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Accurately estimating the population density of deep-sea fish with a baited camera system
has long been a significant challenge. Although several theoretical models have been
developed using the first arrival time of an individual fish or time-varying fish abundance at
the bait, none of the models allows for the spatio-temporal variability of the odour plume
area extending from the bait. This study shows theoretically that the population density
can be formulated as the inverse of the sample mean of the odour plume area extended
until it reaches a first fish under the condition that fish at rest have a random dispersion.
Each area estimate is governed by the homogeneous Poisson process and, hence, its
probability density follows an exponential distribution. A large uncertainty can occur for
each area estimate (sample), but the uncertainty decreases as the number of samples
used to derive the sample mean increases by the law of large numbers. Numerical
experiments conducted in the study indicate that the proposed method for inferring
population density is also potentially applicable to cases in which the fish have a uniform or
large-scale clumped dispersion. The experiments also show that the conventional method
based on first arrival time fails to estimate the population density for any of the dispersion
cases. This study also indicates that the reliability of the most popular inference method for
estimating population density from the time-profile of fish abundance at the bait site was
found to depend on the extension of the odour plume area and the dispersion pattern.

Keywords: baited camera system, population density, poison process, odour plume, dispersion pattern
1 INTRODUCTION

The accurate estimation of population density is necessary for a precise understanding of the
population dynamics of constituent species, the level of diversity, and the underlying ecosystem, all
of which vary in response to surrounding environmental changes. Estimating the abundance of
higher predators as well as endangered, low fecundity, and commercial species in the deep sea is
especially crucial to sustaining the vulnerable deep-sea ecosystem (Norse et al., 2012; Watson and
in.org June 2022 | Volume 9 | Article 8549581
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Morato, 2013; Clark et al., 2016; Nielsen et al., 2016; Fujiwara
et al., 2021a). Various methods have been used to estimate
population density, mainly targeting living creatures on land
and in rivers. These methods include quadrat, removal, and
mark-recapture approaches (e.g., Molles, 2015). Similarly,
various approaches have been used for estimating fish in the
ocean, including underwater visual census (e.g., Caldwell et al.,
2016) and trawl sampling (Fitzpatrick et al., 2012; Johnson et al.,
2013). However, the former method is infeasible in the deep sea
and the latter carries the risk of damaging the ecosystem around
the sea floor (Bailey et al., 2007).

A baited camera system, consisting of a lander equipped with
bait and a camera, is seen as a promising means to conduct an
efficient census of fish populations leading to a further evaluation
of fish diversity or community composition (e.g., Cappo et al.,
2003; Jamieson, 2016). Multiple efforts have been made to
develop a method for estimating population density from two
general perspectives. One approach is to use an empirical
relation between population density and the “time of first
arrival” (TOFA), that is, the elapsed time between the landing
of the baited camera system and the arrival of the first fish at the
bait (Priede and Merrett, 1996). Because it uses a simple
empirical formula, the TOFA method has been widely applied
for inferences regarding population density (Yau et al., 2001;
Premke et al., 2006; Linley et al., 2017; Devine et al., 2018).
However, recent studies have cast doubt on the method’s
reliability, citing the large uncertainty inherent in the method
(Farnsworth et al., 2007) and its inconsistency with independent
underwater census results (Stoner et al., 2008; Yeh and Drazen,
2011; Schobernd et al., 2014; Harbour et al., 2020).

A second approach is to infer the population density from the
abundance of fish attracted to the bait. Attempts have been made
to explain the time profile of fish abundance, in a curve fitting
sense, by assuming a decay of the odour plume (Priede et al.,
1990), diffusive odour (Sainte-Marie and Hargrave, 1987) and/or
foraging behaviour (Bailey and Priede, 2002). Fish abundance at
the bait has recently been shown to be related to absolute
population density in a theoretical study based on random
foraging behaviour (Fransworth et al., 2007). A major metric
in this approach is the maximum number of fish appearing
within a single frame during the sampling period, which is often
called MaxN (e.g., Cappo et al., 2003; Cappo et al., 2004; Cappo
et al., 2006). This metric has been shown to correlate with
independent observational data obtained from trawling or
from an underwater visual census (Willis and Babcock, 2000;
Willis et al., 2000; Stoner et al., 2008; Leitner et al., 2021). The
approach has been improved, both theoretically and technically,
toward wider applicability (Whitmarsh et al., 2018; Follana-
Berná et al., 2019; Follana-Berná et al., 2020).

Meanwhile, Fujiwara et al. (2021b) proposed an alternative
method for inferring population density, applying it to the
Pacific sleeper shark Somniosus pacificus living in the deep
Suruga Bay in the southern coastal area of Japan. With this
method, population density is defined by the inverse of the area
of the odour advected by the bottom current during the time
before the arrival of the first fish, where the odour area is given by
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an ensemble average across field experiments conducted at
different times and places. In this study, the proposed method
will be referred to as ODORA (odour diffusion oriented
abundance), suggesting an odorant which gives off a smell. The
ODORA method uses the first arrival time to identify the time at
which the odour area reaches the first fish. However, this method
differs from the TOFA approach in that the population density is
not directly parameterized by the first arrival time itself. Also,
unlike the MaxN approach, the ODORA method counts only
one fish arriving at the bait. Although this approach holds
promise, no theoretical basis for it has been established, and
hence its reliability and relevance to other methods are unknown.

In seeking to provide a sound theoretical basis for the
ODORA method, this study develops useful underlying
statistics for the method and indicates the limits of the
method’s applicability. A distinctive feature of this method is
its consideration of the spatio-temporal variability of the plume
area. The importance of the plume area in the inference of
population density has been discussed by Heagney et al. (2007)
and Taylor et al. (2013) in the context of the MaxN approach;
however, their plume area is assumed to be the triangular area as
a function of the mean current velocity and elapsed time. In this
study, we explore a more general relationship between the area of
odour and population density by providing the theoretical basis
of the ODORA method. Furthermore, the study examines the
influence of the dispersion pattern of the fish on the estimation of
population density. Previous studies in this field have often
assumed random dispersion to provide a rigorous theoretical
model for the inference of population density (Farnsworth et al.,
2007; Dunlop et al., 2015; Follana-Berná et al., 2019; Follana-
Berná et al., 2020). However, given that living creatures can have
other dispersion patterns, such as uniform or clumped
dispersion (e.g., Molles, 2015), a different assumption
regarding the dispersion pattern may produce a different
estimate of the population density.

In this study, we explore the influence of the odour plume
area and dispersion pattern on the inference of population
density but largely ignore the swimming properties of the fish.
Although fish behaviour may be an important factor in
population density estimation (Bailey and Priede, 2002; Cappo
et al., 2003; Farnsworth et al., 2007; Dunlop et al., 2015), there is
significant uncertainty in foraging patterns and the speed at
which a fish swims toward the bait, which largely depend on
body size, species, and competition (Moore and Howarth, 1996;
Johansson and Leonardsson, 1998; Plaut, 2001; Krause et al.,
2005). Nevertheless, a discussion of the response of the temporal
evolution of fish abundance at the bait to changes in swimming
speed in an idealized configuration is considered here as a
possible means for further improving the method.
2 THEORETICAL TREATMENT FOR
THE METHOD

We begin with a brief review of the ODORA method in order to
identify the primary question to be addressed (Section 2.1). We
June 2022 | Volume 9 | Article 854958
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then develop the underlying statistics for this method (Section
2.2), which leads to statistics for the practical applicability of the
method (Section 2.3). The symbols which may be important to
understand the following argument are collated in Table 1.

2.1 The ODORA Method
In the ODORA method, the odour plume area includes all the
locations reached by the odour advected from the bait. This area
is referred to as the “searched area” and is analogous to the
area revealed by shining a search light to find a target object. The
area at the time the searched area reaches the first fish is referred
to as the “minimum searched area”. The experiment is supposed
to be conducted until one fish appears at the bait site. Using si to
represent the minimum searched area in the i-th experiment
(Figure 1A), the estimation of the population density, r̃, can be
formulated as

~r =
k

ok
i=1si

:   (1)

In practical application, we would consider that the numerator of
(1) can be smaller than k, allowing for the case in which no fish
appear in one or more out of the k experiments (Fujiwara et al.,
2021b). However, for a rigorous argument, we here consider the
case of (1). The equation can be written as

~r =
1
�s
,   (2)

where

�s ≡
1
ko

k

i=1
si    (3)
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is the sample mean for the minimum searched area.
We now introduce the “true” population density, r, which we

define as the number of fish divided by the area of the supposed
domain. The question here is whether (2) represents the true
population density. For the ODORA method to be applicable,
the following relation must hold

1
�s
= r   or  �s =

1
r
   (4)

Here, r-1 is referred to as the equivalent area, defined as the area
occupied by one fish, on average. In the following, we develop the
underlying statistics for the ODORA method and explore the
question of whether the sample mean of the minimum searched
area (Eq. 3) can be used to determine the equivalent area.

2.2 Underlying Statistics
In general, the dispersion (distribution) patterns of living
creatures, including plants, can be divided into three
TABLE 1 | Symbols and their descriptions in the theoretical treatment of the
ODORA method.

Symbol Description

r True population density
r̃ Estimated population density
si(tj) Searched area at time tj for i-th experiment
si Minimum searched area for experiment i
s Continuous function form of si
k Number of experiments
s Sample mean of the minimum searched area for k experiments
t Time of arrival of a fish
tJ Time when the searched area reaches the first fish
tf Time a fish takes to arrive at the bait from its original position
A B

FIGURE 1 | (A) Sketch of the experiment to produce the minimum searched area. The cross symbol with “F” denotes the position of the fish that searched first.
(B) Schematic illustration of the extension rule of the searched area in horizontal (upper) and one-dimensional views (lower). The grey squares denote the
searched area. The stars in panels (A, B) denote the location of the baited camera.
June 2022 | Volume 9 | Article 854958
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categories: random dispersion, uniform dispersion, and clumped
dispersion (e.g., Molles, 2015). It seems clear that differences in
dispersion pattern can significantly influence estimates of
population density (e.g., Morisita, 1967). However, when
seeking to estimate population density for a particular species,
we are often uncertain of the species’ dispersion pattern. As a
consequence, it is common to assume randomness in the fish
distribution in theoretical models seeking to interpret the
abundance of fish at a bait site (Farnsworth et al., 2007;
Dunlop et al., 2015; Follana-Berná et al., 2019; Follana-Berná
et al., 2020). Accordingly, we will here assume random
dispersion in our theoretical argument, reserving for a later
time in the discussion a description of the effects of other
dispersion patterns (Section 3). We will also assume that the
fish are anchored at their respective positions (no swimming or
drifting) because of the uncertainty of fish behaviour.

Based on these conditions, we begin by articulating the area
extension rule in the ODORA method. The following
mathematical treatment is visualized in Figure 1B. Let si(tj) be
the searched area at a discretized elapsed time tj for the i-th
experiment. In the duration until the searched area reaches the
first fish at the time tj, the extension of the searched area in time
satisfies the following relation,

si t1ð Þ < si t2ð Þ < si t3ð Þ < ⋯ < si tJ
� �

,   (5)

where t1<t2< ··· <tJ. Note that si(tj) gives the minimum searched
area. All of the time-dependent areas include the location of the
bait. Defining the minimum searched area and the area element
as s≡si(tj) and Ds ≡ s=J , respectively (Figure 1B), the area
extension (Eq. 5) can be formulated as si(tj+1) = si(tj) + Ds (∀ j ≤ J)
. Note that this area extension rule is independent of the spatial
form of the searched area, meaning that the rule can be applied for
the area extension of an odour plume driven by any flow field.

Assuming the random dispersion of fish, which is the
dispersion pattern treated here, means that our framework is
based on a homogeneous Poisson process (e.g., Feller, 2008). In
this process, the expected value of fish counts within an area s is
given by rs for a given population density, and hence the
probability that a fish appears within an area element (Ds) can
be expressed as p=rs/J. Using this, the probability that no fish
appears in an infinite number of j elements can be calculated by.
limJ !∞ (1-rs/J)J=e-rs. The complement of this probability, i.e., 1-e-
rs, gives the probability that the first fish appears when the
searched area reaches a value of s. Its derivative with respect to s
leads to the corresponding probability density function in the form

f sð Þ = re−rs :   (6)

This is the exponential distribution that will be used to provide
the underlying statistics governing the ODORA method
(Figure 2A). As is well-known in the statistics of the
exponential distribution, the expected value of s, here denoted
by E[s], can be calculated as

E½s� ≡
Z ∞

0
sf (s)ds =

1
r
,   (7)
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which is consistent with the equivalent-area (the inverse of the
population density). This indicates that the ODORA method is
able to derive the population density, in theory, based on the
homogeneous Poisson process associated with the random
dispersion pattern of the individuals.

Importantly, the expected value has uncertainty due to the
variance, here denoted V[s]. With the variance, the population
density would be formulated as 1=(E½s� ± ffiffiffiffiffiffiffiffi

V ½s�p
). Because our

distribution gives V[s]=1/r2, the population density diverges to
infinity. This suggests that no sample of the minimum searched
area can yield an estimate of the population density with non-
zero certainty. This problem has been pointed out by Farnsworth
et al. (2007), although they discuss a first arrival time linked with
the time-increase area under a framework governed by the
homogeneous Poisson process, similar to ours. We should note
that the variance here is applied for each minimum searched area
obtained in each experiment. As asserted by the law of large
numbers, the infinite uncertainty can be resolved by taking a
sample mean of the minimum searched area.

In a field survey, only the arrival time, in general, is obtained
from a time recorder equipped on a baited camera. Thus, the
time tJ needs to be inferred from the relation,

t = tJ + tf ,   (8)

Where t and tf’ are the arrival time of a fish and the time the fish
took to arrive at the bait site from its original position,
respectively. However, the inclusion of tf does not influence the
conclusion that the ODORA method obeys the exponential
distribution because that relation merely shifts the time. For
practical use, we can account for tf as needed. We leave the
method of identifying tf to Fujiwara et al., (2021b).

2.3 Statistics for the Sample Mean
As explained in Section 2.1, the population density is estimated
from the sample mean, �s, of the minimum searched areas
obtained from k experiments (Eq. 3). Since the sample mean is
determined from samples, s, that are independent of one another
and follow the exponential distribution (Section 2.2), the
probability density function that governs the sample mean is
given by modifying the Erlang distribution (Figure 2C), a special
case of the Gamma distribution (e.g., Feller, 2008) (see
Supplementary Note 1),

Ga �s; kð Þ = rk

k − 1ð Þ ! k
k�sk−1e−kr�s :   (9)

The mean and variance of �s are identified as

E½�s� = 1
r
 ,   (10)

V½�s� = 1
r2k

,   (11)

respectively. Taking k=1 leads again to the exponential
distribution (c.f., Eq. 6). The expected value is identical to the
equivalent-area, independent of k, while the variance decreases
June 2022 | Volume 9 | Article 854958
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with increasing k. This means that the sample mean from a larger
number of experiments asymptotes to the equivalent-area with a
smaller uncertainty, conforming to the law of large numbers.

The uncertainty in the population density can be quantified
by

d± ≡
1
E½�s� −

1

E½�s�∓ ffiffiffiffiffiffiffiffi
V½�s�p

�����
����� = r

1ffiffiffi
k

p
∓ 1

,   (12)

with which an estimated population density can be expressed in
the interval form, r-d-<r<r+d+. These intervals are asymmetric
about r: the magnitude of the lower bound term (d-) is smaller
than the magnitude of the upper bound term (d+) (See also
Figure 2D). The uncertainty is infinite for k=1, as discussed in
Section 2.2, but decreases with increasing k; the ratio, d+/r,
becomes lower than unity for k≥4.

For a finite k, the expected value, E[�s], is always larger than the
mode, which is the value most likely to appear (Figure 2C).
Because the sample mean obtained from the experiments would
likely be near the modal value, it may underestimate the
equivalent-area. This leads to an overestimation of the
population density, which can be quantified by

r =
k − 1
k

1
�s*

,   (13)

where �s*denotes the modal value of the sample mean, �s. The
difference between the expected value of the population density
Frontiers in Marine Science | www.frontiersin.org 5
(r) and that identified by the mode (1=�s*) is negligible for a large
k (Figure 2B). This formula is null for k=1, since this case leads
to the probability density function being an exponential
distribution, which has no extremum.

Eqs 12 and 13 would be useful to evaluate the reliability of the
estimation of the population density in a field survey using the
baited camera system, which obtains only a few samples in many
cases. For example, consider the case that we compare two
population densities, say rU and rL (rU>rL), estimated in
different times or places under the same number of experiments.
In this case, the condition for the difference of the population
densities to be meaningful is given by rU=rL > ½1 + 1=(

ffiffiffi
k

p
−

1)�=½1 − 1=(
ffiffiffi
k

p
+ 1)� from (12). Taking an example of k=4

(small number of experiments), if rU/rL>3, the difference
between the two population densities is significant. Also, Eq. 13
would help correcting the estimated population density. For k=4,
for example, it is inferred from (13) that the actual population
density is likely to be 3/4 times smaller than the sample mean
(∼ 1=�s∗). Note that those facts are applicable for k>1.
3 PERFORMANCE: INFLUENCE OF
DISPERSION PATTERN

We conducted numerical experiments for the estimation of
population density using the ODORA method under the
random, clumped, and uniform dispersion patterns. The
A B

DC

FIGURE 2 | Probability distribution functions governing the minimum searched area (A) (Eq. 6) and its sample mean (C) (Eq. 9) assuming random fish dispersion.
Note that the “Rescaled area” (nondimensional units) in (A) and (C) is the minimum searched area rescaled by the equivalent area r−1. The dashed vertical lines
indicate the point at which the minimum searched area equals the equivalent area. Panels (B, D) plot the bias in the mode population density from the actual value
(r�s∗ in Eq. 13) and the uncertainty in the estimation of the population density (d±/r in Eq. 12), respectively. Note that the upper bound of the uncertainty exceeds
unity for k < 4 in panel (D) (See Eq. 12).
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experiment was carried out in the square domain of size 1 km2,
where the “true” population density was fixed at 30 ind./km2 a
priori. The odour is advected from the bait by the background
bottom current velocity field uniform in the experimental
domain, where the current velocity is represented by the
observed data collected in Fujiwara et al. (2021b) (Figure 3).
The resultant time evolution of the searched area is shown in
Figure 4 (left panels). By the definition, the minimum searched
area is determined as the area at the time the odour reaches a fish;
this area corresponds to si(tj) in Section 2.2. The experiment was
conducted 10,000 times, with different fish positions.

We conducted the same experiment for isotropic diffusion
rather than using the observed current velocity as a reference. In
this case, the odour extends from the bait with horizontal
diffusivity, D, and hence the odour area that reaches the fish at
the nearest point is given by Dta, where ta is the elapsed time
from the onset of the diffusion. This area can be expressed as pr2a ,
where ra is the distance of the fish from the bait, since the
isotropic diffusion extends circularly. Thus, we identify the
minimum searched area as pr2a without solving the diffusion
equation numerically.

The dispersion patterns were produced in the following
manner: The random dispersion was created by a random
number generator following the uniform occurrence
probability over the entire experimental domain. The clumped
dispersion was determined by a horizontal Gaussian distribution
in the form, (N/2ps2) exp (-∣xm-m∣2/2s2), where m and s2 are the
mean position and the variance, respectively. The fish position,
xm (m=1,2,...,N) was determined randomly. N is the number of
fish in the experimental domain (30 ind.). The uniform
dispersion was represented by closed-packing in which the fish
are located at a uniform distance from each other; each fish
position is changeable randomly (with uniform probability)
within the circular area inside the half-distance between the
fish. The clumped and uniform dispersions defined above
assume, respectively, a species having a specific habitat and a
species in which each individual fish wanders in its territory. An
Frontiers in Marine Science | www.frontiersin.org 6
example of each dispersion pattern is shown by the dots in the
left panels of Figure 4.

We begin by briefly considering the results in the random
dispersion case in order to assess the accuracy of the experiment.
These results show that the minimum searched area closely follows
the exponential distribution, as expected (Figure 4B). The mean
value of the minimum searched area across the experiments is close
to, but somewhat underestimates, the equivalent area (Table 2).
This underestimation is due to the maximum limit on the observed
searched area (smax), as this limitation leads to

E½s� =
Z smax

0
sf (s)ds =

1
r

1 − e−rsmaxð Þ < 1
r
:   (14)

The error is represented by e−rsmax, which increases for smaller r
or smax. This suggests the need for a longer observation period in
the ODORA method in order to estimate the population density
with a greater accuracy. The isotropic diffusion case leads to a
mean value of the minimum searched area closer to the
equivalent area, but there is still a slight difference between the
estimate and the equivalent area (Table 2). This difference is an
artifact associated with searching for a fish in a circular area
despite the fact that the random dispersion is defined in a square
domain; the minimum searched area for the isotropic diffusion
deviates from the exponential distribution when the circular area
approaches the experimental domain.

For the clumped dispersion case, the accuracy of the
estimation of population density largely depends on the centre
(mean) and scale (variance) of the horizontal fish distribution.
For the case when the fish are clumped around the bait (m=
(0m,0m) and s=100 m), the histogram of the minimum searched
area from the observed velocity data decreases with increasing
value of the area faster than the exponential distribution
(Figure 4D), which leads to an overestimation of the
population density. This deviation from the exponential
distribution, however, can be mitigated by increasing the
horizontal scale of the fish distribution (Supplementary Figure
FIGURE 3 | Time series of bottom current velocity observed by the baited camera system in Fujiwara et al. (2021b).
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S1B). This is due to the fact that a clumped dispersion similar to
a Gaussian distribution is nearly equivalent to a random
dispersion near the centre, where the occurrence probability of
fish is nearly uniform among the various points. In contrast,
when the centre of the clumped dispersion is located at some
distance from the bait, the histogram of the minimum searched
area deviates substantially from an exponential distribution
(Supplementary Figure S1D), which leads to a poor
estimation of the population density (Supplementary Table
S1). Moreover, in this histogram, the isotropic diffusion and
Frontiers in Marine Science | www.frontiersin.org 7
observed flow cases show much different profiles from each
other, suggesting that the estimation of the population density is
sensitive to the velocity field in the clumped dispersion case.

The results for the uniform dispersion case are similar to
those for the random dispersion case (Figure 4F). However,
there is a somewhat greater tendency to overestimate the
population density. This is because the distance between any
two fish is, on average, shorter than the radius of the equivalent
area. In addition, the histograms of the minimum searched area
are different for the observed velocity and isotropic diffusion
A B

D

E F

C

FIGURE 4 | Histogram of the area (B, D, F) estimated by the ODORA (observed flow and isotropic diffusion cases) and TOFA methods in idealized numerical
simulations for different dispersion patterns (A, C, E) (top:random; middle:clumped; bottom:uniform). An example of fish positions for each dispersion pattern in the
x-y square domain is shown by the black x’s; those for the uniform dispersion case denote the average over the experiments. Color shade shows the searched area
obtained from the observed flow at each elapsed time. For the histogram, the lateral axis is the estimated area rescaled by r−1 (nondimensional units) and the vertical
axis is its occurrence frequency normalized so that its integral over the entire range of the rescaled area is unity. The dotted red line in the histogram is the maximum
searched area for the case of the observed flow. The dashed black circles (A, C, E) and dashed vertical lines (B, D, F) denote the equivalent-area.
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cases, suggesting that the population density estimate largely
depends on how the odour is advected.

In general, there is no way of knowing the dispersion pattern
of a particular species of fish whose biological properties are not
well known prior to a field experiment. The results above,
however, show a clear difference between the clumped
dispersion case and the others. In the case of clumped
dispersion leading to an incorrect estimate, the minimum
searched area for each experiment is likely to appear around a
particular value (Figure 4D and Supplementary Figure S1D).
The presence or absence of this feature in the experiments may
provide an indication of the reliability of the estimated
population density.
4 DISCUSSION

4.1 Comparison With TOFA Method
The TOFA method (Priede and Merrett, 1996) is one of the
principal inference methods for estimating fish population
density. It assumes that a fish occupies a regular hexagonal
area having a “radius” of a (length between the center and
each apex) and that a fish approaches the bait linearly with a
constant velocity, Vf, after detecting the odour plume advected by
the current velocity, VW, from the bait. Since the area of this
hexagon is given by ca2, where c = 3

ffiffiffi
3

p
=2, the population

density is identified as 1/ca2. Thus, to obtain the population
density, the task is simply to estimate the radius a. Under the
above assumptions, with the use of the relation to the arrival
time, t=a/VW+a/Vf, the radius can be estimated by a=[Vf VW/(Vf

+VW)]t. Note that this relation to the arrival time corresponds
to (8).

We can assess the performance of the TOFA method in
estimating the population density in the sense of the expectation
value. Because in this method there can be two ways to define the
expectation of the hexagonal area, i.e.,  ca2 or c�a2, where the
overbar denotes the sample mean across the experiments, we
examine both cases. Here, to keep the consistency with the
numerical experiment conducted in Section 3, swimming speed
is ignored (Vf≫VW) immediate arrival of a fish at the bait site
(this corresponds to tf!0 in (8)). This allows us to show the
radius of the hexagon as simply a=VWt. The background
velocity, VW, is given by the time average (vector mean) of the
observed velocity in Fujiwara et al. (2021b), which was used in
the previous section. For internal consistency, t is given by the
elapsed time when the minimum searched area derived from the
observed velocity reaches the first fish (see section 3). Figure 5A
provides an example showing the minimum searched area that
Frontiers in Marine Science | www.frontiersin.org 8
reaches a fish (labelled by “F”) at t=170 sec after the onset, along
with the corresponding hexagonal area. The area estimation
using the TOFA method was conducted in a numerical
experiment with the same configuration as that in Section 3.

The histograms of the estimated hexagonal area are plotted in
Figure 4 (blue crosses in the right panels). For the random and
uniform dispersion patterns, the area estimated by the TOFA
method tends to have a large value, which leads to the mean
value (ca2) being approximately four times larger than the
equivalent area (Table 2). This overestimation is attributed to
the fact that the hexagonal area is determined in proportion to
the constant velocity, VW, and hence it can increase quadratically
in time irrespective of the actual time increase of the odour
plume area (Figure 5B). This problem cannot be solved even if
we define VW as the velocity for each time rather than using the
average (not shown). Estimation with c�a2 instead of ca2 can
mitigate the overestimation since �a2 ≤ a2 in general; however,
the value is approximately three times larger than the equivalent
area. These results indicate that the TOFA method can
underestimate the population density in any case.

In addition to the substantial uncertainty inherent to the
TOFA method (Farnsworth et al., 2007), its theoretical
inconsistency may also be problematic. For any area estimation
to function in the random dispersion case, which is governed by
the homogeneous Poisson process, the predicted area must
satisfy the condition that only one fish is located within it. Our
numerical experiment, however, shows that the TOFA method
includes more than one fish to occupy the hexagonal area
(Figure 5A). This also violates a postulate of the method
stating that only one fish occupies a hexagonal area. This
problem is not attributable to the assumption of a hexagon,
but rather results from the assumption that the area occupied by
a fish is parameterized by a constant velocity.

4.2 Relevance to Measuring Fish
Abundance at the Bait Site
Attempts have been made to infer population density from the
data of fish assemblage at a bait site (see Section 1). Common to
all the methods proposed so far, this approach supposes that fish
originally dispersed within an area gather at the bait. This may
allow us to generally formulate the temporal evolution of fish
abundance at the bait, n(t), as

n tð Þ =
Z
A t tð Þð Þ

f xð Þd2x (15)

where f(x) is population density that can vary in a horizontal
place, x, and A(t(t)) is the time-dependent area covering the
original positions of fish that finally arrive at the bait. In general,
TABLE 2 | Expected value of estimated area rescaled by the equivalent area r-1 (nondimensional units).

Dispersion pattern ODORA TOFA

Observed flow Isotropic diffusion

Random 0.92 0.96 0.96
Clumped (µ = (0, 0), s = 1.0) 0.10 0.06 0.59
Uniform 0.79 0.51 0.51
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it is required that t≤t, since a fish arriving at the bait at t must
begin to move toward the bait at a time prior to the arrival. For
simplicity, Eq. 15 does not include the process that the fish
leavethe bait, and this implies that the fish count reaches the
maximum when all the fish arrive at the bait site.

For the random dispersion case (homogeneous Poisson
process), the population density is constant, as in f(x)=r, and
hence Eq. 15 becomes

n(t) = rA(t(t)) :   (16)

This A(t(t)) conceptually includes the “swept area” described by
Farnsworth et al. (2007), which is defined as the geometric area
determined by a straight-stretching plume and the original
positions of the fish approaching the plume to forage for the
bait. In the ODORA method, A(t(t)) can be regarded as the
searched area, s(t). In particular, if any fish arrives at the bait
immediately after detecting the odour, then t= t and hence the
fish abundance at the bait would increase in proportion to the
time evolution of the searched area, such as in Figure 5B (solid
line). This suggests that the odour plume area can influence the
inference of the population density from the time profile of fish
abundance at the bait. Additionally, taking n(t)=1 for a time t=t0
(first arrival time) and taking an ensemble average leads
to  r = 1=�s(t0), which is equivalent to the formula for
estimating the population density (see Eq. 4). Thus, the
ODORA method is essentially identical to the inference
method for estimating the population density from the fish
assemblage at the bait.

Previous studies suggest the need for standardizing MaxN by
the plume area (Heagney et al., 2007; Taylor et al., 2013). Such a
standardization can be interpreted as an evaluation of the
population density since Eq. 16 leads to r=n(tmax)/A(t(tmax)),
where tmax is the time for which n(t) takes a maximum value.
However, in these previous studies, the plume area was defined
Frontiers in Marine Science | www.frontiersin.org 9
as the triangular area parameterized by a constant velocity and
the elapsed time in the form, 0:165·(VWt)2. As described in
Section 4.1, this type of parameterization is essentially identical
to the area definition used in the TOFA method and does not
satisfy the conditions of a homogeneous Poisson process.

Models based on different assumptions have attempted to
explain temporal changes in fish abundance at a bait site,
adopting a single dispersion pattern (Sainte-Marie and
Hargrave, 1987; Priede et al., 1990; Bailey and Priede, 2002;
Farnsworth et al., 2007). Here, we examine the sensitivity of the
time profile of fish abundance at the bait site to the dispersion
pattern in the idealized uniform configuration, where the odour
plume area is extended by an isotropic diffusion and a fish
detecting the odour approaches the bait linearly with a constant
swimming speed. These assumptions are the same as those
adopted in Sainte-Marie and Hargrave (1987).

Isotropic diffusion causes the circular area extension of the
odour in time, which is formulated by Dt = pr2. Consider a fish
located at distance r from the bait. This distance can be expressed
as r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Dt=p)

p
. This leads to an elapsed time for the fish to

arrive at the bait after detecting the odour in the form
ffiffiffiffiffiffiffiffiffiffiffi
Dt=p

p
=

Vf, where Vf is the constant swimming speed. Thus, the arrival
time of the fish after the onset of the odour diffusion can be
written as

t = t + b
ffiffi
t

p
,   (17)

where b ≡
ffiffiffiffiffiffiffiffiffi
D=p

p
=Vf Converting from t to t leads to

t tð Þ = 1
2

(2t + b2) −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2(b2 + 4t)

ph i
,   (18)

which gives the elapsed time for the area extension measured by
the arrival time. In the following, we examine the theoretical time
profile of fish abundance based on (15) and (18) for different
dispersion patterns and compare them with the numerical
A B

FIGURE 5 | (A) Difference in the area enclosing the first fish, labeled F, between ODORA (in red) and TOFA methods (dashed hexagon). The fish positions in this
panel show an example of the random dispersion pattern; (B) Time evolution of the area increment for each method.
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experiments. The configuration of the numerical experiments is
the same as that in section 3, except that the experiments are
conducted 200 times, which is sufficient to identify an average
time profile.

For the random dispersion case, we simply need to replace A(t
(t)) with Dt(t) in (16), i.e.,

n(t) = rDt(t)   (19)

This time profile depends on the value of Vf due to the relation in
(18). For a sufficiently large Vf to satisfy b2≪t, Eq. 19 reduces to n
(t)=rDt, i.e., the fish abundance shows a linear increase in time
(Figure 6A). In contrast, for extremely small Vf (extremely large
b), Eq. 19 asymptotes to n(t)∝t2. Thus, for an appropriate finite
value of Vf, the fish abundance approximately follows ta, the
exponent of which ranges from 1 to 2 (Figure 6B). This does not
contradict the time profile proportional to t3/2 found by
Farnsworth et al . (2007) in the abundance data of
Coryphaenoides armatus (King, 2006). It is important that such
multiple shapes in the time profile dependent on the fish
swimming speed are allowed by the two-dimensional spread of
the odour plume. For example, a one-dimensional stretching of
Frontiers in Marine Science | www.frontiersin.org 10
the plume driven by a constant current velocity (VW), as was
often supposed in previous studies, leads to only a linear profile
in the fish abundance, since the second term of (17) is given by
VWt/Vf in this case. Note that the deviation of the numerical
result from the theory at a longer elapsed time is an artifact
produced for the same reason noted in Section 3.

The time profile of fish abundance that results when the
clumped dispersion pattern is considered is different from
that in the random dispersion case. Here, we consider the
Gaussian population density discussed in Section 3. In the
case where fish are clumped around the bait (m=(0,0)), the
integral of (15) gives

n(t) = N 1 − exp   −
Dt(t)
2ps 2

� �� 	
:   (20)

This function shows different profiles due to the dependence of t
(t) on the swimming velocity (Figures 6C, D). In particular,
when t(t)=t, Eq. 20 is formally identical to the model proposed
by Priede et al. (1990) in fitting the curve to the observed data,
although they explain it by the odour plume damping to the
downstream. In the small value limit in t (short duration from
A B

D

E F

C

FIGURE 6 | Time profiles of theoretical (black curve) and simulated (dots) fish abundance at bait for different swimming speeds (left: Vf=10 ms-1, right: Vf=0.01 ms-1)
and different dispersion patterns (top:random; middle:clumped; bottom:uniform). The simulation is conducted under the same configuration as in the isotropic
diffusion case in Figure 4, except that 200 experiments are conducted. The average of the arrivals for the individuals over the experiments is shown in black dots.
The diffusion coefficient is set to 100 m2s-1 in reference to the order of isopycnal eddy diffusivity (Tulloch et al., 2014).
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the onset of the odour diffusion), Eq. 20 asymptotes to n(t)≃(N/
2ps2)Dt(t), whose form is similar to the random dispersion case,
(19), although the population density differs from the actual
density (N/ps2≠r). As we saw in Section 3, this indicates that the
dispersion pattern around the centre of the clumped dispersion
can be regarded as equivalent to random dispersion.

The uniform dispersion pattern again leads to (19)
(Figures 6E, F). This is because the integral (15) in this case
can be calculated as (mx/Lx) (my/Ly)pr2, wheremx andmy are the
fish counts within the intervals Lx and Ly for each direction of a
square domain, respectively, and we see the equivalence that (mx/
Ly)(my/Ly)=r. However, the accuracy of the theoretical curve is
reduced for smaller numbers offish within a diffusion area, as the
time reaching a certain abundance tends to be slightly shorter
than the theoretical expectation. This is consistent with the
underestimation tendency of the equivalent area by the
ODORA method for the uniform dispersion case.

In the above discussion, we produced time profiles of fish
abundance that were similar to those shown in previous studies.
We are not using these results to claim the reliability of our
theoretical configuration but rather to point out that the time
profile of fish abundance changes with the combination of the
horizontal extension properties of the odour plume and the
dispersion pattern. These factors may need to be included in
the model for inferring population density, along with
fish behaviour.

Based on this result, a possible recommendation for a survey
using the baited camera system would be to examine to what
degree the time profile of fish assemblage at the bait site can be
explained by that of the odour extension area. This would be
helpful information to further consideration of another factor
such as the fish behaviour or dispersion pattern. To this end, a
current profiler needs to be equipped on the baited camera
system and/or deployed in a wide area around the bait site to
obtain current data utilized for the numerical simulation of the
area extension of the odour plume as was done in the
present study.

Further verification or improvement of the ODORA method
would be necessary toward developing a sophisticated inference
method for the population density. For example, we should
consider the influence of the type of bait on the population
density inference. The use of different bait types can lead to a
different dispersal properties of the odour such as persistence
time or area (Whitelaw et al., 1991; Sheaves, 1995), which
consequently can cause differences in the number of
individuals and/or species composition around the bait site
(Whitelaw et al., 1991; Broadhurst and Hazin, 2001; Saila et al.,
2002; Lowry et al., 2006; Heagney et al., 2007; Dorman et al.,
2012). Also, for a comprehensive understanding of the deep-sea
ecology, the inference method of the population density should
be improved to be widely applicable for various species including
benthic organisms. Although surveys regarding the populations
of fish and other organisms have been conducted under a
uniform methodological framework (e.g., Dunlop, 2013), we
may still have insufficient knowledge on how the behavioural
characteristics and odour sensitivity of each organism can yield a
Frontiers in Marine Science | www.frontiersin.org 11
difference in the entire process throughout detecting the odour
and approaching the bait site. Further analysis would be needed
to clarify them, through applying the ODORAmethod to various
species in field experiments.
5 CONCLUSIONS

This study presents statistics for ODORA, a method used to
estimate fish population density on the basis of the area
extension of the odour plume from a bait site. It was shown
that this method conforms to the statistical framework of a
homogeneous Poisson process when the positions of the fish are
randomly dispersed, and, in theory, can estimate the actual
population density with an uncertainty that decreases as the
number of experiments increases.

The sensitivity of this method to different dispersion patterns
was also examined. It was found that the method is applicable to
the uniform dispersion case with somewhat lower accuracy, and
that the method leads to highly variable results for the clumped
dispersion case, depending on the horizontal scale and location
of the original assemblage of fish. Notably, the TOFA method
was shown to fail to effectively estimate the actual population
density for any dispersion case. This lesser applicability results
from an internal inconsistency in the theory that deviates from
the assumptions of a homogeneous Poisson process due to the
parameterization of the area occupied by a single fish using only
a constant current velocity.

The ODORA method is identical to other methods for
inferring population density using the abundance of fish
attracted to a bait site, such as MaxN, except for the sole focus
on the first fish arriving at the bait. Although methods based on
fish assemblage at a bait site that incorporate fish behaviour such
as foraging have been developed, we point out the need to
consider the area of the odour plume and the dispersion
pattern, which can substantially influence the modelled time
profile of fish abundance at the bait.

The “odour plume area” assumed in the original ODORA
methodmay not accurately represent the actual odour plume area,
as it is advected by a horizontally uniform velocity and is defined
as the total area of the locations that the odour reaches once.
However, this method would be applicable even when the present
definition of the odour plume area is replaced by the actual plume
area, since the actual odour plume area always increases to satisfy
the extension rule (Eq. 5). Further applications of the ODORA
method would be possible by incorporating a simulation of odour
advection using realistic ocean circulation data such as that created
by assimilation techniques.
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Follana-Berná, G., Palmer, M., Campos-Candela, A., Arechavala-Lopez, P., Diaz-
Gil, C., Alós, J., et al. (2019). Estimating the Density of Resident Coastal Fish
Using Underwater Cameras: Accounting for Individual Detectability. Mar.
Ecol. Prog. Ser. 615, 177–188. doi: 10.3354/meps12926
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