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The transient impact of flooding on the community composition of marine picoeukaryotes
(PEs, cell size ≤5 mm) in the East China Sea (ECS) was revealed in this study. In a summer
without flooding (i.e., July 2009), photosynthetic picoeukaryotes (PPEs) were more
abundant in the area covered by the Changjiang River diluted water (CDW, salinity ≤31)
than in the non-CDW affected area. According to the 18S ribosomal RNA phylogeny,
Alveolata (all from the superclass Dinoflagellata) was the main community component
accounting for 72 to 99% of the community at each sampling station during the
nonflooded summer. In addition to Dinoflagellata, diatoms or Chlorophyta also
contributed a considerable proportion to the PE assemblage at the stations close to
the edge of CDW coverage. In July 2010, an extreme flooding event occurred in the
Changjiang River basin and led to the CDW covering nearly half of the ECS. In the flooded
summer, the abundance of PPEs in the CDW-covered area decreased significantly to less
than 1 × 104 cells ml-1. Compared to that during the nonflooded summer, the diversity of
the PE composition was increased. While Dinophyceae still dominated the surface waters,
Syndiniophyceae, which were represented by the uncultured Marine Alveolata Group
(MALV)-I and MALV-II, accounted for a substantial amount in the Dinoflagellata superclass
relative to this community composition in the nonflooded summer. Furthermore, a variety
of plankton, including Cryptophyta, Haptophyta, Picobiliphyta, the uncultured Marine
Stramenopiles (MASTs) and heterotrophic nanoflagellates, were observed. The nutrition
modes of these PEs have been reported to be mixotrophic or heterotrophic. Therefore, it
was inferred that the potentially mixotrophic and heterotrophic PE compositions might be
favored in the marginal sea in the flooded summer.
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INTRODUCTION

The distribution and succession of picoplankton (cell size ≤2 µm;
recent studies defined it as ≤5 µm) are easily affected by abrupt
environmental events because of their tiny cell sizes and various
physiological characteristics. According to the existence of a cell
nucleus, picoplankton can be divided into prokaryotic
picoplankton and eukaryotic picoplankton (also known as
picoeukaryotes, PEs). Picocyanobacteria (mainly Synechococcus
and Prochlorococcus) are important prokaryotic picoplankton in
the ocean. There have been many studies describing their
responses to sudden environmental changes. For example, it
has been reported that sudden environmental events, such as the
passage of tropical cyclones, heavy atmospheric deposition
associated with dust storms, or abundant terrestrial material
inputs derived from flooding events, not only promote the
transient growth of Synechococcus species but also alter their
community assemblage (Chang et al., 1996; Herut et al., 2005;
Chen et al., 2009; Chung et al., 2011; Chung et al., 2014; Chung
et al., 2015). However, there is still a lack of relevant field studies
on the relationship between PE assemblage composition and
sudden environmental changes. The taxonomic assemblages of
PEs are more diverse than those of picocyanobacteria. In
addition, PEs exhibit versatile nutritional strategies (i.e.,
phototrophy, mixotrophy, and heterotrophy), allowing them to
cope with changes in the surrounding environment (Worden
et al., 2015). Regarding the phototrophic mode, photosynthetic
picoeukaryotes (PPEs) and picocyanobacteria are important
primary producers in the microbial carbon cycle in marine
ecosystems. The abundance of PPEs is usually lower than that
of picocyanobacteria by approximately one to two orders of
magnitude; however, their contributions to total primary
production are almost equivalent (Worden et al., 2004;
Jardillier et al., 2010). Another large group of PEs are
heterotrophic and play the role of primary consumers in the
microbial food web (Stoeck et al., 2010; McKie-Krisberg and
Sanders, 2014; Unrein et al., 2014; Worden et al., 2015; Leles
et al., 2018). In addition to PPEs and heterotrophic PEs,
mixotrophic PEs exhibit a dual nutritional strategy within
single cells. These organisms shift their trophic mode from
phototrophy to bacterivory when the environment is
inappropriate for photosynthesis or when the cells lack
nutrients (McKie-Krisberg and Sanders, 2014; Worden et al.,
2015). In response to environmental changes, alterations in the
composition of PEs or the conversion of their nutritional modes
might further affect the microbial carbon cycle and the
biogeochemical cycles of marine ecosystems (Hoegh-Guldberg
and Bruno, 2010; Stoeck et al., 2010; Hilligsøe et al., 2011;
Worden et al., 2015; Leles et al., 2018).

Rivers input considerable amounts of fresh water and
terrestrial materials into the ocean, providing an important
source of nutrients for phytoplankton growth in estuaries and
adjacent oceanic areas (Justić et al., 1995; Gong et al., 2006). The
Changjiang River (aka. the Yangtze River) is the longest river in
Asia, and its input substantially affects the biogeochemical
processes of the East China Sea (ECS) shelf. However, the
completion and commissioning of the Changjiang River Dam
Frontiers in Marine Science | www.frontiersin.org 2
have led to a significant decrease in the supply of fresh water and
terrestrial materials to the ECS. The deficiency of the terrestrial
supply of nutrients (e.g., silicate) has not only led to a decline in
primary productivity but has also caused the dominant
phytoplankton to shift from diatoms to dinoflagellates (Gong
et al., 2006). However, the injection of large amounts of
freshwater and riverine materials derived from a flood that
occurred in the Changjiang River Basin stimulated a temporary
massive growth of diatoms in the ECS (Gong et al., 2011). Under
increasing human activities and the scenario of global
environmental change, floods and droughts will likely occur
often, especially in Eastern Asia (IPCC, 2021). More dynamic
river discharge and loading of terrestrial materials will result in
greater impacts on the marine ecosystem. Compared to
microplankton (cell size ≥20 mm, e.g., diatoms), picoplankton
show a relatively fast response to environmental changes due to
their tiny cell size. Previous studies examining the influence of
terrigenous substances on marine picoplankton ecology have
often been conducted in estuaries (e.g., Paerl et al., 2020), and
information from shelf and open ocean areas is still lacking. In
the ECS, Tsai et al. (2010) and Lee et al. (2018) both proposed
that the abundance and distribution of picoplankton were
determined by the degree of the expansion of Changjiang
discharge water over the shelf of the ECS. However, the
community assemblages of picoplankton and their dynamics
during flooding periods have not been comprehensively described.

In the summer of 2010, a devastating flood occurred in the
Changjiang River Basin. The consequent freshwater inputs
resulted in the expansion of the Changjiang River discharge to
over half of the ECS. We have examined the influence offlooding
on the ecology of prokaryotic picoplankton in our previous
studies (Chung et al., 2014; Chung et al., 2015). Although PEs
are larger than prokaryotic picoplankton, the PE community
assemblage is difficult to determine based on microscopic
observation alone due to the tiny size of these organisms.
Recently, phylogenetic analyses of 18S ribosomal RNA genes
have been well developed to examine PEs in the oceans at a fine
taxonomic resolution (Moon-van der Staay et al., 2001; Massana,
2011). Phylogenetic information combined with hydrographic
data will be of great utility in addressing the ecological roles of
different PEs and inferring the impacts of environmental changes
on their niches in the oceans. This study, combined with our
previous findings, will provide more comprehensive information
on how floods affect the succession of picoplankton in the ocean.
MATERIALS AND METHODS

Sample Collection
Two voyages aboard R/V Ocean Researcher I were conducted in
the ECS during the periods from 29 June to 13 July 2009 and 6
July to 17 July 2010 (Figure 1A). Temperature and salinity were
measured with a conductivity/temperature/depth recorder
(CTD) (SBE911 plus, Sea-Bird Electronics, Washington, USA).
Water samples for determining the concentrations of nutrients
and chlorophyll a and the abundance of picoplankton were
May 2022 | Volume 9 | Article 853847
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FIGURE 1 | (A) Locations of observation stations in the East China Sea. The solid and dashed lines represent the isohaline of 31 in the summers of 2009 and 2010,
respectively. A total of 24 stations were visited during the 2 cruises. The phylogenetic analysis of 18S rRNA genes was performed based on the surface samples of
Stations 1 to 5 denoted by star symbols. (B) Vertical distribution of salinity at Stations 1 to 5 in the summers of 2009 and 2010. The isohaline of 31 is indicated by
the solid line. (C) Temperature-salinity diagram. Characterization of different water masses, including the Changjiang diluted water (CDW), the Taiwan strait current
warm water (TCWW) and the Yellow Sea mixed water (YSMW), was in accordance with the definitions of Gong et al. (1996).
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collected using Teflon-coated 20-liter Niskin bottles (General
Oceanics, Florida, USA) mounted on a CTD rosette sampler. A
total of 24 stations located on the ECS shelf were visited. DNA
samples collected from the surface (depth=5 m) at the 5 stations
(S1 to S5) (Figure 1A) were used to analyze the phylogenetic
diversity of 18S rRNA genes.

Determination of Chlorophyll a and
Nutrient Concentrations
One liter of water to be used for chlorophyll a analysis was
immediately filtered through a GF/F class filter (Whatman,
Maidstone, UK), and the filter was stored at -20°C until
analysis. Chlorophyll a preserved on the filter was extracted in
pure acetone at 4°C overnight in the dark and was measured with
a fluorometer (10-AU-005, Turner Design, California, USA)
(Welschmeyer, 1994; Gong et al., 1996). To determine the
concentrations of dissolved inorganic nutrients, the water
sample was placed in a polypropylene bottle and immediately
frozen with liquid nitrogen onboard the survey vessel. Nitrite
(NO2) and nitrate (NO3) concentrations were measured via the
pink azo dye method with a self-designed flow injection analyzer
(Strickland and Parsons, 1972; Gong et al., 1996). The
concentration of phosphate (PO4) was determined by the
molybdenum blue method (Pai et al., 1990; Gong et al., 1996).

Counting of Picoplankton
Samples for picoplankton counting were fixed in seawater-buffered
paraformaldehyde at a final concentration of 0.2% (w/v), frozen in
liquid nitrogen and kept at -80°C until analysis. Flow cytometry
(FACSAria, Becton-Dickinson Co., New Jersey, USA) was applied
to distinguish different populations of picoplankton. For
picocyanbacteria (i.e., Synechococcus and Prochlorococcus) and
small PPEs, abundance estimates and counts were determined
according to their cell size (forward- and side-scattering) and
their autofluorescence in the orange (from phytoerythrin, 575 ±
15 nm) and red (from chlorophyll, >670 nm) ranges. Heterotrophic
bacteria were counted in a separate subsample stained with SYBR-
Green I dye (Molecular Probes Inc., Oregon, USA). A known
number of fluorescent beads (TruCOUNT Tubes, Becton-Dickson
Co., New Jersey, USA) was simultaneously counted to convert the
flow rates for determining picoplankton abundance in the sample
(Liu et al., 2002; Chung et al., 2015).

DNA Extraction From Small
Planktonic Cells
Five liters of the surface water was subsequently filtered through
20 µm-pore size nylon mesh (Sefar, Heiden, Switzerland) and 5
µm-pore size polycarbonate membranes (47 mm diameter)
(Nuclepore, Whatman, Maidstone, UK) to remove larger
plankton. The cells in the filtrate were harvested using 0.8 µm-
pore size polycarbonate membranes (47 mm diameter)
(Nuclepore, Whatman, Maidstone, UK) under gentle vacuum
(≤100 mmHg). The membranes were frozen in liquid nitrogen
and kept at -80°C until DNA extraction. Cells (cell size between
0.8 and 5 µm) retained on the membranes were disrupted by
Frontiers in Marine Science | www.frontiersin.org 4
glass beads (0.1 mm diameter) using a bead beater (BioSpec
Products, Oklahoma, USA) and then treated with lysis buffer
containing 0.1 M EDTA (pH 8.0), 1 mM Tris-HCl (pH 8.0),
0.25% sodium dodecyl sulfate and 0.1 mg ml-1 proteinase K
(Roche, Penzberg, Germany) at 55°C overnight. After the
removal of detritus and residual polysaccharides by treatment
with 1% hexadecyltrimethylammonium bromide (Sigma-
Aldrich, Missouri, USA), followed by chloroform extraction
and an additional round of phenol/chloroform/isoamyl alcohol
(v:v:v=25:24:1) extraction, DNA was precipitated by adding
isopropanol. The DNA pellet was dissolved in Tris-EDTA
buffer (pH 8.0), and its concentration and purity were
determined using a spectrophotometer (NanoDrop, Thermo
Scientific, Delaware, USA) at wavelengths of 260 and 280 nm
(Chung et al., 2015).

Pyrosequencing
Variable region 4 (V4) of the 18S rRNA gene was amplified by
polymerase chain reaction (PCR) with 50 ng DNA as the template.
The PCR mixture contained Phusion High-Fidelity DNA
polymerase (New England Biolabs, Massachusetts, USA), 1×
Phusion HF buffer, a 200 mM deoxynucleotide solution mixture,
and both the forward fusion primer “Primer A-MID-
TAReukFWD” (5 ’-Primer A-MID-CCAGCASCYGCG
GTAATTCC-3’, MID=multiplex identifier, S=G or C, Y=C or T)
and the reverse primer “TAReukREV” (5’-ACTTTCGTT
CTTGATYA-3’, Y=C or T, R=A or G) (Stoeck et al., 2010;
Tamaki et al., 2011). Unidirectional pyrosequencing was
performed only with Primer A (Tamaki et al., 2011). The MIDs
were used to assist in sample identification after pyrosequencing. To
increase specificity and sensitivity in PCR amplification, touchdown
PCR was performed in a thermocycler (Model 9700, Applied
Biosystems, New York, USA) under the following conditions: 1
cycle of 98°C for 30 sec; followed by 10 cycles of 98°C for 10 sec,
53°C for 30 sec, and 72°C for 30 sec; then 20 cycles of 98°C for 10
sec, 48°C for 30 sec, and 72°C for 30 sec; and finally, 1 cycle of 72°C
for 10 min. The amplicons were subjected to agarose gel
electrophoresis and purified using a QIAquick Gel Extraction Kit
(Qiagen, California, USA). The concentrations of the purified
amplicons (495 base pairs) were measured using a Qubit dsDNA
High Sensitive Assay Kit (Thermo Fisher Scientific, Massachusetts,
USA) and a fluorometer (Qubit 2.0) (Thermo Fisher Scientific,
Massachusetts, USA). Equal molar amounts of all amplicons were
combined for pyrosequencing on a Roche 454 Genome Sequencer
FLX+ Instrument (454 Life Sciences, Connecticut, USA).

Sequence Processing, Operational
Taxonomic Unit (OTU) Definition, and
Diversity Analysis
Raw sequences were processed using the algorithms AmpliconNoise
(Quince et al., 2011) and PyroNoise (Quince et al., 2009) to reduce the
pyrosequencing error rates. Any sequence with more than one
mismatch with the MID, more than two mismatches with the
primers, or a PCR one-base error was excluded. Chimeras were
detected and removed with UCHIME (Edgar et al., 2011). All the
May 2022 | Volume 9 | Article 853847
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resultant sequences were aligned to the SILVA rRNA SEED database
(release 138) and clustered into OTUs at a cutoff level of 3%
divergence based on the pairwise alignment distance. The
taxonomy of each OTU was annotated by the SILVA rRNA
reference dataset (release 138) with the Ribosomal Database Project
Classifier (Wang et al., 2007) and was subsequently confirmed using
BLASTN searches against the GenBank database. The OTUs that
were not classified as eukaryotic 18S rRNA genes or affiliated with
larger protozoans (i.e., ciliates and radiolarians) and metazoans (e.g.,
copepods) were excluded from further analysis. The OTUs
comprising less than 2 reads (i.e., singletons and doubletons) were
also removed. The resultant OTUs were applied for the assessment of
richness and diversity indices. Additionally, the OTUs with a relative
contribution greater than 0.1% of the total reads in any sample were
regarded as abundant OTUs and were applied to investigate the
assemblage composition of PEs (Wu et al., 2017). All of the above and
a- and b-diversity analyses were implemented using the Mothur
software package (version 1.47.0) (Schloss et al., 2009). The
phylogenetic relationship between the abundant OTUs in a taxon
was interpreted by the maximum likelihood (ML) algorithm with the
Kimura two-parameter model (Kimura, 1980). The effects of
sampling error on tree inference and the stability of branch nodes
were tested by bootstrap analyses with 1,000 repetitions. The software
IQ-TREE (version 1.4.4) were used for the phylogeny-related analysis
and tree construction (Nguyen et al., 2014). The vegan package in R
was used in the ordination analysis.

Data Availability
All of the sequences of 18S rRNA V4 gene fragments were
deposited in the Sequence Read Archive (SRA) database with
accession numbers SAMN10089074 to SAMN10089083.
RESULTS

Hydrographic Characteristics
The plume of the Changjiang River was small during the summer
without flooding in 2009. The Changjiang River diluted
water (CDW), which has been defined as water with
Frontiers in Marine Science | www.frontiersin.org 5
a temperature ≥23°C and salinity ≤31 (Gong et al., 1996), was
restricted to the inshore region of the northwestern ECS
(approximately 0.4 × 105 km2). Most surfaces in the ECS were
covered with high-temperature, oligotrophic waters from
northward-flowing Taiwan Current Warm Water (TCWW)
and the intrusion of the Kuroshio Current (Table 1, Figure 1).
These conditions represent the typical hydrography of the ECS in
nonflooded summers (Gong et al., 2011). In contrast, extreme
flooding occurred in the Changjiang River Basin in summer 2010
and led to a large amount of fresh water being injected into
the ECS. Through the extension of CDW coverage to the
southern ECS (approximately 1.7 × 105 km2), more than half
of the surface ECS was fertilized with terrestrial nutrients,
resulting in a subsequent increase in the chlorophyll a
concentration (Table 1, Figure 1).
Distribution of
Photosynthetic Picoeukaryotes
Among PEs, only PPEs can be detected and counted by flow
cytometry due to the presence of chlorophyll. The distribution of
PPEs in both summers is presented in Figure 2. Regardless of
whether flooding occurred, PPEs were mainly distributed in the
coastal areas covered by the CDW. However, the highest count of
PPEs in the nonflooded summer was greater than 2.5 × 104 cells
ml-1, which was approximately twice as high as the maximum
PPE count in the flooded summer. Overall, the abundance of
PPEs within the CDW-influenced area in the nonflooded
summer was significantly greater than that in the flooded
summer (p<0.001) (Figure 2).
Diversity of Picoeukaryotes
According to a previous study of hydrography in the ECS (Gong
et al., 1996), we defined Station 1 and Station 2 as CDW-influenced
stations and Station 5 as an oceanic station. In addition to Stations
1, 2 and 5, the hydrography of Stations 3 and 4 was susceptible. In
the nonflooded summer, Stations 3 and 4 were usually covered
with salty, higher-temperature water. Nevertheless, during the
TABLE 1 | The hydrographic properties and the cell numbers of phycoerytherin-rich Synechococcus (PE-rich Syn), photosynthetic picoeukaryotes (PPE) and
heterotrophic bacteria (Bac) in the surface waters (depth=5 m) of environmental DNA sampling stations in the summers of 2009 and 2010.

Station T (°C) S TM (%) DIN (µM) DIP (µM) SiO3 (µM) Chl. a (mg m-3) PE-rich Syn (cells ml-1) PPE (cells ml-1) Bac (cells ml-1)

2009
1 24.52 30.38 62.0 4.1 0.28 12.84 5.13 481,500 38,400 1,599,800
2 24.76 32.10 77.2 2.9 0.06 4.32 1.82 657,000 6,200 527,300
3 26.70 33.93 84.8 0 0.10 3.82 0.19 94,500 7,500 992,700
4 27.14 33.60 85.6 0 0.04 2.55 0.17 233,000 6,200 1,310,300
5 28.26 33.85 82.5 0 0.04 2.77 0.24 56,800 3,200 988,000
2010
1 21.01 27.84 75.4 16.3 0.16 10.85 2.25 62,500 2,200 1,520,200
2 24.52 25.44 75.0 21.1 0.24 13.67 3.36 239,800 10,200 519,600
3 25.47 28.42 79.7 13.9 0.30 2.27 1.71 169,700 6,600 964,600
4 25.66 30.73 81.2 2.4 0.32 4.21 1.30 73,300 4,200 1,018,600
5 27.73 32.57 83.5 0 0.02 1.88 0.66 81,800 11,700 287,900
M
ay 2022 | Volume 9
Hydrographic parameters listed are temperature (T), salinity (S), turbidity (TM), and the concentrations of dissolved inorganic nitrogen (DIN, NO2+NO3), dissolved inorganic phosphate
(DIP), silicate (SiO3) and chlorophyll a (Chl. a).
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FIGURE 2 | Distribution of photosynthetic picoeukaryotes (PPEs) (cells ml-1) at the surface on the East China Sea shelf in the summers of (A) 2009 and (B) 2010.
The solid lines indicate the isohaline of 31. (C) Whisker plot of PPE abundance in the surface waters of the stations confined to the area within the isohaline of 31
(i.e., 10 stations in 2009 and 24 stations in 2010).
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flooded summer of 2010, the surfaces of Stations 3 and 4 were
overlaid by the extended CDW (Table 1 and Figure 1).
Compared to the nonflooded summer of 2009, the
hydrographic conditions of the five stations were significantly
affected by the occurrence of flooding in the summer of 2010.
Therefore, these five stations were selected to further study the
impact of flooding on the diversity of the small eukaryotic
plankton assemblage.

After the removal of chimeras, singletons, doubletons, and
reads belonging to larger protozoans (e.g., ciliates and
radiolarians) and metazoans (e.g., copepods), we obtained a
total of 960,541 high-quality reads for the 18S rRNA gene
phylogenetic analysis. According to the criterion of 3%
sequence divergence, these reads were categorized into 2,616
OTUs (Table 2). The rarefaction curves, except for that of
Station 2, almost reached a plateau phase, indicating that the
sampling efforts were enough to analyze 18S rRNA gene diversity
(Supplementary Figure 1). Based on the ACE, Shannon and
Pielou indices, the species richness and divergence of PEs in the
flooded summer were greater than those in the nonflooded
summer overall. The diversity was more pronounced at the
CDW-influenced stations (i.e., Stations 1 and 2) than at the
other three offshore stations (i.e., Stations 3, 4 and 5)
(Table 2, Figure 3).

To clarify the impact offloods on the ecology of PEs, a total of
240 abundant OTUs were selected for the subsequent analysis of
the community composition. While the abundant OTUs
accounted for only approximately one-tenth of the total OTUs,
they comprised 902,380 reads, which accounted for 94% of the
total reads (Table 2). During the nonflooded summer, the PEs at
each station were almost entirely composed of the Alveolata
species, except at Station 2 (Figure 4A). In this study, 63 OTUs
were grouped into Alveolata. They all belonged to the phylum
Dinoflagellata. Among these OTUs, 18 OTUs were grouped into
the class Dinophyceae. They were all affiliated with
Gymnodinium. OTU-001 accounted for the highest proportion
of the community at all stations and was the most important
member. The other 45 OTUs were categorized into the class
Syndiniophyceae, among which 7 OTUs were affiliated with
Euduboscquella spp. (the uncultured Marine Alveolata Group I,
Frontiers in Marine Science | www.frontiersin.org 7
MALV-I). In addition to OTU-001, OTU-002 (i .e . ,
Euduboscquella sp.) contributed considerable read numbers,
and this group was also suggested to be the major PE at all
stations (Figure 5). Euduboscquella sp. is already known to be an
intracellular parasite of tintinnid ciliates (Jung et al., 2016). The
uncultured Marine Alveolata Group II (MALV-II), which
comprised 38 OTUs, was another dominant group within
Dinoflagellata. Its abundance accounted for less than 10% of
all dominant OTU sequences (Figures 4A, 5). All of the OTUs in
MALV-II were Amoebophyra sp., which are syndinean
dinoflagellates that parasitize free-living dinoflagellates, such as
Gymnodinium (Yih and Coats, 2000). In contrast to the other 3
stations, although Dinoflagellata still accounted for most of the
community assemblage at Stations 2 and 3, their proportions
declined to 81% and 74%, respectively. Instead, at Station 2,
Stramenopiles, mainly represented by two diatoms Fragilariopsis
dollolus (OTU-49) and F. kerguelensis (OTU-101) and one
uncultured Marine Stramenopile Group 13 (MAST-13)
(Bicosoeca vacillans , OTU-316), jointly accounted for
approximately 15% of the total reads (Figures 4A, 6). At
Station 3, Chlorophyta contributed 25% of the total reads and
were primarily composed of Picochlorum sp. (OTU-005) and
Chloropicon roscoffensis (OTU-013), which accounted for 20%
and 4%, respectively (Figures 4A, 7).

The community composition of PEs in the flooded summer
was more diverse than that in the nonflooded summer. The
proportion of Alveolata declined at all stations except Station 4,
falling to 80% at Stations 1 and 5 and approximately 50% at
Station 2 (Figure 4B). Although the composition of the Alveolata
to that in the nonflooded summer was similar, the ratio of
MALV-II at each station increased to 10% (Figure 5). In
addition to Alveolata, the other phyla found at all stations
were Stramenopi les , Chlorophyta, Haptophyta and
Picobiliphyta. Chlorophyta were mainly composed of
Tetraselmis subcordiformis (OTU-059), Mamiella sp. (OTU-
187), Micromonas bravo (OTU-05) and Ostreococcus sp.
(OTU-068). They were widely distributed in various stations
with a proportion of less than 10%. Picochlorum and
Chloropicon, which were found at Station 3 in the nonflooded
summer, almost disappeared in the flooded summer. Moreover,
TABLE 2 | Summary of pyrosequencing result of 18S ribosomal RNA gene V4, and the indices of richness estimate (ACE), diversity (Shannon) and evenness (Pielou) in
the East China Sea in the summers of 2009 and 2010 (Figure 1).

Station Total Reads OTU Coverage ACE Shannon Pielou

2009
S1 131,383 (122,861) 308 (11) 1.00 444 0.93 0.19
S2 13,819 (13,466) 280 (28) 1.00 581 2.79 0.48
S3 336,527 (320,163) 1,025 (38) 1.00 878 2.45 0.41
S4 26,495 (23,887) 587 (50) 0.99 973 3.04 0.49
S5 110,761 (98,676) 1,111 (69) 1.00 1,218 3.42 0.52
2010
S1 85,742 (78,946) 902 (63) 1.00 1,002 3.21 0.51
S2 41,037 (36,698) 762 (92) 1.00 996 4.29 0.67
S3 64,079 (59,449) 704 (64) 1.00 825 2.80 0.46
S4 124,462 (114,080) 1,175 (93) 1.00 1,274 3.70 0.57
S5 32,077 (27,801) 976 (81) 0.99 1,224 4.31 0.64
May 2
022 | Volume 9 | Article 8
The numbers in parentheses represent the number of dominant OTUs and the total read number they have in each station.
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A

B

C

FIGURE 3 | The (A) ACE, (B) Shannon diversity and (C) Pielou evenness indices of the community assemblages of picoeukaryotes, which were inferred from the
OTU composition, at Stations 1 to 5 in the summers of 2009 and 2010.
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Cryptophyta and heterotrophic nanoflagellates only appeared at
the CDW-influenced stations (i.e., Stations 1 and 2) (Figure 4B).
Regarding nutritional strategies, the PEs that were found in the
flooded summer were suggested to be heterotrophic or
mixotrophic. For example, OTU-036 (Chrysochromulina
simplex, Haptophyta) (Figure 8) and OTU-019 and OTU-032
Frontiers in Marine Science | www.frontiersin.org 9
(Teleaulax amphioxeia, Cryptophyta) (Figure 9) were
mixotrophic. OTU-250 (Picomonas judraskeda, Picobiliphyta)
(Figure 10) and several nanoflagellates, such as OTU-063
(Protaspis grandis) and OTU-113 (Cryothecomonas aestivalis)
(Figure 11), were heterotrophic. Additionally, OTU-078
(Pirsonia verrucose, MAST-1C, Stramenopiles) and OTU-244
A

B

FIGURE 4 | Community compositions of abundant picoeukaryotes indicated at the phylum level at Stations 1 to 5 in the summers of (A) 2009 and (B) 2010.
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(Incisomonas marina, MAST-3, Stramenopiles) were suggested
as parasites for hosting centric diatoms (Figure 6E). The new
appearance of heterotrophic and mixotrophic PEs in the flooded
summer implied that the microbial cycle should be different from
that in the summer without flooding.
DISCUSSION

The clustering analysis of the PE assemblage composition at each
station and the correlation with environmental parameters are
shown in Figure 12. The correlation results indicate that salinity
reduction and the input of terrestrial dissolved inorganic
nitrogen (DIN) were possible factors promoting the transient
growth of Cryptophyta and HNFs at the inshore stations (i.e.,
Stations 1 and 2). The rise in turbidity resulted in increases in
Picobiliphyta and MALV-II at the offshore stations (i.e., Stations
3, 4 and 5). Moreover, the abundance of Stramenopiles (e.g.,
MAST-1C) and Haptophyta (e.g., Chrysochromulina simplex)
Frontiers in Marine Science | www.frontiersin.org 10
both increased to account for considerable proportions of the
total PE composition at each station in the flooded summer.
Although there were obvious differences in the species
composition at each station in the nonflooded and flooded
summers, no consistent inference was obtained based on the
correlation analysis between the species composition and various
environmental factors (Figure 12). The term “picoeukaryotes”
generally refers to eukaryotic plankton with cell sizes smaller
than 2 or 5 mm. Their community composition is very
complicated, and each species possesses unique biological
characteristics. It is still difficult to elucidate the relationships
among their succession, nutritional modes and ambient
parameters (Worden et al., 2015). Our results in this study also
supported this interpretation. The combination of systematic
studies of single species with more comprehensive sampling of
marine PE biodiversity in diverse marine environments will
enable significant progress in the comparison and clarification
of the relationships between PE activities and environmental
factors (Worden et al., 2015).
FIGURE 5 | Heatmap representing the relative contribution of each abundant OTU of Alveolata during the summers of 2009 and 2010. All of the abundant OTUs of
Alveolata identified in this study were grouped into the phylum Dinoflagellata. After phylogenetic analysis, these OTUs were further assigned to the classes Dinophyceae
and Syndiniophyceae. This figure shows that the OTUs of the Dinophyceae were all affiliated with Gymnodinium. The other OTUs of the Syndiniophyceae belonged to
Euduboscquella (MALV-I) and Amoebophyra (MALV-II). The relative contribution indicates the percentage of the number of 18S rRNA gene V4 sequences in each OTU.
The phylogenetic tree in the left position was constructed using the maximum likelihood algorithm. The labels at the bottom position indicate the color codes of the
different percentages.
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Picoplankton succession responds quickly to changes in the
environment. Therefore, when a sudden environmental event
occurs, picoplankton composition shows a temporarily higher
degree of divergence (e.g., Herut et al., 2005; Chen et al., 2009;
Chung et al., 2011; Chung et al., 2015). The newly emerging PE
populations in the flooded summer were more diverse and
possessed versatile nutrition modes, mostly tending toward
heterotrophy or mixotrophy. We found that Teleaulax
amphioxeia was the main member of Cryptophyta at the
inshore stations after the flood (Figure 9). It has been reported
that T. amphioxeia is a mixotroph that shifts its nutritional mode
from photosynthesis to predation when the abundance of
Synechococcus or bacteria increases (Yoo et al., 2017).
Accordingly, grazing by T. amphioxeia was one of the possible
factors contributing to the decrease in the number of
Synechococcus in the flooded summer (Chung et al., 2014;
Frontiers in Marine Science | www.frontiersin.org 11
Chung et al., 2015). T. amphioxeia also served as an excellent
prey for nanoflagellates and ciliates (Nishitani et al., 2010;
Hernández-Urcera et al., 2018). Compared to that occurring in
the nonflooded summer, the PE niches in the microbial food web
were more differentiated, and the process of the pelagic
ecosystem should have been more complicated when the
flooding occurred.

Mixotrophic haptophytes have been considered important
bacterivores in oligotrophic coastal waters (Unrein et al., 2014;
Chan et al., 2018). We found that haptophytes occupied a
significant proportion of the picoplankton assemblage at each
station in the flooded summer. Among them, Chrysochromulina
spp. were the major members. Chrysochromulina have been
identified as mixotrophic haptophytes and showed high
phagotrophic ability in phosphate-starved or low-irradiance
conditions (Kawachi et al., 1991; Jones et al., 1993).
a

b

d

e

c

FIGURE 6 | Heatmap representing the relative contribution of each abundant OTU of Stramenopiles during the summers of 2009 and 2010. All of the abundant
Stramenopile OTUs identified in this study were grouped into (A) Bacillariophyceae, (B) Dictyochophyceae, (C) Chryosophyceae, (D) other (i.e., F. japonica belonged
to Chloromonadophyceae, H. akashiwo belonged to Raphidophyceae, and P. caceolata belonged to Pelagophyceae) or (E) marine Stramenopile lineages (MAST).
The relative contribution indicates the percentage of the number of 18S rRNA gene V4 sequences in each OTU. The phylogenetic tree in the left position was built
using the maximum likelihood algorithm. The labels at the bottom position indicate the color codes of the different percentages.
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Søgaard et al. (2021) reported that an under-ice algal bloom
dominated by mixotrophic haptophytes (i.e., Chrysochromulina
and Prymnesium) occurred in the early spring in the Arctic. The
authors deduced that freshwater input derived from the melting
ice, subsequently resulting in nutrient dilution and low light
intensity, jointly led to the thriving of Chrysochromulina and
Prymnesium. However, previous studies on Chrysochromulina
were all carried out in high-latitude areas. Relevant research
works on these species have not been performed in subtropical
oceans. Based on the results of the correlation analysis
(Figure 12) and the previous studies mentioned above, it was
inferred that the salinity decline derived from the flooding led to
the emergence of Chrysochromulina spp.

The operation of the Three Gorges Dam drastically decreased
territorial silicate loading into the ECS, resulting in a regime shift
in the dominant phytoplankton species from diatoms to
Frontiers in Marine Science | www.frontiersin.org 12
dinoflagellates (Gong et al., 2006). A similar distribution of
phytoplankton was observed in this study. Regarding the
relationship between Stramenopiles distribution and flooding,
during the nonflooded period, only a higher proportion of
diatoms could be found at Station 2. By contrast, diatoms
prevailed at every station in the flooded summer. 18S rRNA
sequences from large chain-form diatoms (e.g., Chaetoceros
tenuissimus, Leptocylindrus convexu and Cerataulins pelagica,
etc.) found in our picoplankton dataset might be attributed to
cell rupture during filtration. However, this also suggested that
more diatoms should be present in the waters after the input of
terrestrial materials (Chung et al., 2012). In addition to diatoms,
some heterotrophic lineages of MAST (i.e., MAST-1C, MAST-3
and MAST-7) (Logares et al., 2012; Labarre et al., 2021) were
found after flooding. Among them, Pirsonia verrucosa (OTU-
076) (MAST-1C) and the diatom C. tenuissimus appeared
FIGURE 8 | Heatmap representing the relative contribution of each abundant OTU of Haptophyta during the summers of 2009 and 2010. The relative contribution
indicates the percentage of the number of 18S rRNA gene V4 sequences in each OTU. The phylogenetic tree in the left position was built using the maximum
likelihood algorithm. The labels at the bottom position indicate the color codes of the different percentages.
FIGURE 7 | Heatmap representing the relative contribution of each abundant OTU of Chlorophyta during the summers of 2009 and 2010. The relative contribution
indicates the percentage of the number of 18S rRNA gene V4 sequences in each OTU. The phylogenetic tree in the left position was built using the maximum
likelihood algorithm. The labels at the bottom position indicate the color codes of the different percentages.
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concurrently at Stations 1 to 3 (Figure 6). Pirsonia are parasitic
flagellates that are specifically hosted by marine-centric diatoms
(Kühn et al., 1996; Kühn et al., 2004). A similar co-occurrence of
MAST-3 and diatoms was observed at Station 5 (Figure 6).
MAST-3 has poor mobility, and it was speculated that
epiphytism or parasitism should be one of its lifestyles
(Cavalier-Smith and Scoble, 2013; Gómez et al., 2010; Massana
et al., 2014; Seeleuthner et al., 2018). Solenicola setigera (MAST-
3I) has been confirmed to be parasitic to diatoms (Gómez et al.,
2011). Although relative evidence is still lacking, Incisomonas
marina (OTU-244) (MAST-3J) was suggested to also follow the
Frontiers in Marine Science | www.frontiersin.org 13
same life strategy (Cavalier-Smith and Scoble, 2013; Seeleuthner
et al., 2018). The cooccurrence of MAST-1C or MAST-3
accompanied diatoms implied that diatom abundance in the
flooded summer should be controlled by these parasitic
flagellates at this time.

Due to its high growth rate and tolerance to environmental
changes, Picochlorum (Chlorophyta) has been widely used in the
algae-related biotechnology industry (Foflonker et al., 2018;
Gonzalez-Esquer et al., 2019; Krishnan et al., 2021). However,
the ecology of Picochlorum in the oceans has not been studied.
Genomic analysis conducted with multiple Picochlorum isolates
FIGURE 10 | Heatmap representing the relative contribution of each abundant OTU of Picobiliphyta during the summers of 2009 and 2010. The relative contribution
indicates the percentage of the number of 18S rRNA gene V4 sequences in each OTU. The phylogenetic tree in the left position was built using the maximum
likelihood algorithm. The labels at the bottom position indicate the color codes of the different percentages.
FIGURE 9 | Heatmap representing the relative contribution of each abundant OTU of the Cryptophyta during the summers of 2009 and 2010. The relative
contribution indicates the percentage of the number of 18S rRNA gene V4 sequences in each OTU. The phylogenetic tree in the left position was built using the
maximum likelihood algorithm. The labels at the bottom position indicate the color codes of the different percentages.
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revealed that allelic diversity and horizontal gene transfer might
be the mechanisms for shaping their adaptation to variable
environments (Foflonker et al., 2018). Picochlorum sp.,
occupied approximately 20% of the total reads at Station 3 in
the nonflooded summer. A similar distribution of Picochlorum
in the ECS was also found in summer 2019, when the Changjiang
River plume was small. The emergence of Picochlorum should
be attributed to the relatively stable hydrography (high temperature,
high salinity and lowDIN) in the summerswithoutdisturbances. This
situation seems tobe at oddswith thehigh adaptability ofPicochlorum
to fluctuating environmental conditions. Pang et al. (2022)
Frontiers in Marine Science | www.frontiersin.org 14
first confirmed that Picochlorum sp. (GLMF1 strain) was
mixotrophic. Its bacterivory activity increased when the ambient
conditions becamemore suitable for photosynthesis. The operation
of a dual trophic strategy (phago-phototrophy) might benefit
Picochlorum growth on the ECS shelf in the interference-
free summer.

The development of high-throughput sequencing in the past
decade has allowed us to comprehensively analyze 18S rRNA
gene diversity so that we are able to explore the community
composition of PEs in depth. However, with regard to protists,
large differences in the copy numbers of rRNA genes among
FIGURE 11 | Heatmap representing the relative contribution of each abundant OTU of the heterotrophic nanoflagellates during the summers of 2009 and 2010. The
relative contribution indicates the percentage of the number of 18S rRNA gene V4 sequences in each OTU. The phylogenetic tree in the left position was built using
the maximum likelihood algorithm. The labels at the bottom position indicate the color codes of the different percentages.
FIGURE 12 | Nonmetric multidimensional scaling (nMDS) ordination plot of the dominant picoeukaryote assemblages at Stations 1 to 5 in the summers of 2009 and
2010. The correlation relationships between the picoeukaryote assemblages and environmental factors among all stations were assessed with the function “envfit”
(number of permutations=999) in the R package “vegan”. The solid and dashed lines indicate significance (p value) at the ≤0.01 and ≤0.05 levels, respectively. S,
salinity; T, temperature; TM, turbidity; DIP, dissolved inorganic phosphate; DIN, dissolved inorganic nitrogen (NO2+NO3); Si, silicate; Chl, chlorophyll a; Syn,
Synechococcus; PPE, photosynthetic picoeukaryotes; Bac, bacteria.
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various species may lead to deviations in the assessment of PE
abundance and the contribution of various PEs to the ecosystem
(Zhu et al., 2005). The cell debris of larger plankton or small
particles attached to their nuclear DNA fragments mixed in the
sample will contribute to mischaracterization of the PE
composition (Sørensen et al., 2013; Chan et al., 2020).
Moreover, it is difficult to determine the taxonomic identity of
PEs and simultaneously evaluate their nutritional modes. In
response to these problems, high-throughput 18S rRNA gene
sequencing combined with fluorescent in situ hybridization
(FISH) can more accurately assess PE assemblages in the field
(Unrein et al., 2014). Alternatively, the application of other index
genes (e.g., rbcL) provides a feasible way to assess the community
composition of PEs in the field (Meakin and Wyman, 2011).

The quantity of nutrients and freshwater carried by river
flows affects the phytoplankton composition and primary
productivity in marginal seas (Smith and Demaster, 1966;
Rabalais et al., 1996; Gong et al., 2006; Gong et al., 2011).
Under the scenario of global warming and increasing human
activities, the entry of riverine materials into seas will become
more dynamic, in turn affecting biogeochemical cycles on the
continental shelf (Gong et al., 2006; Gong et al., 2011; Chou et al.,
2013; IPCC, 2021). While various in situ studies of the impact of
extreme weather events on phytoplankton ecology in the
northwest Pacific have been performed (Chang et al., 1996;
Chen et al., 2009; Gong et al., 2011; Chung et al., 2014; Chung
et al., 2015), our knowledge of how marine ecosystems respond
to global climate changes and increasing human activities is still
insufficient. During the flooded summer of 2010, we observed
that PE diversity increased and that more 18S rRNA reads from
bacterivores appeared, although the detailed mechanism still
needs to be elucidated. It might be beneficial to deliver organic
carbon from the microbial cycle to the grazing food chain (Tsai
et al., 2010; Stibor et al., 2019; Gilbert and Mitra, 2022). Our
findings provide insight into the change in the community
composition of PEs between the dry period and flooding
period over the large continental shelf system in the NW
Pacific. This information will facilitate a complete assessment
of the impact of freshwater discharge on changing the energy
flow in the microbial food web.
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