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Few studies have focused on the projected future changes in wave climate in the
Chinese marginal seas. For the first time, we investigate the projected changes of the
mean and extreme wave climate over the Bohai Sea, Yellow Sea, and East China Sea
(BYE) during two future periods (2021–2050 and 2071–2100) under the RCP2.6 and
RCP8.5 scenarios from the WAM wave model simulations with a resolution of 0.1◦.
This is currently the highest-resolution wave projection dataset available for the study
domain. The wind forcings for WAM are from high-resolution (0.22◦) regional climate
model (RCM) CCLM-MPIESM simulations. The multivariate bias-adjustment method
based on the N-dimensional probability density function transform is used to correct
the raw simulated significant wave height (SWH), mean wave period (MWP), and mean
wave direction (MWD). The annual and seasonal mean SWH are generally projected
to decrease (-0.15 to -0.01 m) for 2021–2050 and 2071–2100 under the RCP2.6 and
RCP8.5 scenarios, with statistical significance at a 0.1 level for most BYE in spring
and for most of the Bohai Sea and Yellow Sea in annual and winter/autumn mean.
There is a significant decrease in the spring MWP for two future periods under both
the RCP2.6 and RCP8.5 scenarios. In contrast, the annual and summer/winter 99th
percentile SWH are generally projected to increase for large parts of the study domain.
Results imply that the projected changes in the mean and 99th percentile extreme waves
are very likely related to projected changes in local mean and extreme surface wind
speeds, respectively.
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INTRODUCTION

Ocean waves, especially extreme waves, contain tremendous
energy and can greatly impact coastal and offshore industries and
marine ecosystems (Hoeke et al., 2013; Toimil et al., 2020). They
are also one of the dominant contributors to coastal erosion and
flooding (Casas-Prat and Wang, 2020; Melet et al., 2020) along
with sea-level rise, storm surge, and precipitation (Camus et al.,
2017). Extreme waves have also been a significant threat to human
life. For example, they are the deadliest marine hazard in China
and have caused ∼74% of the total casualties from major marine
hazards (including extreme waves, storm surges, tsunamis, and
sea ice) during 2000–2015 (Tao et al., 2018).

Under global warming, there have been emerging changes
in large-scale atmospheric circulations or climate modes. The
western North Pacific subtropical high will likely weaken and
retreat eastward in the mid-troposphere at the end of the twenty-
first century (He et al., 2015). There was a robust migration of
tropical cyclones coastward and poleward in 1982–2018 (Wang
and Toumi, 2021). Mei and Xie (2016) revealed that typhoons
that impact East and Southeast Asia have intensified by 12–15%
during 1977–2014 and indicated that the proportion of category
4 and 5 typhoons has doubled or tripled. All these changes have
potential implications for ocean waves or extreme wave events.

Previous studies have investigated the historical changes in
the mean or extreme wave conditions globally or regionally
(Reguero et al., 2019; Shi et al., 2019; Young and Ribal, 2019).
Based on satellite observations, Young and Ribal (2019) revealed
small increases in the significant wave height (SWH) and larger
increases in the 90th percentiles extreme wave conditions during
1985–2018, especially in the Southern Ocean. Shi et al. (2019)
found that the 99th percentile extreme waves increases in most
of the Chinese seas by 0.5–3 cm/year in 1979–2017.

However, knowledge of future projected changes in ocean
wave climate is limited relative to knowledge of sea surface
temperatures or sea levels. This is because most global climate
models (GCMs) from the Climate Model Intercomparison
Project (CMIP) do not have ocean wave components, with
some exceptions, such as FIO-ESM v2.0 (Song et al., 2020).
Useful projections of mean and extreme wave climate need to be
conducted through dynamical or statistical downscaling (Wang
and Swail, 2001, 2006; Mori et al., 2010). Since the launch
of the Coordinated Ocean Wave Climate Project (henceforth
COWCLIP, Hemer et al., 2012), projected change studies of the
ocean wave climate have advanced both regionally and globally
(Hemer et al., 2013a; Casas-Prat et al., 2018; Lobeto et al.,
2021; O’Grady et al., 2021). From the first community-derived
multi-model ensemble of wave-climate projections, Hemer et al.
(2013a) revealed the projected changes of SWH, mean wave
period (MWP), and mean wave direction (MWD) and found
a projected increase in annual mean SWH over 7.1% of the
global ocean, predominantly in the Southern Ocean. Based on
statistical projections of wave height from sea-level pressure of
20 CMIP5 GCMs, Wang et al. (2014) found increases of SWH
in the tropics and high latitudes in the Southern Hemisphere.
The occurrence frequency of the present-day 10-year return
extreme wave heights are likely to double or triple in several

coastal areas worldwide at end of the twenty-first century under
the RCP 8.5 scenario. Morim et al. (2018) conducted a system
review on global and regional wind-wave climate projection
and established consistent patterns of projected changes in
wind-wave climate globally under the global warming. Morim
et al. (2019) concluded that approximately 50% of the world’s
coastline is at risk due to wave climate change, and current
wave projection uncertainties are dominated by model-driven
uncertainty, encouraging the application of multi-modeling
methods on wave climate projections. By using ensembles of
global wave model runs driven by 8 CMIP5 GCMs, Meucci et al.
(2020) revealed that the intensity of a 100-year return level of the
SWH increases by 5–15% in the Southern Ocean by the end of
the twenty-first century relative to the 1979–2005 period.

GCMs generally have a coarse resolution, which is not feasible
in capturing local or regional wind systems. Li et al. (2016)
found that the high-resolution regional climate model (RCM)
hindcast can add value in capturing strong wind speeds in the
coastal areas of the Bohai Sea and Yellow Sea. Timmermans et al.
(2017) revealed that wave modeling driven by high-resolution
winds features improvement in capturing extreme waves relative
to coarse-resolution winds. In contrast, Chowdhury and Behera
(2019) revealed that the wave modeling driven by high-resolution
RCMs does not add value to those driven by coarse-resolution
GCMs in the Indian Ocean, indicating that the added value of
RCMs strongly depends on the regions considered (e.g., Di Luca
et al., 2012). The high-resolution wind-driven wave projections
have been performed over areas such as the European coast
(Laugel et al., 2014; Bricheno and Wolf, 2018; Bonaduce et al.,
2019), the southeastern coast of Australia (Hemer et al., 2013b),
and the Gulf of St. Lawrence (Wang et al., 2018), however, it is
not yet available for the Chinese marginal seas by now.

Wave modeling inevitably demonstrates bias relative to
observations, which is a combination of inherited systematic
bias from wind forcings and bias generated from wave modeling
processes due to inadequate model physics, numerical solution
schemes, or unrealistic topography. Different bias-adjustment
methods (BAMs), such as the delta method and empirical or
parametric quantile mapping method, have been applied in
several wave climate studies (Charles et al., 2012; Parker and Hill,
2017; Lemos et al., 2020a,b; Meucci et al., 2020). However, the
performances among BAMs show some differences. Lemos et al.
(2020a) demonstrated that a quantile-based bias adjustment is
better than the delta method in correcting biases in extremes.
Parker and Hill (2017) revealed that bivariate BAMs can greatly
improve intervariable correlations by comparing them with
univariate BAMs. However, wave variables (wave height, wave
direction, wave period, etc.) are highly correlated with each other.
Multivariate bias adjustment is required to apply on the raw wave
outputs, to correct biases in both individual wave variables and
multivariate dependence structures.

For the first time, high-resolution regional wave climate
projections in the Bohai Sea, Yellow Sea, and East China
Sea (hereafter BYE) driven by high-resolution RCM winds are
performed. The present study aims to investigate the future
projected changes in the annual and seasonal mean and extreme
waves in this area during the middle of the twenty-first century
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(2021–2050) and the end of the twenty-first century (2071–2100)
under the RCP2.6 and RCP8.5 scenarios. A multivariate bias-
adjustment method (MBAn, Cannon, 2018) is applied to correct
multivariate biases.

This paper is organized as follows. Section “Methodology
and Datasets” describes the model and datasets. The results
are given in section “Results”, including the wave hindcast
evaluation and projected change analyses in the mean and
extreme wave conditions. The manuscript ends with conclusions
and a discussion (section “Conclusion and Discussion”).

METHODOLOGY AND DATASETS

Wave Dynamical Downscaling
In this study, the third-generation WAM cycle 4.7 was used to
investigate the impact of climate change on the wave conditions
in the BYE area. It maintains the basic physics and numeric of
the WAM model used in Li et al. (2021) and is run in a shallow-
water mode, with depth refraction considered. The wave model
is configured to use 24 directions and 25 frequencies ranging
from 0.04118 to 0.41145 Hz. It is implemented on two nested
domains: the northwestern Pacific Ocean (NWP) with a spatial
resolution of 0.5◦ and the BYE area with a spatial resolution
of 0.1◦ (Figure 1). Full-wave spectra produced by the larger
domain simulations are provided to the smaller domain at the
open boundaries with an hourly frequency. The topographic data
are obtained from the General Bathymetric Chart of the Oceans
1-min grid.1

We conducted wave hindcast simulations over the NWP and
BYE forced by ERA5 wind speed (0.25◦, Hersbach et al., 2020)
during 1979–2019 to validate the model’s ability to capture the
wave climate features in the BYE (thereafter ERA5 driven wave
hindcast). ERA5 winds have proved to be robust in forcing
wave conditions in the study domain (Li et al., 2020). To
study the impact of climate change on wave climate, nested
WAM simulations are forced by 3-hourly wind outputs (0.22◦)
from the CCLM-MPIESM RCM simulations (Kim et al., 2020)
for the historical climate period (1979–2005) and two future
periods (2021–2050 and 2071–2100) under the RCP2.6 and
RCP8.5 emission scenarios. The above wind forcings are spatially
interpolated to 0.5◦ and 0.1◦ resolutions for the NWP and BYE
simulations, respectively, and kept constant in time throughout
3-h during wave integration. CCLM-MPIESM regional climate
simulations were performed by Pohang University of Science
and Technology from the CORDEX-East Asia II framework
(Kim et al., 2020) by using the RCM CCLM downscaled from
the global climate model MPIESM-LR (Giorgetta et al., 2013).
To reduce potential biases on larger-scale circulation patterns,
spectral nudging was employed to zonal and meridional winds
above the 850 hPa level based on the sensitivity experiment results
(Lee et al., 2016). CCLM experimental details are summarized on
the CORDEX-East Asia website.2

1https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_
one_minute_grid/
2http://cordex-ea.climate.go.kr/cordex/

Bias Adjustment of Wave Fields
A multivariate bias-adjustment method based on the
N-dimensional probability density function transform (MBAn,
Cannon, 2018) has been applied to multiple wave variables,
including the SWH, MWP, and MWD. As wave direction
is a cyclic variable, it was partitioned into two orthogonal
components (sinMWD and cosMWD) before the application of
bias-adjustment. MBAn can correct the biases of the marginal
distribution of individual wave variables and multivariate
dependence structure. Three steps are involved in the usage of
MBAn for bias adjustment of historical and future projected
wave variables: (1) applying a uniformly distributed random
orthogonal rotation to the simulated and observed data; (2)
correcting the marginal distributions of each variable of the
rotated simulated data by using the quantile delta mapping
method; and (3) applying inverse rotation to the correct
data. These steps are repeated until the modeled multivariate
distribution has converged to the observed distribution. More
details can be found in Cannon (2018).

Buoy and Satellite Observations
To validate the skills of the wave model in capturing historical
wave climate features in the BYE, in-situ observations from five
buoy stations (Figure 1) were obtained from the Marine Science
Data Center of the Chinese Academy of Sciences for the period
approximately from 2010 to 2019. The observed wave variables
include SWH, wave direction, and MWP. Furthermore, a daily
merged multi-mission along-track L3 satellite product from the
Sea State Climate Change Initiative (CCI) dataset v1 (Dodet et al.,
2020) is also used as a reference for comparison from 1991 to
2018. The Sea State CCI L3 product retains only valid and good-
quality measurements from 10 altimeters (ERS-1, ERS-2, TOPEX,
Envisat, GFO, CryoSat-2, Jason-1, Jason-2, Jason-3, and SARAL).
The satellite measurements nearest to the WAM model grid
points and within 1 h from the simulated full hour were assigned
as observations for the specific model grid. All simultaneous pairs
between satellite observations and model grid points were used to
evaluate the models’ skills in capturing wave conditions.

The statistical metrics used for the comparison between
simulated data and observations are the bias, scatter
index (SI), correlation coefficient (CORR), and root mean
square error (RMSE).

Calculation of the Intra-Annual and
Inter-Annual Variability
We used the robust coefficient of variation (RCoV) to quantify
the inter-annual and intra-annual variability in the SWH. RCoV
is defined as the median absolute deviation (MAD) divided by the
median (Gunturu and Schlosser, 2012):

RCoV =
MAD
Median

=
Median[

∣∣SWHi −median (SWHi)
∣∣]

median (SWHi)

where SWHi is the bias-adjusted time-series of the SWH.
To compute the intra-annual variability of SWH, we

performed the following processes: (1) calculate the monthly
mean SWH at each grid point, (2) calculate the median of
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FIGURE 1 | Topography (in meters) of the modeling areas: the outermost square indicates the domain for the WAM simulations over the northwestern Pacific region
(resolution: 0.5◦), and the red square indicates the region for the fine-resolution (0.1◦) WAM simulations. Red points and numbers indicate the locations and station
numbers of buoy observations, respectively. The abbreviations BS, YS, ECS, and NWP represent the Bohai Sea, the Yellow Sea, the East China Sea, and the
northwest Pacific Ocean, respectively.

monthly SWH and MAD data series for each year, (3) divide
the annual MAD with the corresponding annual median SWH to
obtain annual RCoV, and (4) calculate the median of the annual
RCoV, producing an estimation of the intra-annual variability
of SWH. For the calculation of inter-annual variability of SWH,
the annual mean SWH was calculated first and the RCoV was
calculated based on the annual mean time series.

RESULTS

Evaluation of the ERA5-Driven Wave
Hindcast and Bias-Adjusted Historical
Simulation
We compared the SWH of the ERA5-driven wave hindcast with
the Sea State CCI dataset between 1991 and 2018 (Figure 2).
The results show that the wave hindcast is in good agreement
with the observed SWH, with a bias of -0.104 m, correlation
coefficient of 0.858, root mean square error of 0.5 m and scatter
index of 0.338. Furthermore, we also assessed the wave hindcast
annually from 1991 to 2018, with the Sea State CCI dataset as
a reference (Supplementary Table 1). The statistical metrics are
similar among different years in terms of bias, RMSE, and CORR
except in 1991, when there are only 204 pairs. It is found that
the simulated data tend to overestimate satellite observations for
SWH larger than 6 m, which may be due to the underestimation
of extreme wave heights by altimeter data in the coastal area
(Dodet et al., 2020) or the limited skills of ERA5-driven wave
hindcast in capturing very extreme wave heights.

In addition, we compared the wave hindcast with 5 buoy
observations in terms of SWH, MWP, and MWD. The
comparisons between observed and simulated SWH in Table 1
show that the biases are mostly within 0.12 m, the CORR values
are higher than 0.8, the RMSE is mostly less than 0.4 m, and
the normalized standard deviation is larger than 0.86, indicating
that the performance of the WAM hindcast is consistent when
using different observation datasets as references. Furthermore,
the extreme SWH values (i.e., 90th and 99th percentile SWH,
hereafter the SWH_90p and SWH_99p, respectively) are also well
captured by the WAM hindcast.

Table 2 shows that the WAM hindcast generally overestimates
the MWP by values less than 0.46 s and overestimates the
temporal variability with nsd larger than 1. However, the CORR
values are smaller than those for the SWH in Table 1. Regarding
the MWD, the biases are within ± 30◦, except for station
S07, where the bias of the simulated MWD is 58.51◦. The
large bias of MWD at station S07 is possible because the wind
forcing or the wave modeling is still too coarse to resolve the
coastal wind inhomogeneity or complex bathymetric refraction.
Nevertheless, the wave hindcast forced by ERA5 is generally
realistic in capturing wave statistics, with both satellite and buoy
observations as references.

To assess the skills of MBAn in correcting the biases of
multiple variables from raw WAM historical simulation, we
compared the climatological biases between the raw WAM
simulation and bias-adjusted WAM simulation output for
the SWH, SWH_99p, MWP, and MWD (Figure 3). The
WAM hindcast driven by the ERA5 wind reanalysis dataset
is used as a reference. Figure 3 shows that the raw WAM
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FIGURE 2 | Comparison between the ERA5-driven wave hindcast (y-axis) and satellite data (x-axis) during 1991–2018 in the BYE area: scatter plots (dots), qq plots
(black dashed dots), linear regression line (red line), equal value line (blue line) and several statistical measures [valid numbers of entries, mean values of satellite
(Mean R) and model (Mean M), standard deviation of satellite (Std R) and model (Std M), root-mean-square error (RMSE), Scatter Index (SI), Mean Bias, and
correlation coefficient (CORR)]. The color of scatter plots indicates the count of points within a determined square area centered at each data point.

TABLE 1 | Comparison between the ERA5-driven wave hindcast and buoy observations for the SWH.

num Mobs (m) Mwam (m) bias (m) corr rmse (m) nsd o_p90 (m) m_p90 (m) o_99p (m) m_99p (m)

S02 11,939 0.76 0.64 –0.12 0.85 0.28 0.86 1.4 1.2 2.2 1.88

S06 26,598 1.26 1.33 0.07 0.91 0.33 0.99 2.2 2.24 3.9 4.06

S07 21,157 0.51 0.56 0.05 0.8 0.25 0.92 1 1.01 2.1 1.75

S11 15,405 0.96 1.13 0.17 0.83 0.4 0.96 1.8 1.87 3.2 3.22

S15 7,679 1.52 1.49 –0.03 0.91 0.41 0.96 2.8 2.63 4.9 5.01

Here Mobs and Mwam represent the observed and modeled mean SWH, respectively. The nsd is normalized standard deviation, which normalizes simulated standard
deviation by the observed standard deviation. The letters o and m indicate observations and modeling, respectively.

simulation generally overestimates the SWH, SWH_99p, and
MWP. There are both positive and negative biases for the
raw simulated MWD. As expected, the multivariate bias-
adjustment method can greatly reduce the climatological
biases of raw simulation, showing negligible biases relative to
the WAM hindcast.

Historical Wave Climate and Projected
Changes in the Climatology and
Variability of the Wave Climate
The projected changes in the mean and extreme wave climate
have been assessed based on bias-adjusted wave datasets under
present-day climate (1979–2005) and future projections (2021–
2050 and 2071–2100). In addition, a Mann-Whitney U-test
(Kruskal and Wallis, 1952), a non-parametric test, was used
to determine whether the differences in the mean wave

conditions between future projections and present-day climate
are statistically significant.

The results show an increase in the climatological annual
and seasonal mean SWH from the northwest to southeast in
the study domain (Figure 4). Large mean SWHs over 1.6 m
are pronounced in the southeastern BYE in autumn and winter.
The annual and seasonal mean SWH are generally projected
to decrease (-0.15 to -0.01 m) during 2021–2050 and 2071–
2100 under the RCP2.6 and RCP8.5 scenarios, with statistical
significance at a 0.1 level for most BYE in spring and for most of
the Bohai Sea and Yellow Sea in annual and winter/autumn mean.
The exceptions are autumn season during 2021–2050 under
both scenarios (Figures 4e2,e4), featuring significant increasing
changes (0.05–0.15 m) in the East China Sea.

We also observe that the decreases in annual or seasonal
mean (except for summer) SWH are more pronounced at the
end of the twenty-first century under the RCP8.5 scenario
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TABLE 2 | The same as Table 1 but for the MWP.

num Mobs(s) Mwam (s) bias (s) corr rmse (s) nsd BiasMWD (◦)

S02 11,939 4.17 4.62 0.45 0.57 1.2 1.34 23.46

S06 26,598 5.85 6.09 0.24 0.57 1.3 1.05 –28.22

S07 21,157 5.06 5.33 0.27 0.55 1.42 1.32 58.51

S11 15,405 5.76 5.73 –0.03 0.68 0.99 1.32 –26.87

S15 7,679 5.96 6.42 0.46 0.63 1.41 1.24 –11.3

BiasMWD indicates the difference between simulated and observed MWD.

compared with the other counterparts. Furthermore, the spatial
patterns of projected changes in the annual mean and seasonal
mean SWH resemble those of projected changes in the surface
wind speed (Supplementary Figure 1), which indicates that the
SWH changes in the BYE are highly related to the changes in
the local surface wind speeds. The spatially mixed pattern of
projected changes in SWH, especially in the Bohai Sea and Yellow
Sea in spring (Figures 4c2,c5) and in summer (Figures 4d2–
d5), is also possibly related to the rotation of wind directions
(Supplementary Figure 1), the impact of which is rather strong

in the marginal seas (Hemer et al., 2010; Kudryavtseva and
Soomere, 2017).

Figure 5 shows that the climatological annual and seasonal
MWPs also increase from the northwest to the southeast. MWP
larger than 6 s is mainly in the southeastern BYE, featuring
larger areas in summer and autumn. There are distinct features
of projected changes in seasonal MWP. The results indicate a
significant decrease in the MWP in spring over almost the entire
study domain for both periods and both scenarios, especially for
the East China Sea at the end of the twenty-first century under
RCP8.5 (Figure 5c5). Projected increases are pronounced in large
parts of the Yellow Sea and East China Sea in summer at the
end of the twenty-first century under RCP2.6 and the middle and
end of the twenty-first century under RCP8.5 (Figures 5d3–d5);
however, the changes are not significant at 0.1 level.

Figure 6 shows that there is generally low inter-annual
variability, with RCoV in the range of 0.03–0.05, while there
is stronger intra-annual variability, with RCoV mostly from 0.1
to 0.25. It is noticed that we find that the strong intra-annual
variability and low inter-annual variability is a common feature
for the global ocean especially in the North Pacific Ocean, North
Atlantic Ocean, and some marginal seas, with the exception of

FIGURE 3 | The differences between the raw WAM historical simulation and ERA5-driven wave hindcast for the climatological means of the (a) significant wave
height (SWH, m) and the (c) annual 99th percentile of the SWH (SWH_99p, m), (e) mean wave period (MWP, s), and (g) mean wave direction (MWD, ◦); (b,d,f,h) the
same as (a,c,e,g) but for bias-adjusted results.
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FIGURE 4 | Annual and seasonal historical (1979–2005) climatological mean SWH (m) and the projected changes for RCP2.6 and RCP8.5 in different periods:
2021–2050 and 2071–2100. Stippling indicates areas where the projected changes are significant at a 0.1 level.

the polar ocean areas (Supplementary Figure 2), where the inter-
annual variability is much larger than intra-annual variability.

The projected changes in both inter- and intra-annual
variability are more pronounced at the end of the twenty-first
century than those in the middle of the twenty-first century.
In particular, there was a more than 40% increase in inter-
annual variability in the southern East China Sea at the end of
the twenty-first century under the RCP2.6 scenario (Figure 6g)
and a more than 30% decrease in inter-annual variability in the
southern Yellow Sea and northern ECS at the end of the twenty-
first century under RCP8.5 scenario (Figure 6h). Furthermore, a

large increase (more than 30%) in intra-annual variability along
the southeastern coasts of China and around Jeju Island at the
end of the twenty-first century for both scenarios is observed
(Figures 6i,j).

The spatial patterns of projected changes in the inter-
annual variability of SWH resemble those of projected
changes in the surface wind speed to some extent, with
spatial correlations in the range of 0.36–0.67 (Supplementary
Figure 3), indicating that the inter-annual variability of
SWH is partially determined by the changes in the local
surface wind speeds. However, it is not the case for projected
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FIGURE 5 | The same as in Figure 4 but for the annual or seasonal MWP (s). Stippling indicates areas where the projected changes are significant at a 0.1 level.

changes of intra-annual variability, which features a very low
spatial relationship between SWH and surface wind speed
(Supplementary Figure 3). Therefore, some other factors
such as the migration of cyclone paths or the swell variability
generated by a remote wind possibly govern the projected
changes in inter-annual and intra-annual variability, which
deserves further in-depth study.

The Projected Changes in the Annual
and Seasonal Extreme Wave Climate
The annual or seasonal SWH_99p shows an increase from the
northwest to southeast in the study domain (Figure 7). SWH_99p

over 5 m is mainly observed in the East China Sea for summer
and autumn (Figures 7d1,e1), which are supposed to be caused
by tropical cyclones. The annual and seasonal SWH_99p features
stronger projected changes than those in the climatological mean
SWH. The annual SWH_99p are projected to increase in the East
China Sea in the middle of the twenty-first century under the
RCP8.5 scenario (Figure 7a4), which are mainly caused by the
projected increase in summer and autumn, with a more than
0.5 m intensification in the East China Sea (Figures 7d4,e4).
For the summer season in 2071–2100 under both scenarios,
SWH_99p shows a projected increase larger than 0.2 m, however,
they mostly fail to pass the significance test at 0.1 level. The
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FIGURE 6 | Robust coefficient of variation (RCoV) to quantify (a) inter-annual variability and (b) intra-annual variability of the SWH for 1979–2005. Projected changes
(%) in inter-annual (left two panels) and intra-annual (right two panels) variability between the bias-adjusted future projections (middle: 2021–2050; lower: 2071–2100)
and bias-adjusted historical runs. (c,e,g,i) Are for RCP2.6, and (d,f,h,j) are for RCP8.5.

projected decreases larger than 0.2 m are mainly in the Yellow
Sea in autumn for both periods and both scenarios (Figures 7e2–
e5). The BYE shows a significant projected decrease in the
SWH_99p in spring at the end of the twenty-first century under
the RCP8.5 scenario (Figure 7c5) in the range of -0.5 to -0.05
m. For winter, we find a projected increase in the SWH_99p
of 0.2–0.5 m in the East China Sea for the middle of the
twenty-first century under the RCP2.6 scenario (Figures 7b2–
b5). Generally, the projected changes in the SWH_99p feature
strong seasonal variability.

The predominance of wave types can be determined by the
wave age parameter. The sea state is dominated by wind sea if
the wave age A = Cp/U10 = gTp/2πU10 < 1.2 and dominated
by swell if A>1.2 (e.g., Smith et al., 1992), where Cp is the wave
peak phase speed, U10 is the 10-m wind speed, and Tp is the
wave peak period. Supplementary Figure 4 shows the historical
simulated and future projected occurrence frequency of swells.
The annual and seasonal distribution patterns of occurrence
frequencies of swell-dominant waves are similar between the
historical simulation and future projections, featuring swell
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FIGURE 7 | The same as in Figure 4 but for the annual or seasonal SWH_99p (m). Stippling indicates areas where the projected changes are significant at a 0.1
level.

prevalence increases from the Bohai Sea to the East China Sea.
Annually, the percentage increases from 30% in the Bohai Sea
to more than 80% in the southeastern East China Sea. Swell-
dominant waves occur the most frequently in summer and the
least frequently in winter, with frequencies larger than 70% for
nearly all the Yellow Sea and East China Sea for the former and
less than 50% for the Bohai Sea and Yellow Sea for the latter.
Except for summer, the Bohai Sea features wind-sea dominant
wave fields for the other three seasons.

Figure 8 shows that the 99th percentile (99p) wind-sea-
dominated sea-state are larger than 3 m for most of the study

domain and can be more than 5 m in the southeastern part of
the East China Sea in the present-day climate (Figures 8d1,e1),
which is supposed to be caused by the impacts of tropical
cyclones. Projected increases in winter and summer for 99p
wind-sea-dominated sea-state are found for large parts of the
study domain for both future periods under the RCP2.6 and
RCP8.5 scenarios. In particular, 99p wind-sea-dominated sea-
state is projected to increase significantly by more than 0.5 m
in summer (Figures 8d3–d5) and to decrease by more than 0.5
m in autumn in the Yellow Sea or parts of the East China Sea
(Figures 8e2–e5).
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FIGURE 8 | The same as in Figure 4 but for the annual or seasonal 99th percentile wind-sea dominant wave fields (m). The numbers labeled represent spatial
corrections between the 99th percentile wind-sea-dominated sea-state and those of the 99th percentile total waves in Figure 7. Stippling indicates areas where the
projected changes are significant at a 0.1 level.

In contrast, we can see that the annual or seasonal 99p swell-
dominated sea-state are much smaller than those of extreme
wind-sea-dominated sea-state, with the former being larger than
1.5 m for most of the study domain (Figure 9). The projected
changes in the 99p swell-dominated sea-state are also not as
pronounced as those in the 99p wind-sea-dominated sea-state
(Figure 8). Furthermore, we find projected increases of more
than 0.3 m for 99p swell-dominated sea-state in the southern
Yellow Sea or the East China Sea in summer and autumn during
2021–2050 under the RCP8.5 scenario, contributing to the total

increases (Figure 7). On the other hand, slight decreases in 99p
swell-dominated sea-state by 0.05–0.2 m are distributed mainly in
the BYE domain for spring except for the one during 2021–2050
under the RCP2.6 scenario (Figure 9c2).

Notably, we find that the projected changes in the near future
(2021–2050) are generally more pronounced than changes in
the far future (2071–2100) under RCP8.5 scenario for annual,
summer and autumn SWH_99p (Figure 7), for annual and
summer 99p wind-sea-dominated sea-state (Figure 8), and for
annual, summer and autumn 99p swell-dominated sea-state
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FIGURE 9 | The same as in Figure 4 but for the annual or seasonal 99th percentile swell dominant wave fields (m). The numbers labeled represent spatial
corrections between the 99th percentile wind-sea-dominated sea-state and those of the 99th percentile total waves in Figure 7. Stippling indicates areas where the
projected changes are significant at a 0.1 level.

(Figure 9). The results are possibly due to the impact of natural
variability instead of anthropogenic climate change.

In addition, we calculated the spatial corrections between the
99th percentile wind-sea (swell)-dominated sea-state and those of
the 99th percentile total waves, to reveal their spatial consistency.
The spatial corrections added in Figures 8, 9 show that there are
generally higher correlations between projected changes of 99p
total sea-state (Figure 7) and projected changes of 99p wind-sea-
dominated sea-state (Figure 8). This implies that the local wind-
generated sea state mainly causes the projected changes in 99p

extreme waves. This conclusion is further confirmed by the fact
that the projected change patterns of the SWH_99p in Figure 7
greatly resemble those of the 99th percentile surface wind speeds
in the BYE (Supplementary Figure 5).

CONCLUSION AND DISCUSSION

For the first time, we investigate the future changes in the
mean and extreme wave climate in the Bohai Sea, Yellow Sea,
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and East China Sea. Previous studies have revealed that high-
resolution dynamical downscaling can add value to coarse-
resolution reanalysis or GCMs in capturing the intensity of
strong winds in coastal areas, as well as tropical cyclones (Li
et al., 2016; Li, 2017); therefore, we used regional downscaled
winds (resolution 0.22◦) to force high-resolution WAM wave
model simulations in the study domain for the present-day
climate (1979–2005) and future climate (2021–2050, 2071–2100)
under the RCP2.6 and RCP8.5 scenarios. The WAM simulations
feature a resolution of 0.1◦, which is the highest-resolution wave
climate projection dataset available for the study domain. We
applied a multivariate bias-adjustment method based on the
N-dimensional probability density function transform (MBAn)
to correct biases in the raw simulated SWH, MWP, and MWD.
The projected changes in the mean and extreme wave climate
in the middle (2021–2050) and end of the (2071–2100) twenty-
first century were evaluated, with the present-day wave climate
during 1979–2005 serving as a reference. The main conclusions
are summarized as follows:

(1) The WAM hindcast with 0.1-degree resolution driven
by ERA5 winds shows robust skills in capturing wave statistics
compared with the buoy and satellite observations. The MBAn
method proves to be skillful in reducing substantial biases of
the historical WAM simulation in the climatological mean SWH,
MWP, MWD, and 99p extreme wave heights.

(2) The annual and seasonal mean SWH are generally
projected to decrease (-0.15 to -0.01 m) for the 2021–2050 and
2071–2100 periods under the RCP2.6 and RCP8.5 scenarios,
with statistical significance at a 0.1 level for most BYE in spring
and for most of the Bohai Sea and Yellow Sea in annual and
winter/autumn mean. A significant decrease in MWP in spring
for both periods under both scenarios is found. The projected
changes in inter-annual and intra-annual variabilities are more
pronounced at the end of the twenty-first century than those in
the mid- twenty-first century.

(3) The annual, and winter/summer 99th percentile SWHs are
projected to increase for large parts of the study domain, and the
autumn 99th percentile SWH are projected to decrease for the
Yellow Sea, with the former mostly failing to pass the significance
test. Results imply that the projected changes in the mean and
99th percentile extreme waves are very likely related to the
projected changes in local mean and extreme surface wind speeds.

The significant contribution of this study is that we, for the
first time, revealed the projected changes of mean and extreme
waves, with a focus on the Chinese marginal seas. This is
also the first study to apply the multivariate bias-adjustment
method on the simulated wave variables. The high-resolution
wave projection data produced in this study can provide support
for a comprehensive assessment of marine energy resource under
climate change (e.g., Lira-Loarca et al., 2021). They can also be
used for estimating wave induced loads for appropriate design,
construction, and operations of offshore and coastal structures
(e.g., Kumar et al., 2018). Furthermore, extreme waves can
cause extensive modification of the shoreline environment and
landforms, and threaten human life (Hansom et al., 2015).
Hence, integrating multivariate extreme wave conditions into
comprehensive assessments of coastal hazards and vulnerability

is paramount to effective coastal climate adaptation planning
(Morim et al., 2020).

Based on reconstructed SWH over the Chinese marginal seas
by using a multivariate regression model and the twentieth-
century reanalysis ensemble of the mean sea level pressure, Wu
et al. (2014) revealed that the annual and seasonal SWH trends
during 1911–2010 are dominantly negative over the Chinese
marginal seas, and the summer maximum SWHs seem to have
increased in the East China Sea. Our study implies that these
trends are likely to continue in the future.

Being consistent with Fan et al. (2014), both the historical and
future projected wave fields are dominated by the swell wave.
However, the high spatial correlation of projected changes in
mean or extremes between wind and wave fields in our study
indicated that the projected changes in the mean and extreme
waves are mainly related to the projected changes in local surface
wind speeds in the Bohai Sea, Yellow Sea and East China Sea,
annually and seasonally. The conclusion is partially consistent
with Fan et al. (2014), who showed a more pronounced increase
in the wind-sea energy than swell energy in July to December at
the end of the twenty-first century in our study domain. While for
the other global oceans, whether the changes in total waves being
determined by swell or by wind-sea are regionally dependent
(Fan et al., 2014).

The projected changes of mean, especially the extremes wave
heights, for large parts of our study domain, do not pass the
significance test at 0.1 level, implying that these changes may
be related to sampling uncertainty. Nevertheless, we find strong
consensus between our study and many other global-scale studies
regarding the projected decrease and its intensity for the annual
mean and winter mean SWH in the study domain. The projected
decrease of annual mean or winter significant mean wave heights
are generally less than -0.1 m or -10% in the middle and end of
the twenty-first century under different scenarios including A1B
(Mori et al., 2010; Semedo et al., 2013; Shimura et al., 2016), A2
(Hemer et al., 2013c), RCP4.5 and RCP8.5 (Wang et al., 2014;
Shimura et al., 2016; Lemos et al., 2019; Morim et al., 2019),
based on either single-GCM forcing (e.g., Mori et al., 2010) or
ensemble-GCM forcing wave simulations (e.g., Shimura et al.,
2016), The consensus proves the robustness of projected decrease
of annual mean or winter significant mean.

However, the projected changes in summer mean SWH as
well as extreme wave heights, lack consensus among studies in
this area. Semedo et al. (2013) showed decreasing changes in
summer mean SWH under A1B emission scenario, while Wang
et al. (2014) revealed increases for projected summer mean SWH
and summer maximum wave heights at the end of the twenty-
first century under RCP8.5 scenario, and Morim et al. (2019)
showed an increase in summer mean SWH and a decrease in
annual 99th percentile wave heights under RCP4.5 and RCP8.5
scenario. Similarly, their projected changes in summer mean
or extreme wave heights in the study domain generally do not
pass the significance test. The dissimilarity of projected changes
in summer mean SWH and extreme wave heights is supposed
to stem from different sources including internal variability,
GCMs or RCMs wind forcing, wind-wave modeling method, and
scenario uncertainty (Deser et al., 2012; Morim et al., 2019).
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The note is that this study only adopts a single wind
forcing for each future period and scenario and does not
consider the complete uncertainty sources. This is because of
the limited availability of high-resolution wind forcings during
the conduction of the wave simulations. With the release of
more high-resolution RCM datasets through the Coordinated
Regional Climate Downscaling Experiment (Sørland et al., 2021),
ensemble of high-resolution wave projections are in demand for
the Chinese marginal seas. Furthermore, it is also interesting
to investigate the capacity of these high-resolution RCMs in
simulating tropical cyclones and in driving cyclone-related
extreme waves. The projected changes of cyclones and cyclone-
related extreme waves and their uncertainties, are worthy of
further efforts.
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