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Sea anemone venom is a marine drug resource library with pharmacological and
biotechnology value, and it contains complex and diverse functional peptide
neurotoxins. However, the venom components of only a limited number of sea
anemone species have been globally evaluated by transcriptomics and proteomics. In
this study, 533 putative protein as well as peptide toxin sequences were found on a large
scale from dissimilar developmental stages of sea anemone Exaiptasia diaphana, which
can be divided into 75 known superfamilies according to the predicted functions. Among
them, the proportion of protein is 72.98%, and its main families are metalloproteases,
chymotrypsinogen like, collagen, pancreatic lipase-associated protein like, and G-protein
coupled receptor, while the proportion of peptides is 27.02%, and main families are ShK
domain, thrombin, Kunitz-type, defensin, as well as insulin-like peptide. Finally, typical
anemone peptide neurotoxins were screened, and the 3D structure and pharmacological
activity of these anemone peptide neurotoxins were predicted by homology modeling. We
elucidate on a valuable high-throughput approach for obtaining sea anemone proteins
and peptides. Our findings form the basis for targeted studies on the diversity as well as
pharmacological effects of sea anemone peptide neurotoxins.
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INTRODUCTION

Sea anemones, which are phylum Cnidaria members, are among the oldest extant lineage of venomous
animals, with fossil and molecular data placing their origins before the Ediacaran period ~750 million
years ago (Jouiaei et al., 2015; Columbus-Shenkar et al., 2018). The venom produced by sea anemone is
mainly used for defense, depredation, and intra- and interspecific competition (Frazao et al., 2012;
Fu et al., 2021). Different from other poisonous animals, the venom of sea anemone is generally
in.org March 2022 | Volume 9 | Article 8565011
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concentrated in structures called nematocysts (a type of cnidae),
which is distributed in different areas of polyps, such as
actinopharynx, tentacles, column, acrorhagi, mesenterial filaments,
but with a high abundance of tentacles (Fautin, 2009; Madio et al.,
2018; Prentis et al., 2018). However, Nv1, the Type I neurotoxin of
the sea anemone Nematostella vectensis, appears in ectodermal
gland cells rather than nematocysts, which reveals another
alternative mechanism of venom delivery in sea anemones
(Moran et al., 2012). Among sea anemone peptides, there are
neurotoxins that block either voltage-gated sodium channels
(VGSCs), acid-sensing ion channels (ASICs), voltage-gated
potassium channels (VGPCs), transient receptor potential
vanilloid 1 (TRPV1), and phospholipases A2 (PLA2) (Diochot
and Lazdunski, 2009; Martins et al., 2009; Moran et al., 2009;
Rodriguez et al., 2014; Monastyrnaya et al., 2016; Cristofori-
Armstrong and Rash, 2017). The ShK toxin from sun anemone
(Stichodactyla helianthus) has been widely investigated (Castaneda
et al., 1995). This peptide can block Kv1.3 channels of T
lymphocytes, which suppresses their activations thereby acting as
treatment options for autoimmune disorders (Beeton et al., 2011;
Chandy and Norton, 2017; Wang et al., 2019). This peptides’
analogue (ShK-186) is a first-inclass clinical candidate dalazatide
and phase I clinical trials completed for psoriasis treatment (Chi
et al., 2012; Tarcha et al., 2012). Other types of toxins have exhibited
activities on pain-associated channels, including the first sea
anemone (Anthopleura elegantissima) toxin specific for the HERG
channel (APETx1), which suppresses ASIC3, an acid pain sensor,
and is involved in inflammatory pathways (Zhang et al., 2007;
Peigneur et al., 2012). p-AnmTX Hcr 1b-2, the first peptide that is
able to inhibit both homomeric ASIC1a and ASIC3, was isolated
from hydrophobic 20% ethanol fraction of Heteractis crispa, which
showed anti-hyperalgesic effect and significantly reduced the pain
threshold of experimental animals in the acid-induced muscle pain
model (Kalina et al., 2018). Analgesic peptides 1-3 (APHC1-3) from
Heteractis crispa, a sea anemone, suppresses TRPV1, which has
various roles such as epilepsy, peripheral neuropathic and cancer
pain (Philyppov et al., 2012; Andreev et al., 2013).

Aiptasia pallida (recently renamed Exaiptasia diaphana) was
used as a model system for studies of cnidarian-dinoflagellate
symbiosis because of its comparatively fast growth rate, abilities
for sexual and asexual reproduction, which will help us better
understand how environmental pressure affects the survival and
growth of corals (Weis et al., 2008; Sunagawa et al., 2009; Lehnert
et al., 2012; Grajales and Rodriguez, 2016). In addition,
Exaiptasia diaphana can also provide a basis for the future
study of regeneration ability, fission, immunity, especially the
ability of biological adhesion (Davey et al., 2019). We evaluated
the venom of Exaiptasia diaphana through transcriptomic
approach. We reveal a set of transcript data that show
previously unreported peptide diversity in Exaiptasia
diaphana, including neurotoxins that may act on VGSCs or
VGPCs, cytotoxic components, protease inhibitors, PLA2,
proteases, lectins, the Cysteine-rich secretory proteins, Antigen
5, as well as Pathogenesis-associated 1 proteins (CAP)
superfamily and various hydrolases. Moreover, we reveal the
complexity of peptides in Exaiptasia diaphana venom as well as
Frontiers in Marine Science | www.frontiersin.org 2
the applications of these compounds in the pharmaceutical
industry. The identified novel peptides and proteins will be
subjects for further structural, functional as well as venom
evolution studies.
RESULTS

Transcriptome Sequence Assembly
Sequencing as well as assembly of the transcriptome of
Exaiptasia diaphana was developed and deposited at the
National Center for Biotechnology Information (NCBI)
database (BioProject: PRJNA694232, and SRA accession:
SRP303227). High-throughput sequencing revealed about
22.31, 23.38 and 20.75 million paired-end short reads with a
length of 150 bp and Q30 were 92.47%, 92.47% and 92.77% for
small, middle and big sea anemones respectively (Table 1). After
filtration of low-quality reads as well as adapters, 21.94, 23.02
and 20.42 gigabases (Gb) of clean data were obtained for every
sample. Clean data ratio was projected to be 98.34%, 98.46% and
98.41% respectively (Table 1). For the whole transcriptome, De
novo assembly of short reads produced 180210 unigenes, and
N50 was determined to be 1271 bp with mean lengths of 794 bp.
Average respective GC levels of contigs and unigenes for the
transcriptome were 40.58% and 42.65% (Table 1). To assess the
functions of unigenes, annotations were done based on 4
databases. The 180210 unigenes were allocated into the
databases, Uniprot (48716 unigenes), Nr (48631 unigenes),
KOG (25973 unigenes), and KEGG (21364 unigenes), while
124166 more unigenes were not annotated in these databases
(Supplementary Figure 1).

About 27769 genes were enriched in 34 KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways, and were
allocated to 5 primary categories: environmental information
processing (3844), cellular processes (3892), genetic information
processing (3804), organismal systems (6936) and metabolism
(9293) (Supplementary Figure 2). Most of the unigenes were
allocated to metabolism, with the global as well as overview maps
exhibiting the highest counts of annotated unigenes (3414).
Another GO analysis illustrated that 139662 unigenes were
annotated into 3 categories: cellular components (37080),
biological processes (58038), and molecular functions (44504)
with binding to be the most enriched one (18132), respectively
(Supplementary Figure 3). We also annotated the functions of
the predicted proteins using Cluster of KOG database. A total of
23202 unigenes were allotted KOG annotations and were
classified into 25 molecular families (Supplementary Figure 4).

Venom Components Identified
in the Transcriptome
In this study, 533 identified transcripts were assigned into 75
groups based on predicted functions, which were projected based
on sequence homologies at amino acid levels with peptides as
well as proteins from UniprotKB databases, among which
72.98% were proteins and 27.02% were peptides (Figure 1 and
Supplementary Table 1). Majority of protein constituents
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corresponded to metalloproteases, chymotrypsinogen like,
pancreatic lipase-related protein like (PLRP like), G-protein
coupled receptor, and collagen, while peptide components
corresponded to the ShK domain, thrombin, Kunitz-type, and
insulin-like peptide and defensin (Figure 1 and Supplementary
Tables 2, 3). In general, a similar finding has been reported in
transcriptomes of other sea anemones (Madio et al., 2017;
Ramirez-Carreto et al., 2019).

Protein and Peptide Toxins From Various
Developmental Stages
A total of 166, 181, 148 putative proteins and peptide toxin
precursors were respectively identified from Small, Middle, and
Big datasets from three body-sized Exaiptasia diaphana.
Comparative distributions of protein as well as peptide toxins
is shown in Figure 2A. Of these putative proteins as well as toxin
precursors, 31 were detected in all three datasets (Ed-S, Ed-M
and Ed-B), 15 were common to both Ed-S and Ed-M, 16 were
shared by Ed-S and Ed-B, and 24 were common to both Ed-M
and Ed-B. The 31 common toxins precursors were classified into
18 superfamilies, such as CAP, ShK domain, metalloproteinase,
triacylglycerol lipase, and defensin.

Fragments per kilobase of exon per million mapped fragment
(FPKM) values were evaluated to denote transcription levels for
every protein and peptide toxin. The top 10 protein as well as
peptide toxins (with highest FPKM values) were chosen from
every dataset (Figure 2B), and ShK domain, triacylglycerol
lipase, CYP17, metalloproteinase, as well as C-type lectin were
transcribed in 3 various developmental stages of Exaiptasia
diaphana. The ShK domain dominantly expressed. Moreover,
Frontiers in Marine Science | www.frontiersin.org 3
in the middle development stage of Exaiptasia diaphana,
collagen levels were the highest, and were comparatively high
in the mature stage.

Typical Sea Anemone Peptide Toxins
Sea anemones are sessile animals, so peptide neurotoxins are very
important in immobilization of prey as well as defenses against
predators. Peptide neurotoxins are among the best characterized
constituents of sea anemone venoms in terms of their action
mechanisms (Madio et al., 2019). They associate with various ion
channels, such as VGSCs (Bosmans and Tytgat, 2007), VGPCs
(Castaneda and Harvey, 2009), ASICs (Cristofori-Armstrong
and Rash, 2017), and TRP channels (Monastyrnaya et al.,
2016; Logashina et al., 2017). Here, 144 peptide toxins were
obtained from the Small, Middle, Big, and Combine datasets of
Exaiptasia diaphana, and named as Ed-001 to 144 in order
(Supplementary Table 3). Cysteine-rich peptides are present in
almost all sea anemone neurotoxins, and diversities of structural
scaffolds among them is notable. The cysteine patterns of the 144
peptides were divided into 11 major categories, each with
different subclasses (Figure 3). The peptides containing 4
cysteines forming 2 disulfide bond patterns (IV) and 6
cysteines forming 3 disulfide bond patterns (VI) are the most
abundant, and their numbers are 37 and 44, respectively. In
addition to peptides with even number of cysteines, there are also
a large number of peptides with odd number of cysteines.

So far, the 3D structure and/or cysteine-pattern of nine
typical anemone peptide toxins have been identified, which are
ShK, Kunitz-domain, b-defensin-like, Anemonia sulcata toxin III
(ATX-III), boundless b-hairpin (BBH), inhibitor cystine-knot
TABLE 1 | Sequencing statistics and assembly summary of sea anemone transcriptome.

Samples Ed-Small (Ed-S) Ed-Middle (Ed-M) Ed-Big (Ed-B) Ed-Combine (Ed-C)

Raw data
Total Reads 22,308,594 23,381,857 20,749,480
Total length (bp) 6,692,578,200 7,014,557,100 6,224,844,000
Read length (bp) 150 150 150
Q20 97.25% 97.27% 97.41%
Q30 92.47% 92.47% 92.77%
Clean data
Total Reads 21,938,221 23,021,969 20,420,369 65,380,559
Total length (bp) 6,581,466,300 6,906,590,700 6,126,110,700 19,614,167,700
Read length (bp) 150 150 150 150
Clean data ratio 98.34% 98.46% 98.41% 98.40%
Contigs
Total Number 188,529 174,224 138,547 338,876
Total Length (bp) 191,659,473 195,504,155 174,644,515 370,324,935
Mean Length (bp) 1,016 1,122 1,260 1,092
N50 (bp) 1,679 2,093 2,670 1,992
N70 (bp) 985 1,091 1,398 1,120
N90 (bp) 408 427 445 411
GC Content 41.98% 40.68% 39.90% 40.58%
Unigenes
Total Number 134,545 119,367 91,092 180,210
Total Length (bp) 107,553,421 95,632,856 76,103,274 143,142,289
Mean Length (bp) 799 801 835 794
N50 (bp) 1,220 1,202 1,520 1,271
N70 (bp) 691 645 636 666
N90 (bp) 332 330 324 315
GC Content 43.94% 42.33% 40.84% 42.65%
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(ICK), epidermal growth factor-like (EGF-like), proline-hinged
asymmetric b-hairpin (PHAB), and small cysteine-rich peptides
(SCRiPs) respectively (Madio et al., 2019). The putative peptide
toxins with typical and unique homologues were ShK domain
(11 homologues), Kunitz-type peptides (10 homologues), b-
defensin-like (5 homologues), and EGF-like (3 homologues).

The ShK domain was named after the ShK toxin, which had
been identified from the venom of Stichodactyla helianthus
Frontiers in Marine Science | www.frontiersin.org 4
(Castaneda et al., 1995). This toxin is a member of Kv type 1
family, which blocks Kv1.1, Kv1.2, Kv1.3, Kv1.6, Kv3.2, and
Kca3.1 channels (Kalman et al., 1998; Rauer et al., 1999; Yan
et al., 2005). ShK blocks Kv1.3, which has important functions in
T and B lymphocyte subsets involved in autoimmune conditions.
Therefore, ShK is potential immune modulator for treatment of
autoimmune diseases (Pennington et al., 1995). ShK analogs
have been developed to be Kv1.3-specific (Beeton et al., 2011).
A B

FIGURE 2 | Comparison of protein as well as peptide toxins transcripts from various Exaiptasia diaphana developmental stages. (A) Relationship of the putative
protein and peptide toxins from Ed-Small, Ed-Middle and Ed-Big datasets of Exaiptasia diaphana. (B) Ten most highly transcribed protein and peptide transcripts
from various Exaiptasia diaphana developmental stages.
FIGURE 1 | Putative protein as well as peptide toxin families in transcriptome of Exaiptasia diaphana. The 533 protein sequences with substantial BLAST hits to
manually curated lists of animal toxins in UniProt (www.uniprot.org/program/Toxins) were allocated into various toxin families based on their amino acid sequences
and cysteine scaffolds.
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The ShK-186 analogue is being developed as a treatment for
autoimmune diseases (Chi et al., 2012). BgK, an ShK domain
peptide from Bunodosoma granulifera, a sea anemone, blocks
Kv1.1, Kv1.2, as well as Kv1.3 potassium channels (Cotton et al.,
1997). Here, eleven homologous sequences with ShK and BgK
were identified, and their cysteine pattern was C-C-C-CX3CX2C,
including the connection mode of disulfide bond as C1-C6, C2-
C4, C3-C5 (Figure 4A). Among these sequences, by using blast
alignment in NCBI, Ed-079, Ed-080 and Ed-081 are the same as
previously reported sequences (GenBank No. KXJ15362.1,
XP_020909625.1 and KXJ06239.1) from Exaiptasia diaphana
in the database, respectively. The homology comparison results
show that the sequence identity of Ed-079 and ShK is 43.75%,
and the sequence identity of Ed-081 and BgK is 33.33%. The
homology modeling prediction results show that Ed-079 and Ed-
81 have similar 3D structures, indicating that they may also act
on potassium channels (Figure 4B). As analogues of ShK and
BgK, they are worthy of in-depth study in the future.

Epidermal growth factor (EGF) family-associated proteins
that have been identified in invertebrates. Among them, L-EGF is
a growth factor secreted from Lymnaea stagnalis, a gastropod
mollusk. Gigantoxin I (w-stichotoxin-Sgt1a), a peptide toxin
Frontiers in Marine Science | www.frontiersin.org 5
from Stichodactyla giganteus, a sea anemone, can paralyze
crabs (Hermann et al., 2004). With regards to sequence
homology, this toxin has EGF activities as shown by rounding
of human epidermoid carcinoma A431 cells (Shiomi et al., 2003).
Moreover, gigantoxin I modulates the activities of TRPV1
channels (Cuypers et al., 2011), however, these activities result
from involvement of the EGF receptor/PLA2/arachidonic acid/
lipoxygenase pathway in indirect TRPV1 activation. Gigantoxin I
was the first toxin that initiated this effect. Therefore, these toxins
may elucidate on TRPV1 channel regulation (Cuypers et al.,
2011). Three homologous sequences with Gigantoxin I were
identified, and their cysteine pattern was C-C-C-CXC-C
(Figure 5A). The homology comparison results show that the
sequence identity of Gigantoxin I, Ed-94, Ed-95 and Human
EGF are 35.71%, 36.36% and 34.09%, respectively. Taking
Human EGF as the template, the homology modeling
prediction results show that Gigantoxin I, Ed-93,Ed-94, and
Ed-95 have similar three-dimensional structures, respectively
(Figure 5B). Given that mammalian EGF as well as its family
members are regularly associated with neoplastic diseases, the
invertebrate EGF family members may inform the designs of
erbB receptor antagonists.
FIGURE 3 | Classification of cysteine patterns of peptide neurotoxins from Exaiptasia diaphana.
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Kunitz-type peptides have been discovered from venoms as
well as glands of various venomous animals, where they are
involved in protease inhibition and ion channel modulation
(Mishra, 2020). In sea anemones, Kunitz-type peptides act on
TRPV and type II Kv channels (Monastyrnaya et al., 2016;
Gladkikh et al., 2020). Various sea anemone type II Kv
channel toxins have dual activities, where they acts as
blockers of potassium channels as well as serine protease
inhibitors, which allows them to serve as defense molecules as
well as neurotoxins for prey immobilization (Honma et al.,
2008; Mishra, 2020). The AsKC1 and ShPI-I are some of the
toxins that suppress proteases and Kv channels. The AsKC1 and
ShPI-I belong to Kunitz-type peptide, which are derived from
Anemonia sulcata and Stichodactyla haddoni, respectively
(Schweitz et al., 1995; Garcia-Fernandez et al., 2016). Seven
homologous sequences with ShPI-I and AsKC-1 were identified,
and their cysteine pattern was CX8CX15CX7CX12CX3C,
including 3 disulfide bridges with C1-C6, C3-C5, C2-C4,
connectivities (Figure 6A). Ed-100 was 98.28% similar to the
thyroglobulin (GenBank XP_020905524.1) from Exaiptasia
diaphana in the NCBI database. The homology comparison
results show that the sequence identity of Ed-100, Ed-097 and
SHPI-1 is both 51.85%. Taking ShPI-I as the template, the
homology modeling prediction results show that AsKC-1, Ed-
100, and Ed-097 are described by an a/b/a motif with a
compact hydrophobic core (Figure 6B). To date, several
Kunitz-type peptides have been retrieved from sea anemone’s,
Frontiers in Marine Science | www.frontiersin.org 6
tentacles, secrete mucus, whole bodies and aggressive organs,
including acrorhagi in various species of the Actiniidae family
(Minagawa et al., 2008).

b-Defensins are essential antimicrobial peptides secreted as
innate immune system constituents in various organisms
(Suarez-Carmona et al., 2015; Shafee et al., 2016). But, in the
sea anemone venom, b-defensin-like peptides are potential
neurotoxins that can block ligand- and voltage-gated ion
channels including NaV types 1, 2 and 4, KV type 3, and
ASIC (Cariello et al., 1989; Ishida et al., 1997; Diochot et al.,
1998; Diochot et al., 2004). APETx1 and CgNa belong to b-
Defensin-like peptids. APETx1 is a 42-amino-acid peptide
toxin of the sea anemone Anthopleura elegantissima, which
suppresses voltage-dependent activation of hERG (Matsumura
et al., 2021). CgNa was purified from Condylactis gigantea, sea
anemone. It inhibits Nav types I and II (Salceda et al., 2007).
Five homologous sequences with sea anemone toxin APETx1
and CgNa were identified, and their cysteine pattern was CXC-
C-C-CC (Figure 7A). These cysteines are paired in a C1–C5,
C2–C4, and C3–C6 fashion to form disulfide bonds that are
importance for maintenance of the compact core b-defensins
configuration. The homology comparison results show that the
sequence identity of Ed-103 and APETx1, Ed-105 and CgNa
are 37.84% and 36.59%, respectively. Taking APETx1 and
CgNa as the template, the homology modeling prediction
results show that Ed-103 and APETx1, Ed-105 and CgNa
have similar 3D structures, respectively (Figure 7B).
A

B

FIGURE 4 | Representative sea anemone mature peptide sequences with ShK domain. (A) Alignments of sea anemone mature peptides with ShK domain.
Cysteines are highlighted in red. (B) Homology modeling prediction of the representative sea anemone mature peptide Ed-079 and Ed-081 with ShK (k-stichotoxin-
She3a, PDB 4LFQ) and BgK (k-actitoxin-Bgr1a, PDB 1BGK).
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Discovery of Insulin-Like Peptide
The insulin-like peptides (ILPs) have been extensively
characterized in invertebrates and vertebrates, with their genes
constituting a bug multi-gene family, including genes that
encode peptides in fishes, cone snails, amphibians, and
mammals (Conlon et al., 1998; Caruso and Sheridan, 2011;
Viscarra et al., 2013; Ahorukomeye et al., 2019). In vertebrates,
the physiological role and structure of insulin are highly
conserved (Conlon, 2001). In contrast, invertebrate insulins are
highly variable with several functions, such as haemolymph
glucose level regulation, neuronal signaling, reproduction,
memory, and growth (Smit et al., 1998; Safavi-Hemami et al.,
2016). In general, a majority of these ILP genes encode a single
pre-propeptide with a signal peptide and adjacent B, C, and A
peptides. In the process of peptide processing, signal peptides are
first removed to form the main active proinsulin. Next, the
proinsulin is transformed into mature peptide insulin by
forming disulfide bonds between cysteine in A peptide and B
peptide, and the C peptide was then removed by a proteolytic
enzyme (Thompson and Di Gregorio, 2015).

Here, five ILPs (ILP-Ap01~05) were obtained from a
transcriptome data of Exaiptasia diaphana, and the alignment
sequence is shown in Figure 8 and Supplementary Table 1.
Multiple sequence alignment of insulin family members,
involving cone snails, fishes, amphibians and mammals,
showed that primary sequences of insulin family members
were poorly conserved, particularly among invertebrates, apart
from the stringently conserved cysteines (Lu et al., 2020). All
ILPs from sea anemones exhibited classic cysteine characteristics
shared by the entire protein family, while sequence identities for
other amino acids with ILPs of other species were low. Two more
cysteines were found in B chain-like domain as a phylum-specific
character for ILPs in platyhelminths, which markedly differed
Frontiers in Marine Science | www.frontiersin.org 7
from findings in other phyla. In addition, compared with human
insulin, a short additional propeptide between B chain and signal
peptides were predicted in all sea anemone ILPs (Figure 8). ILP-
Ap01, ILP-Ap02 and ILP-Ap03 are similar to human insulin and
have contiguous B, C and A peptides. However, A-chain was
inserted between pro-peptide and B-chain in ILP-Ap04 and ILP-
Ap05, resulting in contiguous A, B and C peptides, even the IPL-
Ap05 had no C peptide. Therefore, these novel findings indicate
that the C chain is not necessary for the formation of insulin.

The homologous map of six ILPs shows a basic insulin
structure, including residues that maintain an insulin-type
hydrophobic core and consisting of A and B chains covalently
linked by one intrachain disulfide bond and two interchain
disulfide bonds (Mao et al., 2019). At the same time, the
conserved cysteines with the characteristic amino acid
sequence CCX3CX8C was also shown, which was the result of
the retention distance in A peptide (Mayer et al., 2007). The
projected tertiary structures for ILPs from sea anemone are
shown in Figure 9. The models established by the SWISS-
MODLE (Waterhouse et al., 2018) and I-TASSER server
(Zheng et al., 2019) for every ILP are presented only with the
model exhibiting the highest C-core. The predicted tertiary ILP
structures exhibited great similarities to those of proinsulin from
human. The tertiary ILP structure was assigned into 3 main a-
helices, and a C-domain loop separating helices 1 and 2. The
typical hydrophobic core, which had been formed by the 3 a-
helices was present in all ILP tertiary structures modeled by
SWISS-MODEL and I-TASSER. However, all of the projected
models exhibited same conserved helices as well as functional
hydrophobic core-features that were present in all insulin
family members.

Phylogenetic analyses of ILPs from different species are
shown in Figure 10. All ILPs from different species (sea
A

B

FIGURE 5 | Representative sea anemone mature peptide sequences with EGF. (A) Alignment of sea anemone mature peptides with EGF. Cysteines are highlighted
in red; (B) Homology modeling prediction of the representative sea anemone mature peptide Gigantoxin I, Ed-093, Ed-094 and Ed-095 with Human EGF.
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anemone, fish, Conus, mammals, and amphibians) were clearly
divided into five groups, and sea anemone ILPs had close
evolutionary associations with Conus ILPs, relative to
vertebrates ILPs.
DISCUSSION

Transcriptome technology have recently been applied to explore
protein and neuropeptide from several sea anemone species,
such as Stichodactyla haddoni, Anemonia sulcata, Exaiptasia
pallida, Anthopleura elegantissima, Anthopleura dowii,
Heteractis crispa , Cnidopus japonicus , Oulactis sp. ,
Frontiers in Marine Science | www.frontiersin.org 8
Nematostella vectensis, Megalactis griffithsi, and so on
(Elran et al., 2014; Macrander et al., 2015; Macrander et al.,
2016; Ayala-Sumuano et al., 2017; Madio et al., 2017; Grafskaia
et al., 2018; Davey et al., 2019; Mitchell et al., 2020). Exaiptasia
diaphana has been commonly used as coral symbiosis study
models (Poole et al., 2016; Maire et al., 2021), but responses of its
neuropeptide toxins for predation and defense have been barely
explored. (Lehnert et al., 2012) assembled a transcriptome of
clonal adult population of the aposymbiotic (dinoflagellate-free)
Aiptasia pallida from ~208 million reads, yielding 58,018 contigs.
They have the resource to identify single-nucleotide variants
(SNVs) in the clonal anemone population, approximate Aiptasia
genome sizes to be ~421 M, and detect potential neuropeptide-
A

B

FIGURE 6 | Representative sea anemone mature peptide sequences with Kunitz-type peptides. (A) Alignment of sea anemone mature peptides with Kunitz-type
peptides. Cysteines are highlighted in red; (B) Homology modeling prediction of the representative sea anemone mature peptide AsKC-1,Ed-100 and Ed-097 with
ShPI-I (p-stichotoxin-She2a; PDB 3OFW).
A

B

FIGURE 7 | Representative sea anemone mature peptide sequences with b-defensin-like peptides. (A) Alignment of sea anemone mature peptides with b-defensin-
like peptides. Cysteines are highlighted in red; (B) Homology modeling prediction of the representative sea anemone mature peptide Ed-103 and Ed-105 with
APETx1 (k-actitoxin-Ael2a; PDB7BWI) and CgNa (△-actitoxin-Cgg1a; PDB 2H9X).
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encoding genes. The focus of this transcriptome will form the
basis for future studies to investigate changes in gene expressions
accompanying the re lat ionship with dinoflagel la te
endosymbionts, regulate how symbiotic partners respond to
various stress factors, assess the suitability of this model system
to corals, and complete Aiptasia genome assembly as well
as annotation.

With regards to the variety of sea anemone toxins in pale
anemones (Exaiptasia diaphana) at different developmental
stages, 533 transcripts were detected and grouped into 75 groups
based on their possible functions, and peptide toxins with 72.98%
being proteins and 27.02% being peptides, this result is similar to the
published transcriptome analysis of Stichodactyla haddoni (Madio
et al., 2017). Among them, 166, 181, and 148 putative protein and
toxins transcripts are derived from the three datasets for Small,
Middle, and Big body-sized Exaiptasia diaphana, respectively. The
three datasets suggest that sea anemone Exaiptasia diaphana at
produced the most proteins and toxins in the middle of
development, followed by the early developmental stage, and the
least in the late stage of development. By comparing each two of the
three transcriptomes, of these putative protein and toxins, 31 were
identified in all the three datasets, which were classified into 18
superfamilies. Majority of the protein constituents corresponded to
metalloproteases, chymotrypsinogen like, PLRP like, collagen, as
well as G-protein coupled receptor, while peptide constituents
corresponded to Kunitz-type, EGF-like, defensin, ShK domain,
and insulin-like. Among these proteins and peptides, the ShK
domain was dominantly expressed, and its roles involved
capturing prey, defense as well as in intraspecific competition.
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Moreover, collagen levels were highest in the middle
developmental stage of Exaiptasia diaphana, and relatively
elevated in the mature developmental stage. Elevated collagen
levels may be associated with adhesive abilities of sea anemones.
(Davey et al., 2019) found that adhesions of Exaiptasia pallida pedal
disc may be achieved via secretions of extracellular matrix-like
proteinaceous matrices made up of collagen, proteoglycans,
glycoproteins, and lectins. Venom is already present in the early
life stages of the sea anemone, and its composition can change
dramatically throughout its life cycle (Sachkova et al., 2019).
Columbus-Shenkar and his team study the changes of different
toxin expression levels in different developmental stages of
Nematostella vectensis, and suggested that venom composition
changes across development and that the changes were related to
the differences of interspecific interactions in its life stage
(Columbus-Shenkar et al., 2018). Recent studies have found that
the functional toxin profiles of different anatomical regions in sea
anemones are related to their ecological function (Ashwood et al.,
2022). Because sea anemones do not have a centralized venom
system, but have nematocysts distributed in the entire body, it is
possible to realize the functional specialization of venom in a
specific tissue based on the function of the tissue (Mccabe and
Mackessy, 2015; Surm et al., 2019).

All sea anemone neurotoxins are virtually made up of
cysteine-rich peptides, and structural scaffold diversity among
these is significant. To data, there is no literature report on the
systematic classification and nomenclature of cysteine patterns of
sea anemone neurotoxin peptides. In this study, a total of 144
cysteine-rich peptides were found from the transcriptomic data
FIGURE 8 | Alignments of the human insulin and five insulin-like peptides (ILPs) from Exaiptasia diaphana. The conserved cysteines are highlighted in red shade.
Signal peptide, propeptide and C chain are respectively shown in yellow, purple, and blue. The A chain and B chain boundaries are shown in the red box.
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of sea anemone Exaiptasia diaphana. We tried to simply sort and
classify the cysteine patterns of these peptides. According to the
amount of cysteine, the cysteine patterns of these peptides can be
divided into 11 major categories, using II-XII respectively,
because there is no single cysteine. Further, cysteine pattern is
divided into different subclasses according to the amino acids
between cysteine. The peptides containing 4 cysteines forming 2
disulfide bond patterns (IV-type) and 6 cysteines forming 3
disulfide bond patterns (VI-type) are the most abundant.
Usually, even numbers of cysteine rich peptides are obtained
from venom to form intramolecular disulfide bonds, while a
large number of odd cysteines are found in sea anemone
neuropeptides, which may exist in the form of polymers to
form intermolecular disulfide bonds.

In the family classificationof144peptides, themost abundantand
pharmacologically valuable sea anemone peptide family is ShK
domain, Kunitz-type, EGF-like, and defensin. The ShK domain
peptides blocked Kv channels, especially potential Kv1.3, which
has an important role in T and B lymphocyte subsets involved in
autoimmune diseases (Chi et al., 2012). Therefore, ShK domain
peptides are probable immune modulators for autoimmune disease
treatment. Shafee et al. studied the evolution of the biophysical
properties of sequences within the ShK domain (Shafee et al., 2019).
This chemical spatial analysis can be used as a guide for selecting
sequences for functional studies, and can help to understand the
evolutionof these highly divergent sequenceswith ancient conserved
folds. EGF peptides modulate TRPV1 channel activities, however,
Frontiers in Marine Science | www.frontiersin.org 10
these activities result from involvement of the EGF receptor/PLA2/
arachidonic acid/lipoxygenasepathway in indirectTRPV1activation
(Cuypers et al., 2011).Therefore, this toxingroupmightbe important
in elucidationof regulationofTRPV1channels.Kunitz-typepeptides
act on TRPV and type II Kv channels (Andreev et al., 2008; Peigneur
et al., 2011). Some type II Kv channel toxins exhibit dual activities, as
they act as suppressors of serine proteases and potassium channel
blockers, which enables them to serve as defensemolecules as well as
neurotoxins for prey immobilizations (Honma et al., 2008; Mishra,
2020).b-defensin-like peptides are neurotoxins for blocking voltage-
and ligand-gated ion channels includingKv type 4,Nav type 1, 2 and
4, and ASIC (Cariello et al., 1989; Ishida et al., 1997; Diochot et al.,
1998; Diochot et al., 2004), and also inhibit the voltage-dependent
activation of hERG (Matsumura et al., 2021).

Interestingly, five novel ILPs were identified from the
transcriptomic data of sea anemone Exaiptasia diaphana. ILP-
Ap01~03 are similar to human insulin and have contiguous B, C
and A peptides. However, A-chain was inserted between propeptide
and B-chain in ILP-Ap04 and ILP-Ap05, resulting in contiguous A,
B and C peptides, even the IPL-Ap05 had no C peptide. Therefore,
these findings indicate that the C chain is not necessary for the
formation of insulin. With similar research, several ILPs were
identified in the tentacle transcriptomes of Oulactis sp. (Mitchell
et al., 2020). The representative ILP-IlO1-i1did not bind to the
insulin orinsulin-like growth factor receptors, but showed weak
activity against KV1.2, 1.3, 3.1, and 11.1 (hERG) channels, as well as
NaV1.4 channels (Mitchell et al., 2021). In addition, two fish-
FIGURE 9 | Comparisons of tertiary structures for human insulin with predicted 3D models for ILPs from Exaiptasia diaphana. 3D structure for human pro-insulin
was downloaded from Protein Data Bank (PDB ID: 2kqp). The 3 functional helices as well as hydrophobic cores are shown. Colors denote the A chain (blue), the C
chain (yellow-cyan) and the B chain (red) for all peptides. All ILP models were predicted without signal peptides or the propeptide before the B chain.
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hunting cone snails, Conus tulipa and Conus geographus, have
special insulins that are major constituents of their venoms
(Safavi-Hemami et al., 2016). These insulins have great similarity
to fish insulins compared to molluscan hormones and are unique
because of the presence of post-translational modifications that are
characteristic of conotoxins. When venom insulin is injected into
fish, it induces hypoglycemic shock, which is associated with
suppressed blood glucose. Therefore, for various fish-hunting
cone snails, insulin is a weapon for prey capture. The cluster tree
showed that the relationship between sea anemone insulin and
conoinsulin was very close, indicating that sea anemone ILPs was
also used for predation. Studies should elucidate on structural
elements of insulin that are important for subtle regulations of
these hormones.
MATERIALS AND METHODS

Sample Collection and RNA Extraction
Exaiptasia diaphana were collected in offshore areas of Lingshui
City (18°40 E, 109°95 N), Hainan province, China, on August 17,
Frontiers in Marine Science | www.frontiersin.org 11
2020. A total of 3 Exaiptasia diaphana were collected at each
developmental stage (including early stage, middle stage and
mature stage). The mixture of 3 anemone whole body was used
for total RNA extraction, respectively. RNA integrity number
(RIN) values of extracted RNA were assessed by an Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Then, 3
Illumina cDNA libraries were separately build using qualified
RNA from various developmental stages. The libraries were
sequenced on an Illumina HiSeq4000 platform (Illumina, San
Diego, CA, USA) at BGI-Tech (BGI, Shenzhen, Guangdong, China).

Sequence Analyses and Assembly
SOAPnuke software (Li et al., 2008)was employed tofilter readswith
sequencing adaptors, as well as reads with > 10% of non-sequenced
bases or > 50%of low-quality bases (≤10was the base quality score).
Trinity v2.5.1 (Haas et al., 2013) was used for assembling the
remaining clean reads into contigs, which were then clustered
based on sequence similarities and thereafter assembled into
consensus unigenes via TGICL v2.1 (Pertea et al., 2003). We used
the a Bowtie 2 read aligner to align clean reads with the de novo
assembled assembly to evaluate values of gene transcriptions in
FIGURE 10 | A phylogenetic analysis of the insulin-like peptides (ILPs) from different species. The tree was built via the NJ method. The reliability of every branch
was evaluated using 1000 bootstrap replications.
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assembled transcriptomes (Langmead and Salzberg, 2012). The
established alignments were analyzed by RNA-Seq by Expectation
Maximization (RSEM) v1.2.31 for transcript abundance estimation
in FPKM terms (Li and Dewey, 2011).

Functional Annotations of Transcripts
This objective was achieved by searching various public
databases (with E-value ≤ 10−5 as the threshold) including
InterPro (Finn et al., 2017), Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa and Goto, 2000), NCBI Nr and Nt,
UniProtKB/Swiss-Prot (Boeckmann et al., 2003), Clusters of
Orthologous Groups (COG) (Tatusov et al., 2000) and Gene
Ontology (GO). Blast2GO v4.1 (Conesa et al., 2005) was used to
conduct GO annotations of Nr blast findings.

Identification of Protein and
Peptide Toxins
Homolog searches as well as an ab initio prediction approach
was used for predicting sea anemone protein and peptide toxins
from 3 transcriptome datasets. With regards to homologous
predictions, sea anemone protein and peptide toxins from the
BLAST database were used to build a local reference dataset.
Then, BLASTX (with an E-value of 1e-5) was used to run the
assembled sequences against a local dataset. Unigenes with best
hits in BLASTX data were transformed into aa sequences. The
three datasets of sea anemone protein and peptide toxins were
allocated into various classes based on superfamily as well as
family classification in BLAST database.

Classification of Protein and
Peptide Toxins Superfamilies
Manual inspection of predicted sea anemone protein and peptide
transcripts was done by the BLAST database. Transcripts with
duplicate or truncated mature region sequences were eliminated.
Gene superfamilies, signal peptides, as well as cysteine frameworks
of the peptide and protein toxins were checked for verification.
Based on 75% identity of highly conserved signal peptide
sequences, protein and peptide toxins were allocated into known
superfamilies in the BLAST database. Those protein and peptide
toxins with low similarity were classified as unknown groups.

Alignment, Homology Modelling as Well as
Phylogenetic Analyses
Concatenated amino-acid alignments of the signal domains of all
superfamilies were performed using MUSCLE v.3.8.3 (Edgar,
2004). Before phylogenetic analyses, divergent and indistinctly
aligned blocks were eliminated by the Gblocks software. Then,
JModelTest and Prottest3.2 (Darriba et al., 2011) were used for
selection of the best-fitted model. Phylogenetic analyses were
performed by the maximum likelihood approach with
RAxML8.1, and the trees was visualized and annotated using
the tree viewer of MEGA4 (Stamatakis, 2006). The 1,000 bootstrap
pseudoreplicates were used to assess statistical supports.

The 3D structure model of putative peptides were developed
from primary amino acid sequences via homology modelling on
a SWISS-Model server in combination with threading-based
Frontiers in Marine Science | www.frontiersin.org 12
LOMETS on an I-TASSER server (Waterhouse et al., 2018; Zheng
et al., 2019). In the SWISS-Model server, the homologous
sequences with sequence identify than 50% were selected as
the template, and the QMEAN score was used to evaluate the
model quality.

Sequence alignments as well as phylogenetic analyses of
members of insulin/relaxin family from sea anemone, fish,
Conus, mammals, and amphibians were acquired from UniProt
(Supplementary Table 3; www.uniprot.org/);. Boundary
identifications for A and B chains of the peptides were
conducted according to sequence annotations in this database.
Sequence alignments were done by CLUSTALW, after which they
were manually checked using the BIOEDI software. Phylogenetic
analyses of platyhelminth ILPs were conducted using NJ and
maximum likelihood approaches implemented in MEGA. The
settings were: Poisson substitution models and bootstrap test
approached with 1000 replications.
CONCLUSIONS

In this study, 533 protein and neuropeptide toxin sequences were
obtained, which were divided into 75 known families. Majority of
the proteins were metalloproteases, PLRP like, collagen,
chymotrypsinogen like, and G-protein coupled receptor, while
the peptides corresponded to ShK domain, defensin, thrombin,
Kunitz-type, and insulin-like peptides. Collagen and ShK
domain were the dominant expression, and collagen was
associated with adhesive abilities of sea anemones, and
neuropeptide toxins are for predation, defense and intraspecific
competition. Our findings form a basis for further studies on
genetic resources, diversity and genetic evolution of the
functional proteins and neuropeptide toxins of Exaiptasia
diaphana at various developmental stages.
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