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This study assesses the effects of internal climate variability on wave height trend 
assessment using the d4PDF-WaveHs, the first single model initial-condition large 
ensemble (100-member) of significant wave height (Hs) simulations for the 1951–2010 
period, which was produced using sea level pressure taken from Japan’s d4PDF ensemble 
of historical climate simulations. Here, the focus is on assessing trends in annual mean 
and maximum Hs. The result is compared with other model simulations that account for 
other sources of uncertainty, and with modern wave reanalyses. It is shown that the trend 
variability arising from internal climate variability is comparable to the variability caused by 
other factors, such as climate model uncertainty. This study also assesses the likelihood to 
mis-estimate trends when using only one ensemble member and therefore one possible 
realization of the climate system. Using single member failed to detect the statistically 
significant notable positive trend shown in the ensemble in some areas of the Southern 
Ocean. The North Atlantic Ocean is found to have large internal climate variability, where 
different ensemble-members can show trends of the opposite signs for the same area. 
The minimum ensemble size necessary to effectively reduce the risk of mis-assessing 
Hs trends is estimated to be 10; but this largely depends on the specific wave statistic 
and the region of interest, with larger ensembles being required to assess extremes. The 
results also show that wave reanalyses are not suitable for analyzing Hs trends due to 
temporal inhomogeneities therein, in agreement with recent studies.

Keywords: global wave climate, internal climate variability, ocean wave height, trend assessment, wave reanalysis

1 INTRODUCTION

Waves are an important element of the climate system, modulating interactions between oceans and 
atmosphere (Cavaleri et al., 2012). They are also a key environmental variable for coastal and offshore 
engineering (International Organization for Standarization, 2007; Gudmestad, 2020), navigation 
planning (Grifoll et al., 2018), and are a potential source of renewable energy (Reguero et al., 2019). 
Furthermore, waves are important drivers of coastal dynamics processes, such as coastal erosion 
(Stive et al., 2002; Huppert et al., 2020), and contribute to sea-level extremes at multiple time scales 
(Melet et al., 2018; Melet et al., 2020). This is critical as over 300 million people live on low-lying 
coastal areas (Griggs and Reguero, 2021).
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Detailed knowledge of wave climate is essential to address the 
aforementioned environmental and societal impacts. However, 
our current understanding is affected by several sources 
of uncertainty, as highlighted by Morim et  al. (2019), who 
presented the latest comprehensive large ensemble of global wave 
projections. They found a large uncertainty in the historical annual 
mean significant wave height (Hs) climatology with discrepancies 
exceeding 20% in some areas. The climate model and the method 
to simulate ocean waves were found to be dominant uncertainty 
factors. However, the wave method uncertainty, as defined in 
Morim et al. (2019), included uncertainty factors beyond the mere 
relationship between atmospheric forcing and wave parameters, 
as some of the wave methods bias-corrected the forcing drivers 
(using different wave reanalysis as reference) while others 
used atmospheric forcing as directly output by climate models. 
Therefore, this wave method uncertainty implicitly included 
factors related to different atmospheric model parameterizations 
and data assimilation associated to the corresponding reference 
datasets used for calibration.

Despite the recent coordinating efforts to better characterize 
waves, the role of internal climate variability, and particularly 
its effects on trend assessment, is still poorly known. Morim 
et al. (2019) only accounted for one realization per model and 
scenario combination. Wang et al. (2015) considered multi-run 
Hs simulations but these had 10 runs per model/scenario at most, 
and the study focused on signal uncertainty rather than trend 
assessment. Recently, Song et  al. (2021) developed centuries 
of global ocean wave data, including 165-year (1850-2014) of 
historical data. Despite being a unique database for ocean wave 
climate research, it only simulates one realization given the same 
climatological forcing. In terms of the driving wind fields, Morim 
et al. (2020) found that the underlying physics of the atmospheric 
component of climate models is the dominant source of bias 
in simulated wind fields, and that inter-model uncertainty is 
typically 2-4 times larger than the uncertainty associated with 
internal variability. However, they used a relatively small sample 
(3-10 model realizations).

Historical simulations are one possible realization of the 
climate system within its boundaries of internal variability. 
Studies based on single model realizations might underestimate 
extreme events or confound trends with internal (climate) 
variability. For example, internal variability can mask or enhance 
human-induced sea-ice loss on timescales ranging from years to 
decades (Swart et  al., 2015). Also, differences between models 
or a model and observations can easily be misinterpreted as 
significant differences, while they could be simply caused by an 
insufficient sample size (Milinski et  al., 2020). For instance, at 
least thirty ensemble members are required for a robust estimate 
of El Niño-Southern Oscillation (ENSO) variability, which plays 
a primarily positive role in intensifying anomalous wave climate 
(Yang and Oh, 2020). In terms of annual hurricane frequency, 
Mei et al. (2019) concluded that twenty ensemble was sufficient 
to detect year-to-year variations. The number of ensemble 
members required for robust estimates depends on targets or on 
temporal and spatial averaging scale (Ishii and Mori, 2020).

Despite the increasing amount and type of observations 
(mostly thanks to satellite records since 1979) and the continuous 

development of climate models, there are still many challenges in 
the characterization of the historical wave climate and the trends 
therein. State-of-the-art wave reanalysis and hindcasts present 
notable discrepancies and even exhibit opposite trends at global 
and regional scales (Sharmar et al., 2020). For example, modern 
reanalyses simulate contrasting positive and negative statistically 
significant trends in the annual mean Hs of the South Atlantic (of 
up to 0.05 m/decade in absolute value). The inconsistencies of 
reanalysis data sets are due to the changing quantity and quality 
of the satellite data incorporated into the products (Stopa et al., 
2019). Discrepancies were also obtained by Dodet et al. (2020) 
when comparing the trends derived from satellite records after 
considering two different post-processing data approaches. To 
date, wave climate studies have focused on uncertainties related 
to model resolution and parameterizaton, downscaling methods, 
observations errors and data assimilation but there is little 
knowledge about the role of internal wave climate variability.

A Single Model Initial-condition Large Ensemble (SMILE) 
is a set of simulations conducted using a single model with 
identical external forcing and a large ensemble of different initial 
conditions (Maher et  al., 2021). SMILEs are valuable data to 
investigate the climate system as they can help separate internal 
climate variability of the forced system from the forced response 
to changes in external forcing, and to sample extreme events 
with large return periods (Maher et  al., 2021). For example, 
they are beneficial for robust attribution of climate changes to 
anthropogenic forcing (Kirchmeier-Young et  al., 2021), and 
to investigate the uncertainty associated to compound events 
(Santos et al., 2021).

Here we present and analyze the first SMILE-based ensemble 
of global ocean significant wave height (Hs) simulations, which 
was produced using the 100-member ensemble of mean sea 
level pressure (SLP) taken from Japan’s d4PDF ensemble of 
historical climate simulations (Mizuta et al., 2017). After a slight 
modification in two of the 11 modelling regions (the tropical 
Pacific regions were split into two, see Section 2.1), the statistical 
model developed by Wang et  al. (2012, 2014) was used to 
obtain the wave heights driven by d4PDF SLP fields. This study 
investigates for the first time the role of internal climate variability 
in trend assessment of ocean wave heights at global scale. This 
helps to gain insight in the understanding of historical wave 
conditions and changes therein, bringing additional perspective 
in the context of the aforementioned discrepancies in modern 
reanalysis/hindcast products.

2 MATERIALS AND METHODS

2.1 d4PDF-WaveHs
The d4PDF-WaveHs ensemble analyzed in this study is a SMILE-
based ensemble of global historical Hs. This ensemble consists of 
100 members of 6-hourly Hs for the period 1951–2010 on a 1°× 
1° lat.-long. grid over the global oceans. It was produced using 
an advanced statistical model with SLP-based predictors derived 
from the SLP historical simulations taken from the d4PDF large 
ensemble, which includes historical climate and future projections 
(Mizuta et al., 2017). The 60 km resolution atmospheric global 
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circulation model (AGCM) MRI-AGCM developed by the Japan 
Meteorological Research Institute was used to generate d4PDF 
(Mizuta et al., 2012). The 100 historical simulations constitute a 
SMILE-type ensemble as they were generated by perturbations of 
the historical sea surface temperature (SST), sea ice concentration 
(SIC) and sea ice thickness (SIT) in relation to the observed errors 
(while using the same forcing, and global mean concentration of 
greenhouse gases (GHG) based on observations). More than 70 
papers related to d4PDF have been published to date, including 
impact assessment and social implementation studies (Ishii and 
Mori, 2020). d4PDF satisfactorily simulates the past climate in 
terms of climatology, natural variations, and extreme events such 
as tropical cyclones (Ishii and Mori, 2020).

To be able to generate 6,000 years (100 × 60 years) of Hs 
data with a reasonable computational cost, the statistical model 
developed by Wang et  al. (2012, 2014) was used to produce 
the d4PDF-WaveHs. This method consists of a multivariate 
regression model with lagged-dependent variable to represent 
the relationship between Hs and SLP-derived predictors 
(anomalies of SLP and squared SLP gradients), including leading 
principal components of large areas to account for swell waves. 
In particular, the 6-hourly Hs at a target wave grid point (of the 
1°× 1° lat.-long grid) is simulated with a mutlivariate regression 
model of the form:

 
H a b X c H ut

k

K

k k t
p

P

p t p t= + + +
= =
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1 1

,
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where Ht is the Box-Cox transformed Hs (Box and Cox, 1964), Xk,t 
are the K selected SLP-based predictors, P is the order of lags of 
the dependent variable (the predictand) and the residuals ut are 
modelled as an M-order autoregressive process. The Box-Cox 
transformation is applied to bring the residuals close to a normal 
distribution, as assumed in the regression analysis. The SLP-based 
predictors consist of a pool of 62 potential predictors: the anomalies 
(relative to the 1981–2000 mean) of, respectively, SLP and the 
squared SLP gradient (which represents the geostrophic wind 

energy) and their respective 30 leading principal components over 
a selected area to represent the large scale patterns of atmospheric 
circulation affecting the wave climate of a target grid point. A 
forward model-selection procedure with F test with equivalent 
sample size (vonStorch and Zwiers, 1999) was used to determine 
the K selected SLP-derived predictors [see Eq. (1)] for a target wave 
grid point. The P and M values were also determined using the 
F test with the equivalent sample size. To account for seasonality 
of atmospheric circulation regimes, Hs is modelled in each of the 
four seasons separately. More details of this statistical modelling 
approach can be found in Wang et al. (2012, 2014). Note that the 
two tropical Pacific regions, TNP and TSP (the two largest regions) 
in Wang et al. (2012, 2014) were each split into two regions (ETNP, 
WTNP, ETSP, WTSP); so that the model was calibrated for 13 
regions over the globe in this study (rather than 11 regions; see 
Figure 1). The smaller regions slightly improved the model skill 
for those regions.

As in Wang et al. (2014), Eq. (1) was calibrated and evaluated 
using the European Center for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis Interim (ERAint) (Dee et al., 2011). Before 
calculating the Xk,t predictors to produce the Hs simulations, 
the d4PDF-WaveHs SLP fields were adjusted to have the same 
climatological mean and standard deviation as the ERAint SLP 
data. As explained in Wang et al. (2014), this is needed in order 
to apply the Box-Cox transformations which were optimized for 
the ERAint data. Additionally, we excluded (set to missing) any 
simulated Hs values that exceed twice the largest Hs from ERAint 
for a given season. This cap is needed as, very rarely, the Box-Cox 
transformation of the SLP gradients leads to an overgrowth of 
the sharp SLP gradients of rapidly forming low pressure centers 
which, in turn, leads to unrealistic Hs values. This is arguably 
caused by the higher spatial resolution of the d4PDF SLP fields, 
as compared to ERAint, which might be able to simulate stronger 
SLP gradients than those generated by ERAint. However, note that 
this overgrowth is extremely rare and occurs with a frequency of 
less 0.05‰ in all simulated Hs data.

This statistical wave modelling approach to simulate Hs has been 
used and validated in many studies to derive regional and global 

FIGURE 1 |    Areas used to calibrate the wave model and compute the regional averaged trends and time series.
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historical/future Hs datasets and to assess trends, projected changes 
and variability (Wang et al., 2012; Wang et al., 2014; Wang et al., 
2015). For example, it was used to derive one of the contributing 
datasets of the latest coherent, community-driven, multi-method 
ensemble of global wave climate projections (Morim et al., 2019). 
In this study, we further assessed the reliability of the statistical 
modelling method by comparing the resulting trends of the 
annual mean and maximum Hs as obtained from one member 
of the d4PDF-WaveHs with those derived from the traditional 
dynamical modelling approach for the same d4PDF member. 
The single-member dynamical wave simulations were conducted 
using WAVEWATCH III (WW3) driven by the surface wind 
fields of the d4PDF member in question. We used the same 
WW3 version (5) and model configuration as in Shimura and 
Nobuhito (2019) which has a spatial resolution of ~ 0.5°. For 
both datasets, the annual mean Hs trend is remarkably positive in 
the Southern Ocean but the statistical approach simulates a less 
intensive tendency to increase over a smaller area (Figure S1). 
This can be arguably explained by the lower spatial resolution of 
the simulations obtained with the statistical modelling approach 
(1°) in comparison to the WW3 simulations (~ 0.5°). Indeed, 
there is a better agreement in terms of the trends relative to 
the 1951–2010 climatological mean, as they are less affected by 
spatial resolution (see Figure S2). For the annual maximum Hs, 
both approaches simulate a nosier spatial pattern of trends than 
for the annual mean Hs, as expected for this extreme statistic. 
For both datasets, positive increases in the annual maximum 
Hs are seen in the Southern Ocean and in the Northern Pacific, 
Northern Atlantic and Indian Oceans. Overall, the results show 
that the statistical and dynamical methods are in reasonably 
good agreement with each other, showing similar spatial patterns 
of trends for both the annual mean Hs and maximum Hs.

2.2 Trend Analysis
This study focuses on the assessment of the annual mean 
and maximum Hs trends for the period 1951–2010 and the 
uncertainty derived from the internal climate variability. First, 
individual trends were computed for each ensemble member 
of d4PDF-WaveHs using the (non-parametric) Mann-Kendall 
method with lag-1 autocorrelation being accounted for (Wang 
and Swail, 2001). Second, the individual-member trends were 
averaged over the 100 ensemble members to obtain the ensemble 
averaged trend. Then, the regional average trends are calculated 
as the average over all gridpoints in each of the modelling areas 
shown in Figure 1.

At a given grid point, the ensemble averaged trend is 
considered statistically significant if >50% of the individual-
member trends are significant at the 5% level, and >90% of 
these significant individual-member trends have the same 
trend sign. This method was used by Morim et  al. (2019) as 
it was identified as a suitable method to identify regions of 
robustness (IPCC, 2013). As discussed later in the manuscript, 
this method is more restrictive than performing a t-test on the 
individual trend estimates, as the latter does not account for the 
inter-annual  variability.

In addition, we investigate the impact of internal climate 
variability on the results of trend assessment, showing what we 
can gain from using a SMILE-based ensemble. In particular, we 
estimated the following three likelihoods:

1. the likelihood for an ensemble member to have the same 
trend conclusion as the ensemble averaged trend. Here trend 
conclusion is one of the following three outcomes: (a) statistically 
significant positive trend, (b) statistically significant negative 
trend, (c) statistically insignificant trend (regardless of the sign).

2. the likelihood for an ensemble member to have the same 
trend sign as the ensemble averaged trend, regardless of the 
significance level.

3. the likelihood for an ensemble member to give a trend 
conclusion that is opposite to that of the ensemble, showing a 
statistically significant trend of the opposite sign to the ensemble 
average trend (here both trend estimates are statistically 
significant).

We repeated the above analysis by considering x-size sub-
ensembles (randomly sampled 100 times from d4PDF-WaveHs), 
where x goes from 2 to 50. This allows us to investigate the gain 
from using gradually larger ensembles, and to find the optimal 
ensemble size for estimating trend in the two Hs statistics 
analyzed.

2.3 Wave Datasets Used for Comparison
For comparison purposes, the trend assessment described in 
Section 2.2 is also performed for state-of-the-art wave reanalysis 
both at global and regional scales, as well as on a grid point basis. 
The goal is put the role of the internal climate variability for trend 
assessment (based on d4PDF-WaveHs) into perspective of the 
estimates and discrepancies among modern reanalysis datasets. 
In particular, we used the second version of the National Centers 
for Environmental Prediction (NCEP) Climate Forecast System 
Reanalysis (CFSR) (Saha et al., 2014), ERAint (Dee et al., 2011) 
and the more recent ECMWF 5th generation reanalysis (ERA5) 
(Herbach et  al., 2020). Although ERA5 is available since 1950, 
we consider a common period of analysis from 1979 to 2009 for 
these three reanalysis datasets.

Additionally, we compared our trend estimates and 
uncertainty results with those obtained from historical wave 
simulations without data assimilation. First, we use the 
historical CMIP5-driven dataset developed by Wang et  al. 
(2014), hereafter called CMIP5-HsWang, which used the same 
statistical modelling approach as this study. CMIP5-HsWang 
provides 6-hourly Hs produced using SLP simulations by 20 
climate models (only one realization per model) for the period 
1950–2005. With this comparison we investigate how internal 
climate variability compares to model variability in terms of 
trend estimates. Despite the forcing SLP data being adjusted to 
have the same climatological mean and variance as the ERAint 
SLP data, model variability was identified by Wang et al. (2014) 
as one major factor of uncertainty that is significantly different 
from zero globally.
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Finally, we also performed the same trend analysis with 
the 1979–2004 COWCLIP historical ensemble (Morim et  al., 
2019), referred to as CMIP5-COWCLIP hereafter, which 
mainly accounts for climate model variability and wave method 
variability. Morim et  al. (2019) identified both of these factors 
as key sources of uncertainty, with different contributions to 
total uncertainty depending on the region. Here we consider 
the 48  members that provide both annual mean and annual 
maximum Hs.

3 RESULTS

The ensemble average of trends in the annual mean Hs for the 
period 1951–2010, as simulated by d4PDF-WaveHs is positive 
and statistically significant (at 5% level) in the Southern Ocean 
with rates exceeding 0.5 cm/yr (Figure 2A), which represent an 
increase of up to 0.25%/yr relative to the 1951–2010 climatological 
mean (see Figure S3A). This rate of increase outstands from the 
rest of the oceans, which have positive/negative rates of up to 
0.3 cm/yr in absolute value. This is reasonable given the more 
energetic wave climate of this unique continuous body of water 
encircling the Earth affected by continuous low pressure systems. 
Trends are also positive and statistically significant in areas of 
the tropical west Pacific, the southern East Pacific, the Southern 
Atlantic and the Indian Ocean. The only area with statistically 
significant negative trend is located south of Africa. A similar 
pattern is observed for the ensemble average of trends in the 
annual maximum Hs (Figures 2B and S3B) but in this case the 

trends are statistically insignificant, and the latitudinal gradient 
between the Southern Ocean trends and the rest of the oceans 
is lower. Simulations of the annual maximum Hs trend show a 
nosier spatial pattern than for the annual mean Hs counterpart 
(see Figures S4−S7) due to the inherent additional uncertainty 
associated to extremes. This noise is implicitly reflected in the 
ensemble averaged trend with a lower statistical significance 
associated to the annual maximum Hs trends, as compared to 
those of the annual mean Hs (Figure 2A vs. Figure 2B).

Figures 2C, D illustrate the inter-member standard deviation 
(SD) of the annual mean and maximum Hs trends for the period 
1951–2010. For the annual mean Hs, SD is larger in the extra-
tropics of both the Northern and Southern Hemisphere, with 
the largest values being located in the North Atlantic Ocean. For 
the annual maximum Hs, we see a longitudinal gradient over the 
extra-tropics, with the larger SD being located in the Western 
parts of the North Pacific, North Atlantic, and South Atlantic 
basins. This is arguably related to these areas being more sheltered 
from swells and therefore more affected by local (more variable) 
extreme storms than the eastern side of the basin counterpart. 
Swells likely contribute to lower internal climate variability 
as they integrate different wave energy systems generated by 
different atmospheric systems across multiple locations.

It is important to note that the areas identified as statistically 
significant can differ notably depending on the statistical method 
used to assess uncertainty. As explained in Section 2.2, here we 
use a 2-step method that accounts for both inter-run and inter-
annual variability, as recommended by the IPCC for assessing 
robustness. If we use a less conservative approach such as a t-test 

B

C D

A

FIGURE 2 | Ensemble average (A, B) and standard deviation (C, D) of the annual mean Hs (A, C) and maximum Hs (B, D) trend (cm/yr) for 1951–2010. Stippling 
indicates the ensemble mean trend is statistically significant.
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to determine if the ensemble average trend is statistically different 
from zero, we obtain significantly larger areas of statistically 
significant trends that cover most of the domain (see Figure 2 vs 
Figure S8). For example, in the North Atlantic Ocean, we obtain 
statistically significant positive trends in its north-east part 
while the central-west part exhibits a trend that is statistically 
significant and negative. Note that this t-test only accounts 
for the trend estimates associated to the individual ensemble 
members, without considering the inter-annual variability and 
the statistical significance associated to each individual member.

At regional scale, Figure  3 shows the global and regional 
ensemble averages of the trends over the period 1951–2100 in 
the form of a boxplot, along with the 5%, 25%, 50%, 75%, and 
95% percentiles of the trend estimates. The corresponding 
values relative to the 1951–2100 climatological mean are shown 
in Figure S9. One significant result is that at least 95% of the 
members exhibit a global positive trend for the annual mean Hs. 
At regional scale, the 5% percentile of the annual mean Hs trends 
also exceeds zero in some tropical areas, and in the Southern 
Hemisphere (WTNP, ETSP, TSIO and SP, see Figure 1). NA is 
the region with more members exhibiting a negative trend for 
the annual mean and maximum Hs. For the annual maximum 
Hs, the inter-member variability increases and a smaller number 

of areas (TSIO and SP) have at least 95% members exhibiting 
positive trends. Overall, the areas where the trend estimate 
is more affected by internal climate variability are the extra-
tropical areas, and particularly the Northern Hemisphere extra-
tropics (NA and NP), which exhibit larger spread in both trend 
magnitude (cm/yr, see Figure  3) and percent relative to the 
1951–2010 climatology (%/yr, Figure S9).

Figure 3 also illustrates how the regional trends for the period 
1979–2009 compare to the corresponding values of state-of-
the-art reanalysis. As expected, the inter-member variability is 
larger due to considering a shorter period of time. We observe 
striking discrepancies between the analyzed NCEP and ECMWF 
products (CFSR vs. ERA5 and ERAint), which exceed the 
internal climate variability (as derived from d4PDF-WaveHs). 
While ERA5 and ERAint simulate positive trends for annual 
mean Hs over the majority of the regions, CFSR mostly depicts 
negative trends, which are particularly strong in the Southern 
Ocean. The corresponding regional average derived from 
d4PDF-WaveHs typically lies in between the values associated 
to these reanalyzes products. These discrepancies are also seen 
in the spatial patterns of the ensemble average trends for both 
the trend magnitude (cm/yr) and the trend relative to 1979–2009 
(%/yr) of the annual  mean Hs (Figures S10, S11). ERA5 and 
ERAint trends are mostly positive (and exceeding 0.5 cm/yr), 
while the corresponding values of CFSR are mostly negative with 
a similar amount.

For the regional annual maximum Hs trends, ERA5 and 
ERAint also simulate larger values than CFSR, often with 
opposite signs. However, such discrepancies are lower than what 
is in the annual mean Hs (relative to the d4PDF-WaveHs spread) 
and, for a few regions (NA, SIO and SA, see Figure 1), they even 
fall within the internal climate variability simulated by 4PDF-
WaveHs. As for the annual mean Hs trend, the corresponding 
trend maps for the annual maximum Hs (Figures S12, S13) also 
illustrate disparities among the analyzed products but we find a 
larger agreement between 4PDF-WaveHs and CFSR, as better 
captured by the individual runs (Figures S6, S7 vs Figure S12B).

As mentioned in the Introduction, recent studies also found 
significant discrepancies among modern wave reanalysis 
datasets. While differences in resolution and wave modelling 
method configurations can contribute to the differences in trends 
simulated by different wave climate products analyzed in this 
study, we argue that the major discrepancies are largely affected 
by temporal inhomogeneities introduced in assimilated data, in 
agreement with previous studies (e.g. Aarnes et al., 2015; Stopa 
et  al., 2019; Wohlkand et  al., 2019; Sharmar et  al., 2020). The 
comparison among reanalysis products alone seems to indicate 
that resolution is not a key factor explaining the discrepancies 
in the trends therein. ERAint (which has the same spatial 
resolution as 4dPDF-WaveHs) exhibits a trend pattern similar to 
ERA5 while the latter has significantly higher spatial resolution. 
Differently, ERA5 and CFSR have contrasting trends while 
having more similar spatial resolutions. Also, the discrepancies 
between ERAint/ERA5 and CFSR remain in terms of the relative 
trend (Figures S12, S13), which is a trend quantity less affected 

B

A

FIGURE 3 | Ensemble average of the regional trend (cm/yr) of the annual 
mean (A) and maximum (B) Hs averaged over the indicated area (see 
Figure1), corresponding to the 1951–2010 (black) and 1979–2010 (gray) 
periods. Dots indicate: ERA5 (blue), ERAint (green) and CFSR (purple) 
corresponding values for 1979–2010. Box plot illustrates the 2.5%, 25%, 
50%, 75% and 97.5% percentiles.
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by resolution. The difference between the statistical and the 
dynamical wave modelling approaches does not seem a key factor 
in explaining the discrepancies between the trends obtained from 
4dPDF-WaveHs and the modern reanalysis either, as we showed 
how the annual mean and maximum Hs trends of the first run of 
4dPDF-WaveHs exhibited similar patterns in comparison to the 
counterpart simulated by WW3 (Figures S1, S2).

The temporal inhomogeneities present in modern reanalysis 
can be illustrated with the abrupt changes in tendency and 
spread seen in the annual mean Hs time series of Figures 4 and 
5 (see also Figures S14−S16 for other regions). For example, 
CFSR, ERAint and ERA5 simulate a global average of the annual 
mean Hs (Figure 4A) that goes from 2.23 m to 2.53 m in the 
first half of the reanalysis period, while the range is reduced to 
2.28 m to 2.45 m for the second half. This is caused by an abrupt 
change in tendency starting in the 1990s, which coincides with 
the start of assimilated wave integrated parameters in the early 
1990s, followed by an increase of overall satellite data in the 
2000s (Herbach et al., 2020). The global annual maximum Hs 
(Figure 4B) does not exhibit such an abrupt breakpoint but the 
model spread also tends to decrease after the 1990s. Overall, 
we find a better agreement among the annual mean Hs trends 
simulated by d4PDF-WaveHs and modern reanalysis datasets 
at global scale. For the global annual maximum Hs, the values 
simulated by d4PDF-WaveHs (and also CMIP5-HsWang) are 
lower than those simulated by the reanalysis products. This is 
mostly caused by an underestimation of the annual maximum 
Hs in the tropics (see for example the WTNP, ETNP, TNA, 
WTSP, ETSP, TSA, TSIO regions in Figures S14−16) while 

there is a good agreement for the annual maximum Hs over 
the mid to high latitudes (e.g. NP, NA, SP and SA regions, see 
Figure 5 and Figures S14−S16).

Since modern reanalysis datasets do not seem to be suitable 
observation proxies for trend analysis, we compare the 
trends derived from d4PDF-WaveHs with the corresponding 
values obtained from other model simulations without 
data assimilation: CMIP5-HsWang and CMIP5-COWCLIP 
(see Section 2.3). This also allows us to assess the role of the 
internal climate variability, as estimated from d4PDF-WaveHs, 
in the context of other sources of uncertainty. In terms of the 
global annual mean and maximum Hs time series, CMIP5-
COWCLIP notably exhibits the largest variability, as expected 
since this ensemble considers a large variety of wave modelling 
approaches and configurations (see Figure S17). However, 
we find that the uncertainty of the global averaged trends (of 
both annual mean and maximum Hs trends) is fairly similar for 
the three data products, with significantly overlapping ranges 
of variability (see Figure 6 and Figure S18). d4PDF-WaveHs 
tends to have a lower spread, followed by CMIP5-HsWang and 
CMIP5-COWCLIP, respectively, which might indicate that the 
global variability induced by climate models is larger than the 
internal climate variability, and that adding another factor of 
uncertainty (wave method) further increases the variability, 
as expected. However, this is not the case for all regions. For 
example, the North Atlantic annual mean Hs trend variability 
derived from d4PDF-WaveHs equals the CMIP5-COWCLIP 
counterpart (while exceeding the CMIP5-HsWang value). In 

B

A

FIGURE 4 | Global time series of the annual mean Hs (A) and annual 
maximum Hs (B), in m, as derived from d4PDF-WaveHs (black), CMIP5-
HsWang (brown), CFSR (purple), ERA5 (blue), ERAint (green). For the d4PDF-
WaveHs and CMIP5-HsWang ensembles we show the ensemble mean (thick 
lines) and the range between the 2.5% and 97.5% percentiles (shaded area).

B

A

FIGURE 5 | NP (A) and NA (B) time series of the annual maximum Hs, in 
m, as derived from d4PDF-WaveHs (black), CMIP5-HsWang (brown), CFSR 
(purple), ERA5 (blue), ERAint (green). For the d4PDF-WaveHs and CMIP5-
HsWang ensembles we show the ensemble mean (thick lines) and the range 
between the 2.5% and 97.5% percentiles (shaded area).
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any case, the differences in spread are mild and could be caused 
by the difference in sampling space (different ensemble sizes). 
For example, Figure S19 shows the spread of global trends 
that would be obtained from 20- and 48-size sub-ensembles 
randomly sampled from d4PDF-WaveHs, in comparison to 
the original 100-size ensemble.

Finally, we addressed the risk of using a single member to 
assess trends. In some areas of the Southern Ocean, there is 
a likelihood of up to 50% to miss the statistically significant 
strong positive trend that is clearly shown by the ensemble 
average for the annual mean Hs (Figure 7A). The chances to 
get the same trend sign (regardless of the significance) are 
however larger in those areas. In contrast, the likelihood to 
obtain the same trend sign decreases to about 50% in the 
North Atlantic (Figure 7B) as the wave climate in this region 
has larger internal climate variability, for which individual 
members can predict either positive or negative trends locally 
(Figures S4, S5). However, the results also show that, for the 
annual mean Hs, it is very unlikely for an individual member 
to have a statistically significant trend of the opposite sign to 
the ensemble average trend (Figure 7C). This only occurred 
in at most 5 out of the 100 members over a few scattered areas 
at the mid to high latitudes.

For the annual maximum Hs, the chances to get the same 
trend conclusion are very high, especially for the areas with 
positive trends (Figure  7A). This can be explained by the low 
statistical significance found in most of the members (using the 
more restrictive method to assess robustness, see Section 2.2), 
but there is a larger disagreement (>50% runs) in simulating 
the same trend sign (Figure  7B). Also, the areas where up to 
5 individual ensemble members might simulate a statistically 
significant trend of the opposite sign to that of the ensemble 
average are more abundant and cover most of the mid and high 
latitudes (Figure  7C). The corresponding ensemble average of 
the annual mean and maximum Hs trends are shown in Figures 
S20 and S21.

The same analysis performed for sub-ensembles with varying 
ensemble size reveals that, as expected, the required ensemble 
size to replicate the results obtained from the whole 100-member 
ensemble depends on the Hs statistic and the region in question 
(see Figures S22−25). For example, for the annual mean Hs, 
the areas of trend conclusion disagreement (which considers 
both trend sign and significance) over the Southern Ocean, 
notably shrink when we consider sub-ensembles with size close 
to 20 members (Figure S22). Differently, if we want to simulate 
the same annual mean Hs trend sign over the North Atlantic, a 
10-size ensemble seems to be sufficient (Figure S23). For the 
annual maximum Hs we would generally require larger ensembles 
to obtain the same trend sign (for example close to 40 for the 
North Atlantic Ocean, see Figure S25), as expected due to the 
larger uncertainty associated with simulating extremes. Overall, 
at global scale we argue that a trend assessment using a SMILE-
based ensemble with size from 10 to 20 would reduce significantly 
the likelihood for an erroneous trend assessment result.

4 DISCUSSION

We have used the d4PDF-WaveHs, the first SMILE-based large 
wave height ensemble to assess the effects of internal climate 
variability on trend assessment results. d4PDF-WaveHs consists 
of 100 ensembles of 60-year historical Hs simulations (1951–
2010). In this study, we focused on the analysis of the annual 
mean and maximum Hs trends and the role that the internal 
variability plays in their assessment; but this dataset can be 
further exploited in future studies to investigate the role of 
internal climate variability on other target quantities, such as 
low-frequency Hs extremes.

The trends obtained from d4PDF-WaveHs are also compared 
to those derived from modern reanalysis datasets and from 
climate model simulations. This is of particular relevance given 
the notable discrepancies among reanalysis datasets in recent 
studies (Stopa et al., 2019; Sharmar et al., 2020). Moreover, this 
study also contributes to improve the current understanding of 
the internal wave climate variability, which is a key factor among 
other relevant sources of uncertainty affecting wave simulations 
(Morim et al., 2019).

We found a clear and statistically significant positive trend 
for the annual mean Hs over the Southern Ocean exceeding 0.5 

B

A

FIGURE 6 | Ensemble average of the regional trend (cm/yr) of the annual 
mean (A) and maximum (B) Hs averaged over the indicated areas (see 
Figure 1) as derived from d4PDF-WaveHs (black), CMIP5-HsWang (brown) 
and CMIP5-COWCLIP (dark blue) for the 1979–2005 (see Section 2). Box 
plot illustrates the 2.5%, 25%, 50%, 75% and 97.5% percentiles.
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cm/yr in some areas. Statistically positive trends with a lower 
intensity (up to 0.3 cm/yr) were also seen for tropical areas. 
Over the North Pacific and Atlantic Oceans, the averaged 
trends are not statistically significant, which is caused by the 
large inter-annual variability in these areas, where individual 
ensemble-members might simulate opposite trends although 
most of the simulations show a negative regional trend. The 
annual maximum Hs trends show a similar spatial pattern 
but results are not statistically significant. Significance here is 
assessed with a two-step method that accounts for both the 
inter-annual variability in each individual member as well as 
the variability among members, as recommended by the IPCC 
to assess robustness.

The results here provide more evidence that modern reanalysis 
datasets are not suitable observation proxies to study historical 
wave height trends due to their temporal inhomogeneities. 
The main reason is arguably the increasing amount and type 
of available observations used in data asimilation, which 

coincides with breakpoints that can be visually identified in the 
annual mean H time series. In most regions, ERA5 and ERAint 
simulate positive trends while CFSR simulate negative trends, 
and the results simulated by d4PDF-WaveHs fall in between 
these two family products. The discrepancies are more notable 
for the annual mean Hs than for the annual maximum Hs, which 
seems to be less affected by temporal inhomogeneities. While 
differences in resolution and wave modelling methodologies 
might contribute to add variability in the assessment of the 
wave climatology (particularly the extremes), the temporal 
inhomogenity induced by data assimilation is arguably the 
main factor leading to the major discrepancies observed for the 
annual mean and maximum Hs trends.

Our results show that there is a non-negligible probability to 
miss-assess trends when using a single realization (member). 
Although we would likely detect the strong positive trend in the 
annual mean Hs over Southern Ocean with just one member, 
we could mis-estimate their spatial extension and therefore 

B

C

A

FIGURE 7 | Fraction of ensemble members (%) with the same trend conclusion (A), the same trend sign (B) and different trend sign that is statistically significant 
(C), as compared to the ensemble average for the annual mean Hs (left) and the annual maximum Hs (right) (see Section 2.2 for more details). Warm(cold) shades 
indicate the ensemble mean trend is positive(negative). Stippling indicates the ensemble mean trend is statistically significant.
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mis-assess the trend locally (in up to 50% of the ensemble 
members). For the annual maximum Hs, there is a larger 
uncertainty; opposite trends are simulated by the individual 
members, particularly in the North Pacific and North Atlantic 
oceans. However, it is unlikely to obtain an individual trend 
that is fundamentally opposite of the corresponding ensemble 
average. To reduce the risk to miss-assess trends at global scale, 
it would be necessary to use at least 10 members. However, 
an optimal size depends on the statistic quantity and region 
analyzed.

This study also shows that, despite climate model variability 
leading to a large uncertainty for the assessment of the annual 
mean and maximum Hs time series, the role of the internal 
climate variability in the resulting trends is comparable to the 
uncertainty derived from climate models and wave methods. 
However, this comparison is challenging given the uneven 
sampling of the uncertainty factors in the available datasets. 
Typically, ensembles that consider different climate models 
have a limited amount of realizations and SMILEs are based 
on a single climate model by definition. Future studies with 
climate datasets that better represent the whole spectrum 
of uncertainty would likely help understand better the 
contribution of these uncertainty factors.

The dataset and analysis presented in this study bring 
significant insight into the role of internal variability in the 
context of the wave height trend assessment. However, results 
are based on a single-model ensemble and therefore rely on the 
ability of this particular climate model to replicate the internal 
climate variability. It would be ideal to perform a similar 
analysis with other SMILE-based large wave ensembles that 
consider other climate models in order to derive more robust 
conclusions that are not specific to a particular climate model. 
Additionally, results rely on the performance of the statistical 
wave modelling approach to obtain Hs. In this regard, we 
plan to re-calibrate the statistical wave modelling approach 
with a higher resolution product (e.g. ERA5) which might 
improve the underestimation seen in the tropics, and better 
capture the storms with sharp SLP gradients. Moreover, to 
fully address the main wave-driven impacts, we need to also 
consider and analyze other wave variables such as wave period  
and wave direction.
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