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Unraveling the assembly mechanism is a core research topic of microbial ecology.
Abundant and rare microbial communities are crucial for diversity, function and host
health in a given ecosystem, but few studies focused on their assembly strategies. Here,
we explored the microbial diversity of abundant and rare communities of water, shrimp
intestine and sediment habitats in the shrimp cultural ponds. Our results found that the
numbers of rare operational taxonomic units (OTUs) (6,003, 4,566 and 8,237 OTUs of
water, intestine and sediment) was dozens of times more than abundant ones (only 199,
157 and 122 OTUs of water, intestine and sediment). The community diversity of
abundant and rare microbial taxa was markedly different, as well as their taxonomic
composition. Despite different diversity, similar abundance-occupancy relationship and
biogeographic patterns between the abundant and rare microbial communities were
observed, with much stronger obvious distance-decay relationships for rare community
than abundant community. Furthermore, stochastic processes dominated the community
assemblies of both abundant and rare microbial taxa, and deterministic process
contributed more microbial community variation to rare taxa than abundant taxa. All the
findings advance our understanding on the community assembly strategies of abundant
and rare microbial taxa and prompt the contributions of abundant and rare microbial
community to the aquat ic ecosystems, which wi l l improve aquaculture
management strategy.

Keywords: microbial community, rare taxa, abundant taxa, multiple habitats, aquaculture pond ecosystem, shrimp
INTRODUCTION

Microorganisms in ecosystems usually present a skewed abundance distribution, because a mass of
rare species coexisting alongside relatively few abundant ones (Sogin et al., 2006). Generally,
abundant and rare taxa exhibit disparate distribution patterns and functional traits (Pedrós-Alió,
2012). Abundant taxa are considered to be the most important for ecosystem functions (Cottrell and
in.org May 2022 | Volume 9 | Article 8561261
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Kirchman, 2003), but rare taxa are also indispensable that serve
as limitless repositories of phylogenetic diversity and play a
disproportionate role in functions (Jousset et al., 2017; Jia
et al., 2018). Thus, distinguishing community assemblies
between abundant and rare taxa is helpful for understanding
microbial ecosystem processes and functions.

Different ecological processes regulate the microbial assemblies
of abundant and rare communities. One study showed a more
deterministic assembly of abundant bacterial community but a
more stochastic assembly of rare community in water from
subtropical bays (Mo et al., 2018). By contrast, stochastic
processes play a key role in shaping the microeukaryotic
variation of both abundant and rare communities of water in
river (Chen et al., 2019), as well as of water in lake, reservoir and
bay (Liu et al., 2015; Zhao et al., 2017; Zhang et al., 2019). These
studies have deepened our understanding of different patterns and
assemblies of abundant and rare communities in aquatic
ecosystems, but they have focused primarily on a single habitat.
In fact, the aquatic ecosystem is a complex system of multiple
habitats, abundant and rare communities of multiple habitats
constitute a metacommunity, and that contribute to the overall
microbial diversity and functions (Escalas et al., 2013; Bolnick
et al., 2014; Escalas et al., 2015). Therefore, it is necessary to clarify
the microbial assembly mechanisms of abundant and rare
communities among multiple habitats within a metacommunity
framework in a given ecosystem.

Aquaculture is a typical artificial production model, and has
become the third largest animal protein source globally, but
frequent occurrence of diseases has threatened its development
(FAO, 2018). Microorganisms of multiple habitats (e.g., water,
sediment and animal intestines) in aquaculture ecosystems
modulate many ecosystem services, including the water quality,
animal health and disease control (Moriarty, 1997; Zhou et al.,
2009; Assefa and Abunna, 2018). Many studies show that the
microbial assembly and relationships of animal intestines and
environments in aquaculture ecosystems is closely related to the
host health (Xiong et al., 2017; Xiong et al., 2018; Huang et al.,
2020; Huang et al., 2021), and ultimately affects the aquaculture
output. Thus, revealing assembly mechanisms and relationship
of animal intestine and environment communities could
facilitate microbiota management for promoting the
productivity in aquaculture. Importantly, microorganisms of
animal intestines and environments in aquaculture ecosystems
also present a skewed abundance distribution. Microbial species
tend to be rare taxa in one habitat but abundant in another, and
vice versa; and many species (especially opportunistic pathogens)
that are rare taxa in environments tend to be abundant taxa in
animal intestines, which can cause disease outbreaks (Schryver
and Vadstein, 2014; Del’Duca et al., 2015; Zhang et al., 2020).
Therefore, it is necessary to distinguish the distribution
characteristics and assembly mechanisms of abundant and rare
microbial communities in aquaculture ecosystems.

In this study, we took the Litopenaeus vannamei (the most
widely marine cultured shrimp species in the world) cultural
pond ecosystems as the research object and aimed to investigate
the microbial patterns at abundant and rare levels of water,
Frontiers in Marine Science | www.frontiersin.org 2
shrimp intestine and sediment habitats and expound the key
ecological processes that driving abundant and rare community
assembly of three habitats. We mainly found that (i) the rare taxa
are served as huge repositories of microbial diversity in the
cultural ponds, and the community diversity, taxonomic
composition and sources of abundant and rare taxa were
markedly different; (ii) similar abundance-occupancy
relationship and biogeographic patterns between the abundant
and rare microbial communities were observed, with much
stronger obvious distance-decay relationships for rare
community than that of abundant community; (iii) the
stochastic processes dominated the community assemblies of
both abundant and rare taxa, and the deterministic process
contributed more community variation to rare taxa than that
to abundant taxa. Our results could be helpful understanding the
microbial diversity for abundant and rare communities in
aquatic ecosystems, and contribute to the microbiota
management in aquaculture.
MATERIALS AND METHODS

Sample Collection and Environmental
Factor Analyses
Forty L. vannamei cultural ponds at five regional sites in China
(19.20°-24.06° N, 108.56°-117.86° E) were chosen, which with the
similar pond area, water depth and stocking density (Table S1).
Three parallel water/shrimp intestine/sediment samples were
collected form each pond, so a total of 360 samples were
collected. Sample collections (Hou et al., 2018a and Hou et al.,
2018b) and environmental factor analyses of water and sediment
samples (Hou et al., 2017 and Hou et al., 2021) were detailed in
our previous study. Physicochemical factor results were
described in the Tables S2, S3, respectively.

DNA Extraction and 16S rRNA Gene
Amplicon Sequencing
Water and intestine/sediment DNA was extracted using the
Water DNA Isolation Kit (Omega Bio-tek, Doraville, GA,
USA) and PowerFecal/Soil DNA Isolation Kit (Mobio,
Carlsbad, CA, USA), respectively. The V3-V4 regions of 16S
rRNA gene were amplified by the primer set of 338F (5’-
ACTCCTACGGGAGGCA GCAG-3 ’) and 806R (5 ’-
GGACTACHVGGGTWTCTAAT-3’), and then the PCR
products were combined equally and sequenced by the
Illumina MiSeq platform (Illumina, San Diego, USA). To
completely cover the microbes, we mixed the sequencing data
of three parallel water/intestine/sediment samples in each pond
for further analysis. The FLASH was used to merge the paired-
end sequences, and then the QIIME (version 1.9.0) was
employed to process the merged sequences (Caporaso et al.,
2010; Magoč and Salzberg, 2011). Then, the chimeric sequences
were removed by the UCHIME (Edgar et al., 2011). A distance-
based identity of sequences with ≥ 97% were grouped into
operational taxonomic units (OTUs) using the UCLUST.
Finally, we used the RDP Classifier algorithm (Silva SSU
May 2022 | Volume 9 | Article 856126
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database 132) to select the most abundant sequence from OTU as
a representative and classified into a closed reference genome.
Sequence data were stored in the NCBI under the accession
number PRJNA545396.

Classification of Abundant and Rare OTUs
We classified all OTUs of each habitat into six categories: always
abundant taxa (AAT, with a relative abundance ≥ 1% in all
samples of each habitat); conditionally abundant taxa (CAT, ≥
0.01% in all samples and ≥ 1% in some samples); always rare taxa
(ART, < 0.01% in all samples); conditionally rare taxa (CRT, <
0.01% in some samples but never ≥ 1% in any sample); moderate
taxa (MT, from 0.01% to 1% in all samples); conditionally rare and
abundant taxa [CRAT, ranging from rare (< 0.01%) to abundant
(≥ 1%)] (Logares et al., 2014; Liu et al., 2015; Chen et al., 2017).
Thus, abundant OTUs included the AAT, CAT and CRAT, and
rare OTUs covered the ART and CRT.

Estimation of Ecological Processes
Weemployed themeannearest taxondistancemeasure to determine
which ecological processes govern the microbial assembly. The
weighted beta nearest taxon index (b-NTI) was calculated (Webb
et al., 2002;Kembel, 2009) andOTUswas separated into twopairwise
communities. Then, the b-NTI combined with Bray-Curtis-based
Raup-Crick (RCBray) was employed to quantify the influence of five
major processes governing the communities (Stegen et al., 2013).
When b-NTI > 2/< 2, the community turnover determined by the
heterogeneous selection/homogeneous selection (Dini-Andreote
et al., 2015). When |b-NTI | < 2, RCBray > 0.95/< -0.95 represented
the influences of dispersal limitation/homogenizing dispersal, while |
RCBray| < 0.95, indicated the ecological drift (Stegen et al., 2015). The
Sloanneutral communitymodel (SNCM) (Sloan et al., 2006)was also
used to predict the relationship between OTUs detection frequency
andtheirabundance.Weseparatelyusedthedatasetsofabundantand
rare OTUs from each habitat, and the OTUs from each dataset were
subsequently separated into three partitions with whether they
occurred more/less/within frequently (above/below/neutral
partition) than the 95% confidence interval of the SNCM
predictions. All computations were performed in the R (version
3.2.3) (R Core Team, 2017).

Statistical Analysis
The non-metric multidimensional scaling (NMDS) and analysis
of similarity (ANOSIM) were explored the differences in
abundant/rare community of each habitat. The relationships
among microbial communities of three habitats were analyzed
by the Venn and Chord Diagram analyses. Then, the
contributions of different sources to community of each habitat
were estimated using the fast expectation-maximization
microbial source tracking (FEAST) (Shenhav et al., 2019), with
abundant/rare microbial OTUs of one habitat as the sink, and the
whole community of other two habitats as the sources. The
Spearman’s rank correlation was analyzed the relationship
between dissimilarity of abundant/rare community and
geographic distance of each habitat, as well as abundance-
occupancy relationship. The Mantel test was used to examine
the correlations between the environmental factors and water/
Frontiers in Marine Science | www.frontiersin.org 3
sediment community structure (999 permutations) (Oksanen
et al., 2015).
RESULTS

Differences of Diversity or Taxonomic
Composition of Abundant and Rare Taxa
In total, 199 (the relative abundance with 75.14% of total
sequences), 157 (83.39%), and 122 (30.71%) OTUs were
considered to be abundant taxa of water, intestine and
sediment habitats, while 6,003 (24.60%), 4,566 (16.61%), and
6,948 (68.52%) OTUs were classified as rare taxa (Table 1). For
abundant community, only 5 (5.66%), 2 (3.52%) and 5 (2.57%)
OTUs were CAT, while 194 (69.94%), 155 (79.88%) and 122
(26.29%) OTUs were CRAT, and for rare community, 3,719
(only 0.69%), 2,514 (only 0.56%) and 1,289 (only 0.66%) OTUs
were ART, while 2,284 (23.91%), 2,052 (16.04%) and 6,948
(67.86%) OTUs were CRT (Table 1). Accordingly, the
numbers of rare OTUs was dozens of times more than
abundant ones, but their relative abundance was only about
one-fifth that of abundant ones in water and shrimp intestine;
and differently, the numbers of rare OTUs was also dozens of
times more than abundant ones with their relative abundance
was more than twice as abundant ones in sediment. Further, the
great mass of OTUs of three habitats were assigned to
Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria
and Chloroflexi, and the relative abundance of Proteobacteria
was highest in intestine (Table S4). For abundant or rare taxa,
the most diverse OTUs of three habitats were assigned to
different phyla (Figure S1). At the genus level, the most
abundant OTUs were assigned to Cyanobium, Vibrio,
Photobacterium, Candidatus Bacilloplasma and Shewanella,
and Cyanobium was the highest in water, whereas other four
genera that of intestine (Table S5). Thus, the rare taxa are served
as huge repositories of microbial diversity in the shrimp cultural
ponds, and the community diversity and taxonomic composition
of abundant and rare taxa of each habitat was markedly different.

Differences of Sources for Abundant and
Rare Microbial Communities
Venn analysis results found that lots of OTUs shared in three
habitats: total 3,876 OTUs were commonly present in three
habitats, and the number of OTUs was found to be in any two
habitats: 3,950 (water, 83.63%) or 4,604 (sediment, 97.48%) out
of 4,723 intestine OTUs, 3,950 (intestine, 63.68%) or 6,074
(sediment, 97.92%) out of 6,203 water OTUs, and 4,604
(intestine, 55.05%) or 6,074 (water, 72.63%) out of 8,363
sediment OTUs (Figure S2). Then, the Chord Diagram results
indicated that, for the microbial OTUs that shared in any two
habitats, most of rare OTUs in one habitat were also belonged to
rare OTUs in another but some of them were belonged to
abundant, while OTUs that were abundant in one habitat were
almost always rare in another (Figure 1A). Of interest, the Vibrio
OTUs were as abundant taxa in shrimp intestine but as rare taxa
in water and sediment (Table S6). Such close relationships were
May 2022 | Volume 9 | Article 856126
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TABLE 1 | General description of abundant and rare microbial OTUs datasets in water, shrimp intestine and sediment habitats.

Water Shrimp intestine Sediment

OTUs Abundance OTUs occurred in >50%
of samples (Abundance)

OTUs Abundance OTUs occurred in >50%
of samples (Abundance)

OTUs Abundance OTUs occurred in >50%
of samples (Abundance)

AT AAT 0 0% 0 (0%) 0 0% 0 (0%) 0 0% 0 (0%)
CAT 5 5.66% 5 (5.66%) 2 3.52% 2 (3.52%) 5 2.57% 5 (2.57%)
CRAT 194 69.49% 141 (62.62%) 155 79.88% 121 (74.74%) 117 28.14% 97 (26.29%)
Total 199 75.14% 146 (68.28%) 157 83.39% 123 (78.26%) 122 30.71% 102 (28.86%)

RT ART 3,719 0.69% 5 (0.01%) 2,514 0.56% 0 (0%) 1,289 0.66% 18 (0.03%)
CRT 2,284 23.91% 437 (13.32%) 2,052 16.04% 365 (9.46%) 6,948 67.86% 2,042 (47.39%)
Total 6,003 24.60% 442 (13.33%) 4,566 16.61% 365 (9.46%) 8,237 68.52% 2,060 (47.42%)
MT 1 0.26% 1 (0.26%) 0 0% 0 (0%) 4 0.76% 4 (0.76%)

Total 6,203 100% 589 (81.87%) 4,723 100% 488 (87.72%) 8,363 100% 2,166 (77.04%)

Hou et al. Abundant and Rare Community Contributions
observed among abundant and/or rare communities of
three habitats. The FEAST results further showed that,
for abundant or rare community of water, the most dominant
source was sediment (an average of 64.09% or 31.92%), followed
by shrimp intestine (24.62% or 19.94%) (Figure 1B). For
abundant community of intestine, the water and sediment
source accounted for nearly a quarter; but for rare community,
the sediment source was more than half (Figure 1C). While
for abundant community of sediment, the most dominant source
was intestine (51.26%), and the source from water and intestine
attributed 25.02% and 24.12% for rare community of sediment
(Figure 1D). These results suggest that the sources of abundant
and rare communities of each habitat were markedly different,
and sediment community was the most important source
A

B C

FIGURE 1 | Relationship among communities of three habitats. (A) The Chord Diagr
communities among water, shrimp intestine and sediment habitats. (B–D) The FEAST
and sediment to each other’s abundant community or rare community.
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for abundant community of water and rare community of
shrimp intestine.

Abundance-Occupancy Relationship of
Abundant and Rare Microbial OTUs
Then, we investigated the abundance-occupancy relationship
of each habitat, and found that the relative abundance
of abundant (r2 = 0.663, 0.549 and 0.767 of water, shrimp
intestine and sediment, respectively) or rare (r2 = 0.830, 0.850 and
0.784, respectively) OTUs and sites occupied were significantly (P <
0.001 in all cases) positively correlated (Figure 2). To be specific, the
most abundant OTUs occupied >50% of water (146 out of 199
OTUs with relative abundance accounted for 68.28%), intestine
(123 out of 157 with 78.26%) and sediment (102 out of 122
D

am analysis showed that the close relationships among abundant and/or rare
analysis results of the contributions of whole communities in water, intestine

May 2022 | Volume 9 | Article 856126
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FIGURE 2 | Abundance-occupancy relationship of abundant and rare OTUs. Spearman’s rank correlation between the mean relative abundance of abundant and
rare OTUs and number of samples occupied (n is the number of OTUs).

Hou et al. Abundant and Rare Community Contributions
withonly 28.86%) samples (Table 1). By contrast, only few rare
OTUs were identified in >50% of water or intestine samples (only
442 or 365 out of 6,003 or 4,556 OTUs with 13.33% or 9.46%), but
2,060 OTUs (out of 8,237 OTUs with 47.42%) occupied >50% of
sediment samples (Table 1).

Geographic Patterns of Abundant and
Rare Microbial Communities
We further observed that the abundant or rare community of
each habitat significantly (P < 0.001 in all case) differed between
any two of compared sites (Figure S3). We further calculated
distance decay curves and found that the community similarity
and geographic distance showed significantly (P < 0.05 in all cases)
negative correlations for both the abundant (r2 = 0.072, 0.008
and 0.063 of water, intestine and sediment, respectively) and
rare communities (r2 = 0.199, 0.025 and 0.107, respectively)
(Figure 3). Thus, abundant and rare communities of each habitat
FIGURE 3 | The Spearman’s rank correlations between the community similarity of a

Frontiers in Marine Science | www.frontiersin.org 5
exhibit the significant distance-decay relationship (DDRs), and
the DDRs of rare community were much stronger than that of
abundant of each habitat.
Stochastic Processes Largely Controlled
the Microbial Community Assemblies

Finally, we found that ~70% of microbial variations at abundant
and rare taxa levels of all three habitats were controlled by
the dispersal (dispersal limitation contributed over 60%) and
drift, followed by the selection; and interestingly, a litter higher
microbial variations controlled by the dispersal limitation for
abundant community than rare (Figure 4). Thus, stochastic
processes dominated the community assembly of abundant
and rare taxa of each habitat, which were also confirmed by
the SNCM results (Figure S4). Additionally, much higher
microbial variations were controlled by the deterministic
bundant or rare microbial taxa and geographic distance.

May 2022 | Volume 9 | Article 856126
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process for rare community than that for abundant (Figure 4).
The Mantel test results further revealed that spatial and
physicochemical factors had significantly (P < 0.05 in all cases)
influence on the community structure (Table 2). Especially,
salinity (r = 0.301 and 0.543) and temperature (r = 0.313 and
0.432) were the best predictors for community structure in both
abundant and rare taxa of water, while TN (r = 0.340 and 0.403)
for that of sediment (Table 2).

DISCUSSION
The knowledge on abundant and rare taxa has accumulated
rapidly in recent years, but little is known about their community
Frontiers in Marine Science | www.frontiersin.org 6
diversity and assembly mechanism of multiple habitats in a given
ecosystem. In this study, we emphasized the importance of rare
taxa to the microbial diversity in aquaculture cultural ponds, and
provided the evidences for exploring differences in microbial
diversity and assembly mechanism between abundant and rare
communities of multiple habitats in aquatic ecosystems.

Typically, the distribution of microbial abundance in
environments was skewed. For instance, Mo et al. (2018)
reported that only 0.44% of bacterial OTUs (over 50% of
average relative abundance) were considered to be abundant
taxa, but ~80% OTUs (only 6%) were classified as rare taxa of
water in subtropical bays. These results indicated that the rare taxa
TABLE 2 | The Mantel test results of physicochemical variables against the microbial community structure of abundant and rare taxa of water or sediment habitat. .

Habitat Community level Physicochemical variables

Water GD pH Salinity DO Temperature TC TN TP TOC
abundant 0.382** 0.218** 0.301** 0.055 0.313** 0.195* 0.075 0.228** 0.204*
rare 0.400** 0.271** 0.543** 0.067 0.432** 0.282** 0.079 0.161* 0.221**

C/N C/P N/P NH4 NO2 NO3 DIN PO4
abundant 0.312** 0.011 0.071 0.038 -0.014 0.044 0.110 0.284**
rare 0.279** -0.037 0.004 0.165** 0.025 0.069 0.156** 0.212**

Sediment GD pH TC TN TP TOC C/N C/P N/P
abundant 0.323** 0.186** 0.160** 0.340** 0.121* 0.147* 0.017 -0.013 0.053

　 rare 0.334** 0.165** 0.149** 0.403** 0.133* 0.143** 0.065 0.086 0.034
Ma
y 2022 | Volu
me 9 | Article
* P < 0.05; ** P < 0.01. GD, DO, TC, TN, TP, TOC, C/N, C/P, N/P, NH4, NO2, NO3, DIN and PO4 represent the geographic distance, dissolved oxygen, total carbon, total nitrogen, total
phosphorus, total organic carbon, ratio of total carbon to total nitrogen, ratio of total carbon to total phosphorus, ratio of total nitrogen to total phosphorus, ammonia nitrogen, nitrite
nitrogen, nitrate nitrogen, dissolved inorganic nitrogen and orthophosphate, respectively.
FIGURE 4 | Microbial assembly mechanisms of abundant and rare community of three habitats in the shrimp cultural ponds.
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are served as huge repositories of microbial diversity in
ecosystems, and abundant taxa accounted the majority of all
species’ abundance, which was consistent with our results for
water and shrimp intestine. However, this phenomenon was not
universal, as we observed in sediment: the numbers of rare OTUs
was also dozens of times more than abundant ones, with their
relative abundance was more than twice as abundant ones.
Therefore, the microbial diversity of abundant and rare taxa was
markedly different.

Our study also revealed that the sources of abundant and rare
communities of each habitat were markedly different in cultural
ponds; and especially, the most important source for shrimp
intestine rare community was sediment. Theoretically, the
intestine microbiota of aquatic animals is directly influenced
by surrounding microorganisms (Yan et al., 2016; Xiong et al.,
2019; Xiong et al., 2020). Thus, our results can be largely due to
sediment features and host lifestyles. On one hand, the sediment
serves as the largest microbial repositories in the shrimp cultural
ponds and has the potential to be an important microbial source
for host intestines. On the other hand, the activities of L.
vannamei (as a planktobenthos, mainly lives at the bottom of
water) are more related to sediment, and it sometimes feed from
sediment that ingestion of particulate matter into the host
intestines. We also found that Vibrio OTUs were abundant
taxa in intestine but rare taxa in water and sediment. Vibrio
species is known as common opportunistic pathogens and which
in aquatic animal intestines could be from surroundings
(Vadstein et al., 2004); and when these species in surroundings
was killed by disinfection, those can also spread into
surroundings as “seeds” through excretion of hosts (Gustafson
and Bowen, 1997), making the challenging to control the
opportunistic pathogens (Pérez-Sánchez et al., 2018). Thus, we
should establish more ecological management strategies to
restrain the proliferation of opportunistic pathogens
in aquaculture.
Frontiers in Marine Science | www.frontiersin.org 7
Despite with different diversity, similar biogeographic patterns
(obvious DDRs for abundant and rare communities, and stronger
DDRs of rare than of abundant) between abundant and rare
communities of each habitat were observed in the shrimp cultural
ponds. Extensive studies also found that the similar biogeographic
patterns between abundant and rare communities of water and soil
(Logares et al., 2013; Liu et al., 2015; Mo et al., 2018; Chen et al.,
2019; Jiao and Lu, 2019a). In 2006, Pedrós-Alió hypothesized that,
due to infinite potential for dispersal and low loss rate, rare taxa
have a worldwide distribution (Pedrós-Alió, 2006). However,
biogeographic patterns for “rare biosphere” clearly refuted the
applicability of “everything is everywhere” (Baas-Becking, 1934) in
most cases. Thus, so barriers for dispersal exist in rare taxa, and
conversely, abundant taxa tend toward more cosmopolitan
distributions. Indeed, some previous (Liu et al., 2015; Zhang et al.,
2018) and our studies found that a higher proportion of abundant
OTUs were distributed in more samples, resulting that the
abundant taxa might have a widespread or ubiquitous
distribution. One possible reason is that abundant taxa grow on a
wider spectrum of resources compared with the rare taxa. Thus, the
abundant taxa can reach the high population levels in a wider range
of environments (Hambright et al., 2015).

Furthermore, we found that stochastic processes were dominant
in both abundant and rare communities for all three habitats in the
cultural ponds. One reason can explain our phenomenon is that the
regular management of artificial systems allows a dynamic
community turnover that lowers the homogeneity of the system
over time (Li et al., 2020). The importance of stochastic process on
the microbial assembly was also reflected in significantly strong
distance-decay patterns. Accordingly, due to dispersal limitation,
community similarity was predicted to decrease along spatial
gradients (Hubbell, 2001). Our results supported one study
reporting that the important role of stochastic factors in shaping
both the abundant and rare microeukaryotic community assemblies
of water in a lotic river (Chen et al., 2019). By contrast, stochastic
A B

FIGURE 5 | Illustration of community diversity and assembly. (A) Patterns and sources of abundant and rare communities of water/shrimp intestine/sediment
habitats in the cultural ponds. (B) Similarities and differences of microbial assembly mechanisms between the abundant and rare communities of each habitat.
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and deterministic processes dominated fungal abundant and rare
communities of soil in fields, respectively (Jiao and Lu, 2019b), but
the trend is the opposite in water of bay (Mo et al., 2018). Such
differences were likely due to the discrepancies of habitats and
geography (Shi et al., 2018). We also found that the contribution of
dispersal limitation to abundant was slightly higher than that to rare
community of all habitats, but that of selection to rare community
was much higher. Some studies also found that the rare
communities in a variety of environments were dominated by the
deterministic processes (Liu et al., 2015; Wu et al., 2017; Liang et al.,
2020), suggesting that rare taxa may be subjected to stronger
environmental selection and therefore less widely distributed than
abundant taxa.

To gain an advanced understanding of microbial ecology, it is
essential to reveal the deterministic factors shaping the community
assembly (Zhou and Ning, 2017). Previous studies have shown that
physicochemical factors were important on influencing the water
and sediment microbiota in aquaculture ponds (Li et al., 2017;
Huang et al., 2018; Wei et al., 2020; Hou et al., 2021), but little is
known about their influences on the abundant and rare
communities. We found that the physicochemical factors
significantly affected abundant and rare communities, and
especially, salinity and temperature/TN were the best predictors
for abundant and rare communities of water/sediment. Our
previous (Hou et al., 2017 and Hou et al., 2021) and other studies
(Huang et al., 2018) also found that salinity, temperature and TN
were important factors shaping the water and sediment community
structures in shrimp cultural ponds. Indeed, salinity and
temperature are key factors that influence the microbiota (Székely
et al., 2013; Sunagawa et al., 2015). Salinity can affect production of
microorganisms by enhancing nutrient availability (Pinckney et al.,
1995). While based onmetabolic theory of ecology, temperature can
affect species diversity, metabolic activity and population growth
rates (Zhou et al., 2016). The shrimp culture ponds in our study are
in an outdoor environment, where the salinity will change due to
rainfall and evaporation, and temperature will be strongly affected
by climate factors. These may be the reason why the salinity and
temperature are important factors affecting the microbial
community structure of shrimp culture ponds. Moreover, TN was
very important for sediment microbiota, which might be related to
the continuous accumulation of nitrogen caused by continuous high
protein feed residues and fecal deposition in shrimp cultural ponds.
Our results suggested that it may be possible to regulate
physicochemical properties to manipulate the microbiota
in aquaculture.
CONCLUSION

Our study proposed a paradigm portraying the microbial diversity
and assembly mechanism of multiple habitats within a
metacommunity framework in shrimp cultural ponds at the
abundant and rare community levels (Figure 5). The rare taxa
are served as huge repositories of microbial diversity, and abundant
and rare microbial taxa had distinct community diversity,
taxonomic composition and sources. Stochastic process
dominated the community assemblies of both abundant and rare
Frontiers in Marine Science | www.frontiersin.org 8
taxa in three habitats, and deterministic process contributed to the
assembly of rare community was much higher than that of
abundant community. Salinity and temperature were the best
physicochemical predictors for abundant and rare community
composition of water, while TN for that of sediment. These
findings could promote our understanding of microbial diversity
from the perspective of abundant and rare taxa, and facilitate the
microbiota management for healthy aquaculture.
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