AUTHOR=Yung Claire K. , Morrison Adele K. , Hogg Andrew McC. TITLE=Topographic Hotspots of Southern Ocean Eddy Upwelling JOURNAL=Frontiers in Marine Science VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.855785 DOI=10.3389/fmars.2022.855785 ISSN=2296-7745 ABSTRACT=
The upwelling of cold water from the depths of the Southern Ocean to its surface closes the global overturning circulation and facilitates uptake of anthropogenic heat and carbon. Upwelling is often conceptualised in a zonally averaged framework as the result of isopycnal flattening
Using a high-resolution global ocean sea-ice model, we calculate spatial distributions of upwelling transport and energy conversions associated with barotropic and baroclinic instability, derived from a thickness-weighted energetics framework. We find that five major topographic hotspots of upwelling, covering less than 30% of the circumpolar longitude range, account for up to 76% of the southward eddy upwelling transport. The conversion of energy into eddies