also the case here,
between the coral tentacles, where the local velocity field controls
the supply of nutrients, the rate of respiration and
photosynthesis, and the efficiency of particle capture. Although
this mechanistic understanding lays the ground for modeling
and prediction of the transport phenomena, it is understood that
prediction of the flow between the tentacles of the D. favus coral
must considers the ellipse shape of the coral, the role of waves
(Lowe et al., 2008), the tentacles flexibility (Ghisalberti and Nepf,
2006 and du Roure et al., 2019), and the tentacle’s mechanical
properties (Koehl, 1999).

Benthic zooplanktivores such as D. favus corals capture food
particles such as copepods and fish larvae (Sheppard et al., 2018).
They capture their prey using stinging cells (nematocysts) that
extend their tubules into the water (Park et al., 2017). Although
nematocyst’s tubules are impressively long compared to the
Frontiers in Marine Science | www.frontiersin.org 8
diameter of their capsules (10 to 100 times), the distance they
can reach away from the coral surface is limited (a few tens to a
few hundred microns). The number of prey particles in the thin
fluid layer that surrounds the coral and can be reached by the
nematocyst’s tubules is small and is likely to be depleted fast. One
of the benefits of the extended long tentacles is an increased
surface area (Levy et al., 2006), however, such an advantage is
useless if the water contains no prey. As with the supply fluxes
that carry nutrients and dissolved gas from the ambient water to
the coral surface, the availability of prey particles depends on the
ability of hydrodynamic mixing to cross the mean current
streamlines and bring the particles close to the coral tissue.
Levy et al. (2006) reports that the oxygen consumption of
Favia favus during the night, when the tentacles are extended,
is 20% higher than during the day. The increase in O2

consumption may serve as proxy of the energy cost of inflating
the tentacles by the inner cilia (Levy et al., 2006). The results in
Figure 5 suggest that the benefit of this energetic cost is the
intense mixing the tentacles provide. Without this mixing,
nutrients and dissolved gas might not have the time to diffuse
to the coral surface and prey particles might miss the coral
tentacles and the nematocysts reach.

A close examination of the tentacles in Figure 6 (seen also in
Figures 1B, 2D) shows that they contain batteries of stinging cells
along the tentacles, and in particular, a knob-like structure at the
tentacles’ tip, called acrosphere. These acrospheres are
characterized by a dense layer of nematocytes (Acuña and
Garese, 2009; Yosef et al., 2020), exactly where the hydrodynamic
mixing is the highest (see set E2 in Figure 5A and sets E11 and E15
in Figure 5B). One may wonder if the increased number of
nematocysts, exactly where mixing intensity is the highest, is
adaptive for food capture.

Finally, we note that the mixing mechanism shown in Figure 5
joins another mass transfer mechanism that we recently found
(Malul et al., 2020). It was discovered that coral tentaclesmovewith
a phase difference under wave flow conditions. While both
the tentacle velocity and the orbital velocity share the frequency
of the surface waves, the tentacles periodic motion precedes that of
the orbital water velocity, generating higher relative velocities
between the water and the tentacle surface, increasing the mass
transfer fluxes between the ambient water and the coral. We
emphasis, however, that without the canopy mixing reported
here, the impact of the phase difference mechanism is limited to
the available commodities that have reached the coral vicinity.
CONCLUSIONS

Our in-situmeasurements suggest that the flow field in and around
extended tentacles in Dipsastraea favus resembles the
hydrodynamic characteristics of a canopy flow. Canopy flows
occur above forests, urban areas, and aquatic vegetation, and
although they are different in the flowing fluids and length scales,
they sharemanyflowcharacteristics. The canopy region reduces the
fluid velocity between the tentacles and increases the retention time.
The reduced flow speed is likely to make nutrient uptake more
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efficient by increasing the time available for diffusion, and improve
prey capturing, as strong flows can induce prey detachment and
escape.We showed that the canopy region results in a mixing layer
rather thana boundary layer, high root-mean-square velocities, and
an increase in the relativewaveorbital velocity around the tips of the
tentacles. The flow at the far tips of theD. favus tentacles is a source
of instability, equivalent to the upper interface offorest trees and the
roofs in a dense urban neighborhood. The interface interactions
generate large velocity fluctuations and therefore an intensemixing
of mass, momentum, and energy across the interface. While such
flows were investigated intensively for flows through forests and
aquatic vegetation, no such investigation was obtained for the case
of coral tentacles.The idea that thehydrodynamic conditions at that
interface increase the probability of prey capture around the tips of
tentacles is likely the adaptive reason for the unusually high density
of stinging cells at those spots, a characteristic shared by many
members of the phylum Cnidaria.
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