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A two-stage diet-switch experiment was conducted to examine the hypothesis that
the changes in digestive enzyme activities of sea cucumber (Apostichopus japonicus)
induced by historic diets might persist in the regenerated intestines. In stage I,
A. japonicus were treated with two different diets for 56 days, including diet A with
11% crude protein, 1% crude lipid, and 40% carbohydrate, and diet B with 18%
crude protein, 2% crude lipid, and 35% carbohydrate. In stage II, each treatment
was subjected to evisceration with 0.35M KCl or not (eviscerated and non-eviscerated
groups), half of which were then switched to different diets from diet A to B or vice versa
for 112 days. The persistence of digestive enzyme activities was evaluated by measuring
the changes in digestive enzyme activities before and after evisceration. In stage I, diets
B and A increased trypsin and amylase activities, respectively. In stage II, the higher
trypsin activities were observed in eviscerated and non-eviscerated A. japonicus that
had consumed diet B in stage I. The higher amylase activities were observed only
in eviscerated A. japonicus that had consumed diet A in stage I. It indicated that
the historic diets showed long-term effects on the digestion of A. japonicus, which
led to the persistence of changes in both trypsin and amylase activities in intestines,
especially in the regenerated intestines. In addition, the specific growth rates (SGRs)
and metabolic rates (MRs) of A. japonicus were affected by the long-term effects of
historic diets. Meanwhile, the relationships between enzymic activities, SGRs, and MRs
were observed in A. japonicus, indicating that the historic diets could produce long-
term effects on the growth and metabolism of A. japonicus through their long-term
effects of historic diets on digestive enzyme activities. In conclusion, the present study
showed that the changes in digestive enzyme activities induced by different diets in
stage I could persist in the intestines and regenerated intestines, leading to long-term
effects of historic diets on the growth and metabolism of A. japonicus.
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INTRODUCTION

The stimulus of historic nutrition can induce temporary or
long-term changes in digestive ability and subsequent growth
potential and metabolic status in later life of organisms (Patel and
Srinivasan, 2002; Vera et al., 2017). This phenomenon originating
from mammals is termed nutritional programming (Symonds
et al., 2009). In recent decades, nutritional programming has
been widely studied and reported in numerous aquaculture
species (Fang et al., 2014; Gong et al., 2015; Moghadam et al.,
2015; Balasubramanian et al., 2016). For instance, early feeding
diets enriched in plant-based lipids negatively influenced the
growth and survival of gilthead seabream (Sparus aurata) in
later life (Turkmen et al., 2015). An acute glucose stimulus
during the first feeding period induced the long-term repression
of weight gains and disturbed the gluconeogenesis regulation
of Siberian sturgeon (Acipenser baerii) (Gong et al., 2015).
Fang et al. (2014) reported that the activities of amylase were
significantly enhanced in adult zebrafish (Danio rerio) fed a
high-carbohydrate diet than those fed a low-carbohydrate diet
in the yolk-sac larval stage, indicating the long-term effects
of early high-carbohydrate diets on carbohydrate digestion of
zebrafish. Similar observations were also detected in Atlantic
salmon (Salmo salar) (Vera et al., 2017) and rainbow trout
(Oncorhynchus mykiss) (Balasubramanian et al., 2016).

So far, studies about the long-term effects induced by historic
diets remain limited in aquatic invertebrates, especially for
those with the regeneration ability. Sea cucumber (Apostichopus
japonicus) is considered an economically important species (Yang
et al., 2015). It has been widely cultured along the coastal regions
of several Asian countries for centuries, including China, Japan,
Korea, and Russia, because of its high nutritional and medicinal
value (Xia et al., 2015a). In 2011, the annual production of
A. japonicus in the world was more than 138,000 tons, more
than 90% of which originated from aquaculture in China. Until
2021, A. japonicas in China achieved nearly 200,000 tons of
annual production (Ministry of Agriculture and Rural Affairs
of People’s Republic of China, 2011, 2021). With the expansion
of A. japonicus cultivation, more artificial diets were applied in
commercial aquaculture to improve their production (Ying et al.,
2009; Liao et al., 2015b). Because the detritus of macroalgae
and sea mud in the sediment are the main food sources for
A. japonicus, sea mud and powdered macroalgae are usually
used as the main component of artificial diets (Ying et al.,
2010; Sudong et al., 2012). Besides, Xia et al. (2015b) found
that A. japonicus fed a diet with fish meal showed the best
growth performance, indicating the important effect of animal-
source protein on A. japonicus. The optimum protein level
of diet fed to A. japonicus was 18–24%; hence, fish meal is
used as the dietary component to improve the protein level of
artificial diets (Zhu et al., 2005; Liao et al., 2015a). Numerous
studies reported that the digestive physiology of A. japonicus
would be affected by different diets, suggesting the flexibility of
digestive physiology (Liao et al., 2015b; Wen et al., 2016b). In
addition, other fascinating biological behaviors were observed
in A. japonicus, such as autolysis, aestivation, evisceration, and
regeneration (Wang et al., 2015; Ru et al., 2019). Evisceration

involves various complex physiological processes and results in
the expulsion of the digestive tracts and other viscera (García-
Arrarás et al., 1998; Ding et al., 2019). Following evisceration, the
new intestine is regenerated from the residual coelomic epithelial
cells through the processes of dedifferentiation, migration,
redifferentiation, and division (Leibson, 1992; García-Arrarás
and Greenberg, 2001; Zang et al., 2012). The persistence of the
digestive physiology for the regenerated intestines of A. japonicus
after evisceration, that is, whether the digestive ability of the
regenerated intestine is affected by the historic digestive status
before evisceration, remains unclear.

Digestion is one of the crucial metabolic processes in animals
because it determines the availability of nutrient requirements
(Gisbert et al., 2009). The whole digestive process primarily relies
on the types and activities of digestive enzymes (Sveinsdóttir
et al., 2006; Nazemroaya et al., 2015). Trypsin is an important
serine alkaline protease responsible for protein digestion (Mir
et al., 2018). Previous studies examined the trypsin activities
to assess the digestion ability of aquatic organisms under
different nutritional conditions, such as European sea bass
(Dicentrarchus labrax) (Parma et al., 2019), olive flounder
(Paralichthys olivaceus) (Bae et al., 2020), rainbow trout (Kasiga
et al., 2020), and sea cucumber (Bai et al., 2015; Wen et al.,
2016b). In addition, amylase and lipase are crucial digestive
enzymes that can reveal the absorptive capability for dietary
carbohydrates and lipids, respectively (Hidalgo et al., 1999; Liao
et al., 2015b; Xia et al., 2015a). Previous studies demonstrated
that the digestive enzymes, including trypsin, amylase, and
lipase, could respond to different diets, which is termed
as enzymatic plasticity (Sabat et al., 1999; Liu and Wang,
2007). For example, Bolasina et al. (2006) reported that the
changes in diets led to subsequent variations in the trypsin
and lipase activities during the ontogenetic development of
Japanese flounder (P. olivaceus). European sea bass consuming
a microparticulate diet showed higher trypsin and amylase
activities compared with those consuming natural prey (Infante
Zambonino and Cahu, 1994). The adjustment of enzymatic
plasticity is crucial for organisms to maintain an appropriate
level of digestive ability in response to different environmental
conditions and physiological statuses (Fu et al., 2006; Garland,
2011; Kasiga et al., 2020).

Carbon stable isotope analysis is routinely employed to
quantify food assimilation, providing details of time-integrated
food (Kürten et al., 2013; Vander Zanden et al., 2015; Wen et al.,
2016a). The turnover of stable isotope in organisms is generally
driven by both growth and metabolism (Macavoy et al., 2006;
Tarboush et al., 2006). With known growth performance in terms
of specific growth rate (SGR), the metabolic rate (MR) can be
estimated based on the simulation of isotopic turnover curves,
and the metabolic status of the organism is thus evaluated with
stable isotope analysis (Buchheister and Latour, 2010; Antonio
and Richoux, 2016). The objectives of the present study were to
investigate the long-term effects of historic diets on the digestive
enzyme activities of regenerated intestines of A. japonicus after
evisceration and assess the persistence of digestive physiology and
subsequent effects on the growth and metabolism of A. japonicus
by means of diet switch and stable isotope analysis.
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TABLE 1 | Ingredients and nutritional composition of experimental diets fed to
A. japonicus.

Diet types

Diet A Diet B

Diet ingredients (dry matter %)

Fish meal a 0 10

Sea mud b 20 20

Sargassum thunbergiic 80 70

Nutritional composition (dry matter %)

Crude proteins 10.88 ± 0.31a 17.67 ± 0.51b

Crude lipids 1.07 ± 0.07a 1.65 ± 0.12b

Carbohydrate 40.41 ± 1.25b 34.55 ± 0.72a

Ash 47.64 ± 1.14b 46.13 ± 0.77a

Data are presented as mean ± SD (n = 5). Different letters in the same row indicate
significant differences between diet A and diet B (P < 0.05).
a Fish meal: crude protein 78.75%, crude lipid 8.25%, and carbohydrate 8.05%.
b Sea mud was burned in the Muffle furnace at 500 ◦C for 6 h to remove organic,
after which only ash was in the sea mud.
c Sargassum thunbergii: crude protein 13.55 %, crude lipid 1.24 %, and
carbohydrate 49.74%.

MATERIALS AND METHODS

Diet Preparation
Numerous studies reported that diets consisting of sea mud,
fish meal, and macroalgae, including S. thunbergii, Ulva
lactuca, and Gracilaria lemaneiformis, could meet the nutritional
requirements and lead to the rapid growth of A. japonicus (Ying
et al., 2009; Sun et al., 2012; Wen et al., 2016a). Meanwhile,
two different types of diets were formulated based on previous
studies for the following feed experiment, to avoid the effects of
dietary additives on the digestive enzyme activities (Shi et al.,
2015; Wen et al., 2016a), and identified as diet A and diet B. Diet
A comprised sea mud and S. thunbergii. Sea mud was collected
from the intertidal zone (Qingdao, Shandong province, China),
and S. thunbergii was obtained from Xiaoheishan Island (Yantai,
Shandong province, China). Besides these contents, commercial
fish meal (Qingdao Seven Good Biological Technology Co., Ltd.)
was added to diets denoted as diet B. The ingredients of these
diets were ground, sieved through a 0.25-mm mesh, mixed
adequately, slightly watered, stirred, and extruded into pellets
(diameter = 1.8 mm) using a feed processing machine (Tairun
Equipment, Jining, China). The pelleted diets were dried at 60◦C
for 48 h and stored at –20◦C for the feeding experiment. The
concentrations of nitrogen and carbon elements in diets were
measured using an elemental analyzer (Vario EL III; Elementar
Co., Germany), and the content of crude protein was estimated
as nitrogen concentration multiplied by 6.25. The crude lipid
content was analyzed using the Soxhlet extraction method with
petroleum ether (Luque De Castro and Priego-Capote, 2010).
For ash content measurement, dried diets were combusted at
500◦C for 6 h in a muffle furnace (Nabertherm, Germany).
Carbohydrate = 100 - crude protein - crude lipid – ash (Seo et al.,
2011; Xia et al., 2015a; Hassaan et al., 2018). The crude protein,
lipid, and carbohydrate contents of diet A versus diet B were 10.88

vs. 17.67%, 1.07 vs. 1.65%, and 40.41 vs. 34.55%, respectively. The
detailed ingredients and nutritional composition of these diets
are shown in Table 1.

Diet-Switch Experiment
A total of 300 A. japonicus juveniles were obtained from Tianheng
aquaculture company (Qingdao, Shandong province, China)
with an average body weight of 8.80 ± 0.21 g. These individuals
were acclimated to the experimental conditions for 2 weeks.
Then, the feeding experiment was conducted for two different
stages (stage I and stage II). In stage I, all A. japonicus were
transferred to 2 tanks [2 m × 1.5 m × 0.8 m (L × W × H)],
resulting in 150 individuals in each tank. They were classified into
two groups, which were fed diet A (group A) and diet B (group
B) for 56 days, respectively. Three individuals in each group were
randomly sampled and quickly dissected for intestines and body
walls after freeze anesthesia at six time points, including days 0, 7,
14, 28, 42, and 56, during the period of the feeding experiment in
stage I. The intestines and body walls were immediately stored
at −80◦C until assayed for digestive enzyme activities and the
carbon stable isotope. All A. japonicus were starved for 24 h
prior to sampling.

Further, 120 individuals in each tank were transferred to 12
glass aquariums [70 cm × 40 cm × 40 cm (L × W × H)] for a
further 112-day feeding experiment (stage II). These aquariums
from each tank were classified into two groups (six aquariums
in each group), which were then subjected to evisceration by
the intra-coelomic injection of 0.35M KCl (eviscerated group) or
not (non-eviscerated group). The eviscerated A. japonicus from
groups A and B were named as groups AE and BE while the
non-eviscerated individuals from groups A and B were named
as groups AN and BN, respectively. Each non-eviscerated and
eviscerated group was further divided into two groups (three
aquariums in each group), of which one was fed the same diets
as in stage I and the other was treated with diets switching from
diet A to B or vice versa. Group AN, BN, AE, and BE treated with
diet switch or not were renamed as ANA, ANB, BNA, BNB, AEA,
AEB, BEA, and BEB, respectively (Figure 1).

Finally, three individuals in each non-eviscerated group,
including groups ANA, ANB, BNA, and BNB, were sampled on
days 7, 14, 28, 49, 70, 91, and 112 in stage II. Because of 21-
day intestine regeneration, the sample collections in eviscerated
groups (AEA, AEB, BEA, and BEB) were conducted only on days
21, 28, 35, 49, 70, 91, and 112. The sampling tissues and method
in stage II were the same as those in stage I. In addition, the
initial and final weights of A. japonicus were measured in both
stages I and II for the following calculation of the body weight
gain (BWG), SGR, and growth rate constant (k).

During the whole experiment, A. japonicus were fed once a
day at 15:00 with a daily ration of 5% wet body weight, based
on which the individuals were under the apparent satiation. The
residual feed and feces were cleaned by siphoning every day. The
temperature was constantly kept at 16.5 ± 0.5◦C, the salinity
varied between 29 and 31 ppt, the levels of dissolved oxygen
were greater than 6.0 mg/ L, and a normal photoperiod 14:10 h
(L/D) was applied. The water environmental conditions were
kept relatively constant for each aquarium during the experiment.
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FIGURE 1 | Schematic presentation of diet-switch experiment in A. japonicus. The whole experiment was carried out for 168 days and classified into two stages. In
stage I, A. japonicus were randomly assigned to group A and group B, which were fed diet A and diet B for 56 days, respectively. In stage II, each group was
subjected to evisceration or not (eviscerated and non-eviscerated), and switched to different diets from diet A to B or vice versa for 112 days.

Determination of Enzymatic Activity
The intestinal tissues were homogenized for 2 min in a pre-cooled
homogenization buffer using a tissue grinder (JXFSTPRP-CL-24;
ShangHaiJingXin Co., China). The supernatants were obtained
after centrifugation at 20,000g for 25 min at 4◦C, pipetted into
clean centrifuge tubes, and immediately stored at 4◦C until
analysis (less than 12 h).

The protein concentration, trypsin activities, amylase
activities, and lipase activities in the intestines of A. japonicus
were determined using the standard kits (A080-2, C016, A045-4,
and A054-2-1) from the Nanjing Jiancheng Bioengineering
Institute (Nanjing, China) (Xionggao et al., 2014; Liao
et al., 2015b; Ye et al., 2019). The experimental procedures
were conducted following the manufacturer’s protocols.
Both the trypsin and amylase activities were tested using a
spectrophotometer (UV5100, METASH, Shanghai, China). The
protein concentrations and lipase activities were determined
using a microplate reader (Synergy Mx, Bio Tek, VT,
United States). The specific trypsin and amylase activities
were expressed as trypsin and amylase unit per mg protein,
respectively. The specific lipase activity was expressed as lipase
unit per g protein.

Growth Performance
The BWG (%) of A. japonicus was calculated as (Liao et al.,
2015b):

BWG (%) =
FBW− IBW

IBW
× 100

where IBW and FBW are the initial body weight and final body
weight, respectively.

The SGR of A. japonicus was calculated as (Giri et al., 2013):

SGR (% initial body weight/day) = (lnWt − lnW0) /t × 100

where Wt and W0 are the final and initial weights of individuals,
respectively, and t is the duration of the experiment.

Carbon Stable Isotope Analysis
The diets and body walls of A. japonicus were freeze-dried for
48 h to constant weight and homogenized. A stable isotope mass
spectrometer (EA-IRMS, Thermo Finnigan MAT Delta-plus) was
used to determine the ratio of carbon isotope (δ13C) with the
accuracy of± 0.1h.

The ratio of carbon stable isotope is generally defined as
follows (Peterson and Fry, 1987):

δ13C = [(Rsample/Rstandard)− 1] × 1000h

where R is the ratio of 13C and 12C.
The stable isotope turnover model is defined as follows

(Hesslein et al., 1993):

Ct = Cf + (C0 − Cf )e− (k + m)t

where Ct represents the carbon stable isotope ratio of biological
tissue on day t. Cf represents the ratio of stable isotope when diets

Frontiers in Marine Science | www.frontiersin.org 4 February 2022 | Volume 9 | Article 843612

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-843612 February 19, 2022 Time: 15:25 # 5

Li et al. Persistence of Digestive Enzyme Activities

and tissue turnover reach a balance after dietary transformation.
C0 represents the carbon stable isotope ratio of the initial
biological tissue. k is the growth rate constant, and m is the
metabolism rate constant. k+m is the isotopic turnover rate.

The growth rate constant (k) was calculated as follows
(Buchheister and Latour, 2010):

k (d−1) = (ln Wf− lnWi)/t

where Wf and Wi represent the final and initial weights
of A. japonicus, respectively, and t is the duration of the
experiment in days.

The isotopic turnover rate (k+ m) was obtained by fitting the
exponential model to match the observed isotopic data, and the
metabolism rate constant (m) was thus obtained by means of k+
m minus k (Winter et al., 2019).

Statistical Analysis
Significant differences in nutritional composition between diet
A and diet B were determined using the Student’s t- test.
For stage I, the differences in the digestive enzyme activities
between groups fed different diet types and between sampling
times were compared with a two-way analysis of variance
(ANOVA) and the differences in the FW, BWG, SGRs, and
MRs at the end of stage I between different diet types were
compared with the Student’s t- test. For stage II, a four-way
ANOVA was applied to explore the effects of diet in stage
I, diet in stage II, evisceration, and sampling time on the
digestive enzyme activities, while a three-way ANOVA was used
to compare the differences in FW, BWG, SGRs, and MRs at
the end of stage II between diet in stage I, diet in stage II
and evisceration. For ANOVA, if the interaction of main factors
was detected, a one-way ANOVA or the Student’s t- test was
conducted to examine the effects of one main factor at the
specific level of the other main factor(s). The factors detected
to be significant by ANOVAs were further analyzed using a
Bonferroni multiple comparison procedure, which adjusted the
observed significance level by multiplying it by the number of
comparisons being made (Zar, 1999; Norusis, 2008). Pearson
correlation analysis was used to examine the relationships of
SGRs and MRs to the digestive enzyme activities. A P value of
0.05 was used as the significance level. Before statistical analyses,
raw data were diagnosed for the normality of distribution
and homogeneity of variance with the Kolmogorov–Smirnov
test and Levene’s test, respectively. The statistical analysis was
conducted using IBM SPSS Statistics (Version 25) and Origin
(Version 9.1) software.

RESULTS

Enzymatic Activities
The digestive enzyme activities of A. japonicus fed different
diets in stage I are presented in Figure 2. Similar trends
of trypsin activities of A. japonicus were observed in groups
A and B (Figure 2A). Specifically, the trypsin activities of
A. japonicus in groups A and B first increased, reaching the

FIGURE 2 | Changes in trypsin activities of A. japonicus feeding different diets
in stage I (A); Changes in amylase activities of A. japonicus feeding different
diets in stage I (B). Changes in lipase activities of A. japonicus feeding
different diets in stage I (C). Data are presented as mean ± SD (n = 3).

peak on day 42 and then decreased on day 56. A. japonicus
fed diet B showed significantly higher trypsin activities than
those fed diet A in stage I (P < 0.05). The amylase activities
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FIGURE 3 | Changes in trypsin activities of A. japonicus feeding different diets in stage II (A,B). Non-eviscerated levels of trypsin activities indicate the intersection of
the eviscerated group and its corresponding non-eviscerated group. Changes in amylase activities of A. japonicus feeding different diets in stage II (C,D). Changes in
lipase activities of A. japonicus feeding different diets in stage II (E,F). Data are presented as mean ± SD (n = 3).

of A. japonicus in group A showed an abrupt increase in the
first 7 days and then gradually decreased until day 28, followed
by an increasing trend to the end of stage I (Figure 2B).
The amylase activities of A. japonicus in group B decreased
first and then showed a slight fluctuation until the end of
stage I. Meanwhile, the amylase activities of A. japonicus in

group A were higher than those of individuals in group B
(P < 0.05). As shown in Figure 2C, the lipase activities of
A. japonicus in group A quite fluctuated throughout stage I,
with the highest value on day 28 and the lowest on day 42.
For A. japonicus in group B, an increase in the lipase activity
was observed before 7 days. After gradually decreasing between
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TABLE 2 | The growth performance of A. japonicus in stage I.

Groups Final body weight Body weight gain

A 14.96 ± 0.44a 70.00 ± 1.08a

B 17.21 ± 0.72b 95.52 ± 3.45b

Data are presented as mean ± SD (n = 3). The letters a and b indicate significant
differences between different groups at the significance level of 0.05 (P < 0.05).

day 7 and day 42, a further increase in lipase activities was
observed until the end of stage I. A. japonicus fed diet A showed
higher lipase activities than those fed diet B from day 14 to
the end of stage I.

As shown in Figure 3A, the individuals in the non-eviscerated
and eviscerated groups presented similar trends. A. japonicus in
group BNA showed significantly higher trypsin activities than
those in group ANA, except on days 28, 49, and 91 (P < 0.05,
Figure 3A). The trypsin activities of A. japonicus in group BEA
were significantly higher than those of individuals in group
AEA (P < 0.05, Figure 3A), although this difference was non-
significant on day 70. The trypsin activities of A. japonicus in
group BEA increased rapidly and returned to non-eviscerated
levels in less time than the activities of those in group AEA.
As shown in Figure 3B, little changes were found in trypsin
activities of A. japonicus in groups ANB and BNB. In contrast, the
trypsin activities in eviscerated groups, particularly group BEB,
greatly changed. A. japonicus in groups BNB and BEB exhibited
significantly higher trypsin activities than those in groups ANB
and AEB (P < 0.05). For eviscerated A. japonicus, the trypsin
activities in group BEB increased rapidly and took 28 days to
reach non-eviscerated levels, while the trypsin activities in group
AEB returned to non-eviscerated levels after 35 days.

Dramatic fluctuations were observed in the amylase activities
of A. japonicus in stage II (Figures 3C,D). Significant differences
were found in amylase activities between A. japonicus in
group ANA and BNA on days 7, 49, 70, and 112, but
the amylase activities of A. japonicus in group ANA were
higher than those of individuals in group BNA only on day
112 (P < 0.05, Figure 3C). For eviscerated A. japonicus,
significantly higher amylase activities were observed in group
AEA than in group BEA on days 28, 49, and 91 (P < 0.05,
Figure 3C). As shown in Figure 3D, the amylase activities
of A. japonicus in group ANB were higher than those of
individuals in group BNB on days 14, 28, 70, and 112
(P < 0.05). A. japonicus in group AEB exhibited higher amylase
activities than those in group BEB except on days 21 and 70
(P < 0.05).

The lipase activities of A. japonicus fed diet A in stage II
fluctuated; only the lipase activities of A. japonicus in group ANA
gradually increased during stage II (Figure 3E). A. japonicus
in group ANA showed significantly higher lipase activities than
those in group BNA from day 49 to the end of stage II
(P < 0.05, Figure 3E). For eviscerated A. japonicus, similar
values of lipase activities were observed in groups AEA and
BEA during stage II except for days 28, 49, and 70, with
higher lipase activities in group AEA than in group BEA
(P < 0.05, Figure 3E). As shown in Figure 3F, the lipase

activities of all A. japonicus fed diet B in stage II increased
during the whole stage II. Notably, the lipase activities of
A. japonicus in group ANB were significantly higher than those
of individuals in group BNB only on day 112 (P < 0.05). The
higher lipase activities were found in A. japonicus in group
AEB than those in group BEB only on days 28 and 112
(P < 0.05).

Growth Performance
The FBW and BWG of A. japonicus in stage I are shown
in Table 2. A. japonicus in group B showed significantly
higher FBW and BWG than those in group A (P < 0.05).
As shown in Table 3, diet in stage I, diet in stage II, and
evisceration showed an influence on the FBW and BWG of
A. japonicus, but their interaction did not affect the FBW
and BWG. A. japonicus fed diet B, regardless of the stage,
exhibited significantly higher FBW and BWG compared with
those fed diet A in stage I or II (P < 0.05). The FBW of non-
eviscerated A. japonicus was significantly higher rather than that
of eviscerated A. japonicus, while the BWG of non-eviscerated
A. japonicus was significantly lower than that of eviscerated
A. japonicus (P < 0.05). The growth rates of A. japonicus in stage
I are presented in Table 4. A. japonicus in group B showed a
significantly higher growth rate than those in group A (P < 0.05).
The growth performance of A. japonicus in stage II is shown
in Table 4. The growth rates of A. japonicus in groups BNA,
BNB, BEA, and BEB were higher than those of individuals in
groups ANA, ANB, AEA, and AEA, respectively, despite non-
significant differences in A. japonicus fed the same diet in stage
II (P > 0.05).

Time-Dependent Isotopic Turnover and
Metabolism
The carbon isotope ratios of diet A and B were measured as –
17.97 ± 0.06 and –18.09 ± 0.05, respectively. The trends of
carbon isotope ratios in the body walls of A. japonicus were
determined and are visualized in Figure 4. In stage I, group A not
only exhibited higher carbon isotope ratios but also responded
more quickly than group B (Figure 4A). In stage II, different
trends of carbon isotope ratios were observed in different groups,
which were caused by the historic and new diets (Figures 4B–E).
However, the carbon isotope ratios of A. japonicus fed diet A in
stage I were always higher than those of individuals fed diet B in
stage I. The changes in 13C were modeled as functions of time
(time models). The related parameters for different groups are
presented in Table 4. In stage I, the higher MR was observed
in A. japonicus in group A than in group B (P < 0.05). In
stage II, A. japonicus in groups ANB, AEA, and AEB exhibited
significantly higher MR than in groups BNB, BEA, and BEB,
respectively (P < 0.05).

Relationships Between Enzymic
Activities, SGRs, and MRs
Linear regression was applied to examine the relationship
between enzymic activities, SGRs, and MRs (Figure 5). A positive
relationship was identified between the trypsin activities and
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SGRs (P < 0.05), but a non-significant relationship was
found between trypsin activities and MRs (Figures 5A,B). The
amylase activities of A. japonicus negatively correlated with the
SGRs but positively correlated with the MRs of A. japonicus
(P < 0.05, Figures 5C,D). No significant relationships between
lipase activities, SGRs, and MRs were observed in A. japonicus
(Figures 5E,F).

DISCUSSION

The present study explored the changes in the digestive enzyme
activities, SGRs, and MRs of A. japonicus resulting from diet
switch before and after evisceration. It revealed that the short-
term plasticity of trypsin and amylase in response to historic diets
would persist in non-regenerated and regenerated intestines,
suggesting the long-term effect of historic diets on the digestion
of A. japonicus. The correlation between the digestive enzyme
activities, SGRs, and MRs suggested the effects of the changes
in enzymatic activities induced by different diets on the SGR
and MR of A. japonicus. This study provided a comprehensive
view of the persistence of the plasticity of digestive enzymes
in regenerated intestines and revealed the long-term effects
of historic diets on digestion, growth, and metabolism of
A. japonicus.

In stage I, enzymatic activities induced by distinct diets were
different. High trypsin and amylase activities were observed
in A. japonicus fed diet B and A. japonicus fed diet A,
respectively. It was concluded that the activities of trypsin
and amylase were positively affected by the dietary protein
and carbohydrate contents, respectively, which were largely
consistent with previous studies about white shrimp (Litopenaeus
vannamei) (Muhlia-Almazan et al., 2003), sea bass (Peres et al.,
1996), and large yellow croaker (Pseudosciaena Crocea) (Yu
et al., 2012). And Xia et al. (2015a) also reported that the
amylase activity of A. japonicus increased with the elevating
dietary carbohydrate levels from 25.61 to 45.31%. However, the
lipase activities of A. japonicus in group B fed a lipid-rich diet
(diet B) were lower than those of group A fed a low-lipid diet
(diet A), which was contrary to the previous study that the
increasing lipase activities of A. japonicus were accompanied by
the enhanced dietary lipid levels (Liao et al., 2015a). The positive
relationship between lipase activities and dietary lipid content
in that study was determined based on the changes in lipase
activities of A. japonicus fed the isonitrogenous diet. Thus, in the
present study, the changes in lipase activities of A. japonicus fed
different diets might be not only affected by dietary lipids but
also other dietary nutrients, which was furtherly supported by
previous findings that the dietary proteins, carbohydrates, and
lipids had interactive effects on the lipase activities (Xia et al.,
2015a; Huang et al., 2019). According to the changes in digestive
enzyme activities induced by different diets, great plasticity of the
digestive enzymes under exposure to different diets was found in
A. japonicus in stage I.

In stage II, although A. japonicus in groups BNA and ANA,
groups BNB and ANB, groups BEA and AEA, as well as groups
BEB and AEB were fed the same diet, higher trypsin activities

were observed in groups BNA, BNB, BEA, and BEB than in
groups ANA, ANB, AEA, and AEB, respectively. It suggested
that the plasticity of trypsin induced by diet in stage I could
persist in the non-regenerated and regenerated intestines. The
persistence of plasticity was also detected in the amylase activities
of eviscerated A. japonicus. In detail, A. japonicus in group AEA
showed higher amylase activities than those in group BEA despite
all individuals fed diet A in stage II. Also, A. japonicus in group
AEB showed higher amylase activities than those in group BEB
despite individuals fed diet B in stage II. The persistence of
digestion plasticity has already been reported at molecular levels
by Geurden et al. (2007), who found that the early hyperglucidic
diet could rapidly increase the expression of α-amylase of larvae
rainbow trout, and for juveniles subjected to the challenge test
with a 25% dextrin diet, the higher expression of α-amylase was
observed in rainbow trout that experienced the hyperglucidic
stimulus compared with those fed a hypoglucidic diet at first
feeding, suggesting that short-term digestive plasticity of fish
resulting from dietary carbohydrates in the early feeding stage
would persist in the later life. Therefore, in the present study, it
was hypothesized that the genes related to trypsin and amylase
activities could be affected by diet in stage I and subsequently
regulated the trypsin activities and amylase activities in stage
II. However, further studies need to be conducted to prove
this hypothesis. Additionally, the lipase activities of A. japonicus
exhibited no persistence of plasticity, which might be explained
by the poor demand of dietary lipids and low lipase activities of
A. japonicus (Liao et al., 2015a; Ye et al., 2019).

Changes in the digestive enzyme activities of A. japonicus
before and after evisceration indicated the long-term effects
of historic diets on digestion; the long-term effects of diets
have been reported by numerous studies. For example, rainbow
trout fry fed a plant-based diet for a short time enhanced the
acceptance and use of a plant-based diet during their later life
(Geurden et al., 2013; Balasubramanian et al., 2016). Besides,
the early hyperglucidic diet stimuli showed long-term effects
on carbohydrate digestion of rainbow trout in later life, which
resulted in the persistence of amylase plasticity of the organism
(Geurden et al., 2007). Similarly, in the present study, the long-
term effects of diet in stage I on trypsin and amylase activities led
to the persistence of these two enzymatic activities of A. japonicus.
In addition, the trypsin activities of eviscerated A. japonicus fed
diet B in stage I returned to the non-eviscerated levels in less
time than those fed diet A in stage I, regardless of which diet
was fed to A. japonicus in stage II. This finding suggested that the
high-protein diet (diet B) in stage I could accelerate the recovery
of trypsin activities of eviscerated A. japonicus, which further
confirmed the positive long-term effects of historic diets on the
digestion of A. japonicus. Moreover, the trypsin activities of non-
eviscerated A. japonicus in stage II were affected by the historic
diets in stage I, while for eviscerated A. japonicus, both trypsin
and amylase activities were affected by diet in stage I, suggesting
that the digestion of regenerated intestines was more susceptible
to the long-term effect of historic diets compared with that of
non-regenerated intestines.

For the growth performance of A. japonicus in stage I,
A. japonicus in group B possessed higher FBW, BWG, and
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TABLE 3 | The growth performance of A. japonicus in stage II.

Source df P Multiple comparison

Diet in stage I Diet in stage II Non-eviscerated (N) or eviscerated (E)

A B A B N E

Final body weight

Diet in stage I 1 < 0.001 35.25 ± 6.09a 47.22 ± 7.97b 37.62 ± 7.56a 44.85 ± 9.64b 45.93 ± 8.46b 36.54 ± 7.68a

Diet in stage II 1 < 0.001

Evisceration 1 < 0.001

Diet in stage I*II 1 NS

Diet in stage I* Evisceration 1 NS

Diet in stage II* Evisceration 1 NS

Diet in stage I*II*Evisceration 1 NS

Body weight gain

Diet in stage I 1 0.038 214.13 ± 56.52a 240.07 ± 63.86b 205.88 ± 50.27a 248.33 ± 62.56b 185.06 ± 41.98a 269.14 ± 44.04b

Diet in stage II 1 0.002

Evisceration 1 < 0.001

Diet in stage I*II 1 NS

Diet in stage I* Evisceration 1 NS

Diet in stage II* Evisceration 1 NS

Diet in stage I*II*Evisceration 1 NS

See the text for a detailed description of the model. df represents the degree of freedom. The letters a and b indicate significant differences between different groups at
the significance level of 0.05 (P < 0.05).

TABLE 4 | Summary of time-based stable isotope turnover models and related growth and metabolism parameters for body walls of A. japonicus.

Groups Equation R2 k + m k (d−1) m (d−1)

Groups in stage I A Ct = −18.33-0.94e−0.04704 t 0.55* 0.04704 0.0095 ± 0.0005a 0.0375 ± 0.0005b

B Ct = −18.67-0.60e−0.03970 t 0.80* 0.03970 0.0120 ± 0.0007b 0.0277 ± 0.0007a

Non- eviscerated groups in stage II ANA Ct = −18.10-0.26e−0.02696 t 0.56* 0.02696 0.0082 ± 0.0007a 0.0187 ± 0.0007a

BNA Ct = −18.15-0.36e−0.04052 t 0.54* 0.04052 0.0088 ± 0.0007a 0.0317 ± 0.0007b

ANB Ct = −18.18-0.22e−0.02933 t 0.86* 0.02933 0.0090 ± 0.0008a 0.0203 ± 0.0008b

BNB Ct = −18.27-0.36e−0.01299 t 0.78* 0.01299 0.0109 ± 0.0009a 0.0021 ± 0.0009a

Eviscerated groups in stage II AEA Ct = −18.18-0.37e−0.04645 t 0.81* 0.04645 0.0130 ± 0.0009a 0.0335 ± 0.0009b

BEA Ct = −18.19-0.41e−0.03838 t 0.71* 0.03838 0.0140 ± 0.0012a 0.0244 ± 0.0012a

AEB Ct = −18.20-0.35e−0.03773 t 0.79* 0.03773 0.0149 ± 0.0010a 0.0228 ± 0.0010b

BEB Ct = −18.38-0.22e−0.03007 t 0.61* 0.03007 0.0160 ± 0.0009a 0.0141 ± 0.0009a

t represents the experimental time in days. Ct represents the carbon stable isotope ratio on day t. R2 represents the goodness of fitting for time-based stable isotope
turnover model. * means significant correlation at the significance level of 0.05 (P < 0.05). k + m represents the isotopic turnover rate. k represents growth rate constant
and m metabolic rate constant. See the text for a detailed description of the model. The letters a and b indicate significant differences between different groups at the
significance level of 0.05 (P < 0.05).

SGR than those in group A. Previous studies documented
that adequate dietary protein contributed to the growth of
A. japonicus (Seo et al., 2011; Li et al., 2021). For MR in
stage I, A. japonicus fed diet B exhibited lower MR than those
fed diet A, which might be related to the low carbohydrate
content of diet B. Increased MR in response to high-carbohydrate
diets was observed in the present study, which was consistent
with that in Southern catfish (Silurus meridionalis) and black
carp (Mylopharyngdon piceus Richardson) (ShiJian and XieXiao,
2007; Cai et al., 2010). Moreover, the negative relationship
between MR and SGR of A. japonicus was reported by Xia et al.
(2015a), in which A. japonicus fed a diet consisting of 75%
S. thunbergii and 25% soybean meal showed higher MR but lower

SGR than those of A. japonicus fed a diet consisting of 100%
S. thunbergii. It suggested that the growth rate of A. japonicus
would be restricted when more energy was provided to meet
metabolic requirements.

In stage II, eviscerated A. japonicus exhibited higher BWG
but lower FBW compared with the non-eviscerated A. japonicus.
It was consistent with the previous finding that the growth
performance would be rapidly improved after the intestinal
regeneration of A. japonicus, although the body weights
of eviscerated A. japonicus could not exceed that of non-
eviscerated individuals due to huge loss weights caused by
evisceration (Zang et al., 2012). The growth performance of
A. japonicus in stage II was affected by not only evisceration
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FIGURE 4 | Changes in observed δ13C values of body walls of A. japonicus in stage I (A) Changes in observed δ13C values of body walls of A. japonicus in stage II
(B-E). Data are presented as mean ± SD (n = 3).

but also the diet types in different stages. Diet B as diet in
stages I or II would enhance FBW, BWG, and SGRs of all
A. japonicus in stage II. Especially for A. japonicus fed diet
B in stage II, it was more beneficial for their subsequent

growth performance if diet B was included in stage I. However,
for non-eviscerated or eviscerated groups, the differences in
SGRs of A. japonicus fed the same diet in stage II were
non-significant. It suggested that A. japonicus showed similar
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FIGURE 5 | Relationships between trypsin activities, specific growth rates, and metabolic rates of A. japonicus (A,B); Relationships between amylase activities,
specific growth rates, and metabolic rates of A. japonicus (C,D); Relationships between lipase activities, specific growth rates, and metabolic rates of A. japonicus
(E,F).

SGRs when they consumed the same diet, and the SGRs of
A. japonicus were slightly affected by the long-term effects of
the historic diets.

The changes in MRs of A. japonicus fed the same diet
in stage II indicated that the MRs of A. japonicus seemed
to be affected by diet in stage I, which was in agreement
with previous findings that the nutritional history had major
impacts on metabolic processes to improve fish performance
(Vera et al., 2017). Besides, Lage et al. (2020) also demonstrated
that the early dietary restriction resulted in a long-term
modification of the metabolism of white shrimp by regulating
the mRNA levels. In addition, the enzymatic activities are
important for digesting and assimilating nutrients and are

closely associated with growth performance and metabolic status
(Sunde et al., 2001; Rungruangsak-Torrissen et al., 2006). In
the present study, the SGRs and MRs of A. japonicus were
positively affected by trypsin and amylase activities, respectively,
which were consistent with the positive relationship between
trypsin activities and body weight observed in Atlantic salmon
(Rungruangsak-Torrissen et al., 2006). Besides, Rungruangsak-
Torrissen et al. (2006) and Murashita et al. (2013) reported that
the changes in digestive enzyme activities could be applicable
as the indicators for growth and metabolic studies of fish to
reflect the growth and metabolism during the development
of organisms. Therefore, in the present study, based on the
relationship between digestive enzyme activities, growth, and
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metabolism, the historic diets could produce long-term effects
on the growth and metabolism of A. japonicus by affecting the
enzyme activities in stage II.

In summary, the persistence of digestive enzyme activities
induced by historic diets was found in non-eviscerated and
eviscerated A. japonicus, indicating the long-term effects of
historic diets on the digestion of A. japonicus. The digestion
of regenerated intestines was more susceptible to the long-
term effects of historic diets than those of non-regenerated
intestines. The changes in SGRs and MRs, as well as their
relationships with digestive enzyme activities, revealed that the
historic diets showed long-term effects on the growth and
metabolism of A. japonicus through long-term effects of historic
diets on digestive enzyme activities. Further studies are required
to investigate the molecular mechanism of the persistence of
digestive enzyme activities and the long-term effects of historic
diets on A. japonicus.
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