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Ocean observatories collect large volumes of video data, with some data

archives now spanning well over a few decades, and bringing the challenges

of analytical capacity beyond conventional processing tools. The analysis of

such vast and complex datasets can only be achieved with appropriate

machine learning and Artificial Intelligence (AI) tools. The implementation of

AI monitoring programs for animal tracking and classification becomes

necessary in the particular case of deep-sea cabled observatories, as those

operated by Ocean Networks Canada (ONC), where Petabytes of data are now

collected each and every year since their installation. Here, we present a

machine-learning and computer vision automated pipeline to detect and

count sablefish (Anoplopoma fimbria), a key commercially exploited species

in the N-NE Pacific. We used 651 hours of video footage obtained from three

long-term monitoring sites in the NEPTUNE cabled observatory, in Barkley

Canyon, on the nearby slope, and at depths ranging from 420 to 985 m. Our

proposed AI sablefish detection and classification pipeline was tested and

validated for an initial 4.5 month period (Sep 18 2019-Jan 2 2020), and was a

first step towards validation for future processing of the now decade-long

video archives from Barkley Canyon. For the validation period, we trained a

YOLO neural network on 2917 manually annotated frames containing sablefish

images to obtain an automatic detector with a 92% Average Precision (AP) on

730 test images, and a 5-fold cross-validation AP of 93% (± 3.7%). We then ran

the detector on all video material (i.e., 651 hours from a 4.5 month period), to

automatically detect and annotate sablefish. We finally applied a tracking

algorithm on detection results, to approximate counts of individual fishes

moving on scene and obtain a time series of proxy sablefish abundance.

Those proxy abundance estimates are among the first to be made using such

a large volume of video data from deep-sea settings. We discuss our AI results
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for application on a decade-long video monitoring program, and particularly

with potential for complementing fisheries management practices of a

commercially important species.
KEYWORDS

big data, machine learning, marine observatories, automated video analysis, fishery
independent monitoring, ocean network Canada, intelligent marine observing
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Introduction

Ocean exploitation at industrial levels increasingly

threatened the ocean health (Danovaro et al., 2017; Rayner

et al., 2019; Kildow, 2022), especially regarding fisheries

(Kearney and Hilborn, 2022; Pentz and Klenk, 2022; Pitcher

et al., 2022) and underwater mining activities (Levin et al., 2020;

Filho et al., 2021). Fisheries in particular, although not a global

issue per se (rather more efficiently treated on a local to regional

level; Kearney and Hilborn, 2022), can contribute to a global

reduction of biomass if not correctly managed (Palomares et al.,

2020). Efficient management of the marine environment is

promoted through international initiatives such as the UN’s

Decade of Ocean Science for Sustainable Development1 and the

EU’s Marine Strategy Framework Directive (MSFD, 2008),

where intelligent monitoring of marine resources is expected

to play a central role (Beyan and Browman, 2020; Malde et al.,

2020; Rountree et al., 2020; Aguzzi et al., 2021).

Estimates of species composition and relative abundance of a

local community are influenced by the temporal patterns in the

behavioral rhythms of fauna at diel (i.e., 24-h) and seasonal

scales (Aguzzi and Company, 2010; Aguzzi et al., 2011b; Aguzzi

et al., 2015b). This raises the need for high-frequency, long-term,

datasets of the stock levels and demographic indices of fishery

targets, whose generation is difficult with the use of expensive

vessel-based sampling methodologies (Naylor, 2010). Moreover,

in zones such as Marine Protected Areas (MPAs), invasive

sampling of key species is often prohibited (Vigo et al., 2021).

Bottom trawling is to date the most reliable stock assessment

method for demersal resources (Ovando et al., 2022) but it’s

temporally intensive application would have a high

environmental impact (e.g., Hiddink et al., 2006; Jamieson

et al., 2013; Flannery and Przeslawski, 2015; Colloca et al.,

2017; Costello et al., 2017; Sciberras et al., 2018; Rousseau

et al., 2019; De Mendonça and Metaxas, 2021). Imagery-based

sampling methods are still not as widespread (Bicknell et al.,

2016), although they are successfully applied for gathering
02
species composition and abundance data, for instance along

usage of Baited Remote Underwater Video Stations (BRUVs),

stereo-BRUVs (with stereo cameras for accurate fish sizing), and

more recently Deep-BRUVS (for deep-water deployments; e.g.,

Langlois et al., 2018; Withmarsh et al., 2017). Nowadays, such

fixed-point cabled observatory stations can collect detailed

biological and environmental data, allowing for species

abundance estimates in response to environmental changes

(Aguzzi and Company, 2010; Aguzzi et al., 2012; Aguzzi et al.,

2015b; Chatzievangelou et al., 2016; Doya et al., 2017;

Chatzievangelou et al., 2020).

In order to fully unlock the potential of such infrastructures,

appropriate analytical tools are needed to automatically and

quickly process vast amounts of generated data (Schoening et al.,

2012; Osterloff et al., 2016; Aguzzi et al., 2019; Osterloff et al.,

2020; Zuazo et al., 2020). Artificial Intelligence (AI) procedures

can provide important fishery-independent data (Marini et al.,

2018a; Marini et al., 2018b; Malde et al., 2020; Lopez-Vazquez

et al., 2020; Aguzzi et al., 2021; Harris et al., 2021) collected by

infrastructures capable of supporting video data acquisition and

processing (Jahanbakht et al., 2021).

Sablefish (Anoplopoma fimbria) is a demersal fish species of

the Pacific coast of North America (depth range 300-3000 m;

Orlov, 2003), which supports important commercial fisheries

(Warpinski et al., 2016; Riera et al., 2020). Sablefish populations

include resident and migrating individuals performing both

horizontal and vertical movements (Jacobson et al., 2001;

Maloney and Sigler, 2008; Morita et al., 2012; Hanselman

et al., 2015; Goetz et al., 2018; Sigler and Echave, 2019) across

large geographic ranges (Chapman et al., 2012). In British

Columbia (BC), sablefish stocks have shown indication of

decline, with a recent observed resurgence attributed to some

years of stronger recruitment (Workman et al., 2019). Along the

BC coast, sablefish appear to move horizontally, back and forth

along the canyon axis on a daily basis, in search of prey (Doya

et al., 2014; Chatzievangelou et al., 2016). Locally, seasonal

trends in abundance have been also documented by the high-

frequency observations provided by the North-East Pacific

Undersea Networked Experiments (NEPTUNE) observatory’s

seafloor video cameras (Doya et al., 2017; Chauvet et al., 2018).
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There are available tools to automatically process large

quantities of videos for extracting biological data. A number of

methodologies have been proposed for fish species recognition

and classification over the last two decades, but the great

variability of either species morphologies, or the conditions in

which the videos are captured, is still a major challenge for

automated processing (e.g., Matabos et al., 2017; Marini et al.,

2018a; Marini et al., 2018b; Ottaviani et al., 2022). These

automated approaches span a wide range of topics within the

AI and computer vision based literature (e.g., Hsiao et al., 2014;

Nishida et al., 2014; Wong et al., 2015; Chuang et al., 2016; Tills

et al., 2018; Harrison et al., 2021; Yang et al., 2021; Liu et al.,

2021; Sokolova et al., 2021a; Sokolova et al., 2021b). A

preliminary attempt to automatically detect sablefish in

Barkley Canyon was carried out by Fier et al. (2014) using a

supervised image segmentation approach, whose detection

efficiency was later compared with manual annotations

performed by biologist experts, students and the general public

using an online citizen science platform (DigitalFishers, http://

dmas.uvic.ca/DigitalFishers), (Matabos et al., 2017). However,

those initial attempts highlighted that the fish detection

algorithms were still rudimentary, being significantly

outperformed by trained human eyes, and therefore calling for

significant improvement. Nevertheless, the recent developments

based on Deep Learning (DL) Convolutional Neural Network

(CNN) processing methods demonstrated high accuracy

performance and reliability in completing fish recognition and

classification tasks (Konovalov et al., 2019; Lopez-Vazquez et al.,

2020; Yang et al., 2021; Lopez-Marcano et al., 2021; Zhao et al.,

2021; Ottaviani et al., 2022).

DL has recently emerged as an innovative field in AI for

language processing, computer vision, and the alike (Goodfellow

et al., 2016; Han et al., 2020; Langenkämper et al., 2020; Malde

et al., 2020; Ottaviani et al., 2022). CNNs are successfully used in

computer vision because, thanks to their interconnected

structure, they can automatically capture many hidden features

of the input data, generating information on a number of

valuable image features (shape, texture, and so on) with little

manual intervention (Simonyan and Zisserman, 2015; LeCun

et al., 2015; Girshick, 2015; Ren et al., 2015). In general terms, a

CNN is a complex statistical model of some outcome (here

images) which can be graphically represented as interconnected

nodes, stacked into several layers. Each node is assigned one or

more parameters to be optimized through a training phase. Since

the whole network accounts for many nodes and often millions

of parameters, DL methods can be computationally intensive

(LeCun et al., 2015). Although very useful, such techniques alone

are yet not sufficient to fulfill all scopes of automated monitoring

programs centered on megafauna quantification, and still

require some customization effort.

In the present study, we combine existing DL approaches

with object tracking techniques, in order to produce reliable

counts of sablefish in deep-sea settings of slope and submarine
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canyon habitats of the NE Pacific within variable environmental

conditions and subjects in movement. Making use of the

NEPTUNE cabled observatory, an abundance time-series

extracted from video data was generated through an AI-based

pipeline proposed for the automatic detection, classification, and

counting of sablefish. In general, the proposed approach is aimed

at supporting the stock-related assessment metrics and

monitoring programs of deep sea commercial species with

ancillary data, according to the increasing trend of networks of

fixed point observatories (Painting et al., 2020; Rountree et al.,

2020; Rountree et al., 2020; Aguzzi et al., 2021).
2. Methods

2.1 Cabled observatory data

The NEPTUNE cabled observatory operated by Ocean

Networks Canada (ONC) presently represents one of the best

technologically-equipped networks to undertake fish

communities monitoring along the Pacific coast of North

America (Aguzzi et al., 2020a). One of its nodes, located in

Barkley Canyon2, consists of several cabled instrumented

platforms that span a maximum linear distance of ~15 km,

and a depth range of 400 to 985 m, overlapping with the habitat

range of the greatest sablefish abundance (Goetz et al., 2018;

Kimura et al., 2018; Aguzzi et al., 2020a). A total of 5 fixed

instrumented platforms and a mobile crawler (with a 70-m

radius range) are equipped with a suite of oceanographic and

biogeochemical sensors in addition to video cameras mounted

on pan and tilt units (Figure 1).

The study took place at three sites from the Barkley Canyon,

all equipped with a video-camera (Table 1 and Figure 1A). All

the high-definition cameras recorded at 1080p horizontal line

pixel resolution and at ~23 frames per second (fps). The cameras

were mounted on galvanized steel tripods and attached to ROS-

485 Pan and Tilt units, with a pair of dimmable ROS LED lights

(100 W, > 406 lm), which provided illumination during video

recording. Two parallel laser-beams, 10 cm apart, provided

scaling of the seafloor. All three cameras had specific and

optimal field of views adjusted after deployment, which

remained unaltered throughout the study period (Table 1).

Due to variable tilt angles and tripods, each with slightly

different heights above the seabed, the imaged seabed area

varied among the cameras, ranging 5-10 m2 (Table 1). The

three cameras synchronously recorded 5-minute videos at each

UTC hour. The synchronization in image acquisition was of

particular relevance to track fish shoals and spatial

displacements of benthic megafauna within a spatially-
frontiersin.org
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coherent camera network along the continental margin areas

(Aguzzi et al., 2011a; Aguzzi et al., 2020b).
2.2 Data analysis work-flow, preparation
of the training set

Archived video data were accessed using the ONC

repository3 and Application Programming Interface (API)

using a Python client library4 targeting the study period,

corresponding to September 18th 2019 to February 3rd 2020

(136 days). Next, in order to train a classification model for

recognizing sablefish individuals in the videos, we generated a

ground-truth dataset consisting of a number of video frames

selected from the whole video material and containing examples

of sablefish individuals. Figure 2 schematically describes the

workflow required for the data analysis up to the endpoint

production (estimated fish count time series).

The ground-truth data set was prepared by two annotators

on two different groups of videos. One annotator manually

searched and selected video material which resulted in

annotation of 3189 video frames, mostly from the Barkley

Node location. Another annotator additionally annotated 458

video frames, resulting from a simple random selection of a pool

of frames evenly distributed along all study sites. The total

ground-truth dataset corresponds to 3647 frames subdivided
3 https://data.oceannetworks.ca/,

4 https://wiki.oceannetworks.ca/display/O2A/Oceans+3.0+API+Home
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between training and validation as described in Table 1.

Moreover a 5-Fold Cross-Validation within the training/

validation part of the dataset has been used for the evaluation

of the classification performance, as described in the

Result section.

Annotations were made by drawing a bounding box around

each sablefish individual in the image, and by specifying the class

(i.e., species) of that individual (i.e., only one in the present

application). Hence, the ground-truth data ready for computer

vision training consisted of a set of paired images and text files

containing bounding box coordinates and class labels for each

individual. All annotations were made using the labeling

software labellmg5.
2.3 Classification model

In recognizing the rapidly evolving landscape in DL

computer vision methods, and in critically evaluating the most

recent approaches, we focused on models readily available to the

average user with relatively limited computation resources. The

“You Only Look Once” (YOLO) DL neural network (Redmon

et al., 2016) was ultimately selected, after recently drawing

attention for its good performances and relatively light

computational burden (Aziz et al., 2020). Relative to other

successful CNNs, YOLO does manage to process the data in

one step, by introducing yet more automation in the detection

and classification process (Koirala et al., 2019),. Although many
FIGURE 1

Map (A), schematic (B) and photographs depicting the study area in Barkley Canyon, NE Pacific, and the NEPTUNE cabled observatory
infrastructure. Video imagery used in this study was limited to 3 out of 5 long-term monitoring sites, Upper Slope (420 m), Canyon Axis (985 m)
and Node (620 m). Screen grabs (labeled Upper Slope, Node and Axis) represent the variable video field of view conditions of the three
locations used in our study.
5 https://github.com/tzutalin/labelImg
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versions of the YOLO architecture exist (e.g. YOLOv36 and

YOLOv77), experiments have been performed with the

YOLOv5 software8.
2.4 Transfer learning

The classification task involves the recognition of a relevant

subject with respect to the image background. To this end, the

required, expensive, training step can be simplified by using a

transfer learning approach, where a classifier is trained on a

general purpose dataset and then specialized on a dataset defined

for the specific application context (Tan et al., 2018).

Accordingly, we pre-trained the network on the Common

Objects in COntext dataset (COCO9), which is a popular

general purpose dataset containing annotated images of

animals (without fishes), persons and various objects. The pre-

train phase was aimed at lending the network a baseline

discrimination for a variety of image features (e.g., shapes,

textures), as opposed to training the network on the sablefish

dataset from scratch which is time consuming and needs a huge

amount of ground-truth examples.

Only in a second step, we used the dataset obtained from the

manual annotations for specializing the pre-trained classifier on

sablefish-related features the acquisition conditions varying

across the ONC sites (i.e, seafloor illumination, texture, color,

etc.) and the different species present in the images e.g. Pink

Urchin (Strongylocentrotus fragilis), Tanner crab (Chionoecetes

tanneri), hagfish and gastropods species). This additional

training resulted in a classifier specifically calibrated for

sablefish detection. The classifier was fine-tuned via further

training on an extended dataset including outputs by both
6 https://github.com/ultralytics/yolov3

7 https://github.com/jinfagang/yolov7

8 https://github.com/ultralytics/yolov5

9 https://cocodataset.org
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manual annotators, which increased representativeness of the

overall study area conditions.

For the performance assessment, we measured the Average

Precision (AP) at 50% overlap between the ground-truth and the

inferred bounding boxes. AP is the area under the curve

resulting from plotting the classification Recall and Precision

for sablefish (Fawcett, 2006). Recall is the number of detected

True Positives (TP) over all ground truth annotations,

Recall =
TP

(TP + FN)
;

where FN is all False Negatives. Recall is also known as

sensitivity. Precision is all TP over all detections:

Precision =
TP

(TP + FP)
;

where FP is all False Positives. Precision is also known as a

positive predictive value.

We make the weights obtained by this training procedure

and used for detection and classification analyses also freely

available for reproducibility of our results (see next Section

below). Training was performed on Google Colab10.
2.5 Automatic detection and
classification analysis

In this final step, we applied the trained YOLO model on the

stored video data, to produce automatic detection and

classification of all sablefish appearing on scene during the 4.5

month period and at the three study locations. The output for

one single video clip was an automatically produced annotation

text file, for each video frame, including bounding box

coordinates, object class, and detection confidence for each

detected object in the frame (ranging 0-1). To speed up the

video footage analysis, without losing relevant information, we
TABLE 1 Camera specifications and deployment details according to the locations shown in Figure 1.

Video camera
make and model

Location
and depth

Video resolution, and
frame rate per second

LED lights make, power (W),
brightness (lumens), max
separation distance (cm)

No of video frames effectivelyused
for YOLOtraining/validation

(testing)↑

SubC Imaging
(Dragonfish)

Node, 620 m 1080p, 23 fps ROS, 100, 500 2657 (650)

SubC Imaging (1 CAM
Alpha MK5)

Axis, 987 m 1080p, 23 fps SubC Aquorea 259 (80)

Axis Imaging
Sony HDR

Upper Slope,
420 m

1080p, 30 fps ROS 100 W, > 406 lm 1 (0)
10 https://colab.research.g
↑This sample was the result of a simple random selection of frames obtained after filtering each video-clip for moving objects with contour area > 1000 and eccentricity > 0.7 (values
compatible with the size of a sablefish) using the first month of video data.
oogle.com/
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kept only 50% of the original frame size and only every 20th

frame in the four minutes video clip.

While the YOLO model is necessary to detect and classify

every sablefish appearing in each video frame, this alone cannot

provide estimates of the number of unique individuals appearing

in the video clip. Therefore, we needed to extend the computer

vision pipeline to add a tracking step, aimed at producing an

estimate of the number of individual subjects appearing in the

video. Such a step reduces the multiple counts of individuals

moving along the field of view. (. To this end, we used the

bounding box coordinates automatically generated by the YOLO

for tracking each individual fish along the time sequence of

video frames.

Although many approaches exist for object tracking (Fiaz

et al., 2019; Du and Wang, 2022) we decided to implement a

simple tracking algorithm based on the Euclidean distance

among the bounding boxes of the individuals detected by the

classification algorithm (e.g. Islam, 2020; Azimjonov and Özmen

2022). We related two fishes between two consecutive time

frames by taking the corresponding box coordinates

(centroids) and by computing their Euclidean distance. We

repeated this for any pair of centroids, and the pair with the

smallest Euclidean distance resulted in attributing one track to

the same individual moving in the field of view. Therefore, the

estimated total number of tracks in one video is an

approximation of proxy abundance recorded by the video.

One fish was tracked until it disappeared from the scene for a

maximum number (“m”) of consecutive empty frames, which

was a key parameter of this algorithm. This method might cause

fishes to swap tracks if centroids of two different fishes come too
Frontiers in Marine Science 06
close and cross. However, this alone does not critically alter the

estimation of the total number of individuals in one video, and

therefore is an acceptable drawback of this tracking method.
2.6 Machine learning output assessment
against manual visual counts

We plotted the sablefish hourly count time series calculated

from the AI pipeline output over the entire 4.5 month

monitoring period at each observatory platform/site. The

sablefish count estimates should be considered as a proxy of

fish abundance measurements, because observations arise from a

non-probability sampling scheme and because of intrinsic

approximation errors of the detection pipeline. We computed

summary statistics such as mean sablefish count over the study

period and linear time trend.

We validated the machine-learning results against

independent visual counts manually obtained via the

widespread MaxN estimation method (Priede et al., 1994;

Harvey et al., 2007; Yeh and Drazen, 2009; Schobernd et al.,

2014) on 30-second video clips extracted from the original 5-

min video files, and starting at elapsed 1 min 45 sec into each

video to ensure standardized effects of artificial lighting on the

sablefish startling behavior and attraction in the field of view

(Doya et al., 2014; De Leo et al., 2018). MaxN consists of

obtaining the maximum number of fish (peak abundance)

observed in any single frame during the viewing interval (here

30 sec.). It is also a proxy for abundance, because it typically

underestimates its true value. Therefore, we are only interested
FIGURE 2

Schematic workflow of the video imagery data analysis. Frames from the acquired video are selected, manually annotated and used for the
training/validation of the sablefish classifier; Then the trained classifier is applied to the footage not used in the training/validation phase
producing the bounding boxes of the detected relevant subjects; then the tracking algorithm is used to track the relevant subject moving within
the field of view with the aim of producing reliable counts of the framed individuals.
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in comparing the trend between the AI-based and the manual

counts time-series, as opposed to their absolute value. For

Barkley Axis and Upper Slope, only 30 days worth of video

clips were used for the manual count. We computed the Pearson

correlation between the machine-learning and the manual time-

series results, by matching them by date.

All the scripts needed for downloading and processing the

ONC data are freely available on GitHub (Bonofilgio, 2021).
3. Results

3.1 Training and validation

The volume of data analyzed consisted of 9772 video clips

(Node = 3313; Axis = 3154; Slope = 3305) over the 4.5 month

period, for a total of ~650 hours of video recording and ~1 TB of

data. Among all the available video-clips 3647 were used for

training/validation and test and the remaining 6125 video-clips

were used for comparison between automated and manual

counts. At the end of the detection pipeline, we had a sablefish

count time series of ~600 KB, which stresses the stark data

reduction needed to obtain the desired end information. The

manual annotation produced a total of 9205 tagged unique

sablefish individuals distributed in 3647 image-frames, used

for training (n = 2917) and testing (n = 730) the YOLO (Table 1).

The obtained classifier resulted in a 92% AP on test data and a

93% (sd: 3.7%) 5-fold cross-validated AP (mean precision: 99%,

sd: 0.4%; mean recall: 52%, sd: 1.2%)11. We deemed these results

as good and kept this model as our final detector and classifier.

3.2 Detection and tracking results

Reducing video size and frames number prior to automatic

detection, resulted in decreasing data size by almost 14 times,

which also sped up detection computations. In particular, only

one frame every 20 was analyzed, reducing the processing time of

a whole video clip from about 20 minutes to 3 minutes, on an 8

CPU Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz computer.

Although the problem of uncertainty and confidence within

the object classification context is quite complex and still debated

(Mena et al., 2022), we run the tracking algorithm on all detection

results, filtering only detections with the confidence value

returned by YOLO greater or equal than 80% for the Node and

Axis sites and 95% for Slope. The larger confidence value used for

the Slope was needed to better discriminate the very few

individuals of sablefish occurring in this site against other fauna

(e.g., dark blotched rockfish), present in much greater abundance

here compared to the other two sites. In total, this processing step
11 Section 5-7 of the online Colab notebook, See data availability

statement below.
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produced a count time series of about 600 KB of size only.

Examples of sablefish detections from two consecutive frames of

video clips of Barkley Axis and Node are shown in Figure 3. The

labeled boxes are the result of the automatic YOLO detection and

classification. Note the classification confidence metric displayed

in each sablefish bounding box (ranging from 0-1), which we use

as a filter to generate more conservative estimates when needed.

Green numbered points over each individual are the result of the

tracking algorithm. Using the examples in Figure 3, the procedure

counted 105 and 32 sablefish individuals at the end of each

respective video clip for Axis and Node. These two entire video

clips are available as Supplementary Material (Supplementary

Videos 1 and 2). For Barkley Axis, where the video camera had

multiple pan and tilt field of view positions, the YOLO and the

tracking algorithm had similar efficiency under variable artificial

illumination conditions as well as with variable amounts of

seafloor present in the image background (Figure 4).
3.3 Derived time-series of sablefish
proxy abundance

Using the tracking algorithm, estimates of sablefish proxy

abundance from each video clip were extracted, resulting in a 4.5

month long proxy abundance time-series (Figure 5). A total of

263,780 sablefish individuals were counted across all sites (Node:

107,366; Axis: 156;414; Slope: 3), withmean counts of 32.4 (sd: 24.4)

and 49.6 (sd: 26.3) per videoclip for Node and Axis, respectively.

The time series at the Node site showed fluctuating behavior

(Figure 5A) and an overall significant linear increase of 12 ± 0.25

sablefish per month on average (R2 = 0.4), especially due to the

rise in counts starting from January 13th. The time series at the

Axis site had a concave shape (Figure 5B) with an initial sharp

increase and a slow decrease at the end. Therefore, the time

series had an almost null linear change in average number of

sablefish per month with little explained variation (slope = -1.3-6

± 1.4-7, R2 = 0.027), and therefore a poor linear fit. Filter

increment at Upper Slope site resulted in counting only three

sablefish between November 17th-27th 2019. We checked videos

at these dates confirming the presence of sablefish individuals,

although the automatic count was slightly more conservative.

We also directly checked for counts greater than 100 at Barkley

Node site after day 120, manually confirming the numbers.

The results obtained from the automatic sablefish counts

showed good agreement with results from the manual counts,

both for Barkley Node (Figure 6) and Axis (Figure 7). However,

it is worth noting that the absolute sablefish counts cannot be

compared between the two methodologies, in particular because

the manual counts were obtained from much shorter video clips

(30 sec) instead of the 5 min. long videos used in the YOLO and

tracking algorithms combined. Thus, we are mostly interested in

comparing the temporal trends between the two series (see

Figures 6, 7) and their correlation. For site Node and Axis, we
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measured 88% and 81% Pearson correlation, respectively (p-

value< 0.0001 in both cases). Manual counting at Upper Slope

yielded 4 sablefish between September 19th and October 21st,

2019. Therefore, both automatic and manual counting at Upper

Slope resulted in False Negatives. Finally, the result of the time

trend was robust to variation of the main parameter “m” of the

tracking algorithm (Figure 8).
4. Discussion

The results obtained by our machine learning (deep-learning

combined with tracking algorithm) approach successfully

generated a pipeline of automated detection, classification, and

proxy abundance estimation of sablefish. The good agreement in

temporal trends of the automated and manually annotated

sablefish counts demonstrates the value of this machine

learning approach for measuring the local sablefish population

dynamics in Barkley Canyon and adjacent Upper Slope. In

particular, the machine learning pipeline was successful in

detecting sablefish under highly variable environmental

conditions; i.e., a depth gradient (420-970 m) which generally

translates into variable regimes of seafloor detritus input and

suspended particulate matter (sediments and organic matter).

Those variable conditions, in turn, have a direct effect on the

overall quality of the video imagery (seafloor color, illumination

field, etc.). Furthermore, the automated identification of only a

few individuals of sablefish at the shallower site (Upper Slope),

which overall agrees with the manual identification of sablefish
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individuals, provides us with valuable information about the

upper habitat boundaries for this deep dwelling species.
4.1 Methodological remarks

While the synergy between the video camera infrastructure and

machine learning has the big advantage of harnessing vast amounts

of monitoring data (Boom et al., 2014; Malde et al., 2020; Beyan and

Browman, 2020), we shall nevertheless recall that the resulting

animal count estimates are only a proxy for total abundance due to

both intrinsic and contingent limitations. Intrinsic limitations deal

with the difficulty of any automated detection method to perform a

capture-recapture approach; i.e., to discern a specific individual

across consecutive video clips, or when a single individual exits and

reenters the framed scene (Francescangeli et al., 2022).

In any case, this problem is common with this type of

video-monitoring studies and data, that might be processed

with the MaxN method for manual counting (Martinez et al.,

2011; Linley et al., 2017). Here, the contingent limit was due to

the camera-based recording, which did not follow any

probability scheme and is therefore open to possible bias.

Other possible sources of selection bias include disturbance

effects of the newly positioned infrastructures and their

artificial lights (Rountree et al., 2020).

Although the abundance of specimens cannot be exactly

estimated, the proposed methodology provides consistent

temporal dynamics at the three sites that can be used for further

multivariate analysis involving physical and bio-chemical variables
FIGURE 3

Examples of the outcome of detection, classification, and tracking of sablefish individuals. Bounding boxes and the corresponding confidence
levels are the result of the YOLO detection and classification algorithm, where the classification confidence ranges from 0 to 1. Green
numbered points (barely visible in the images) are the result of the tracking algorithm, approximating the count of unique individuals appearing
on video. The images at the top show two video frames at 5 and 7 seconds elapsed from a video clip recorded in Barkley Axis on October 17th
2019 at 11:00 am UTC. The images at the bottom show two video frames at 31 seconds and 2 minutes elapsed from a video clip recorded in
Barkley Node on October 21st 2019 at 8:04 am UTC.
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aimed at explaining and comparing the different dynamics in the

three sites. Moreover, the raw counts provided by the methodology

can be further used in a variety of ways. For instance, for applying

MaxN or other estimators to the automatic counts obtained.

The classifier’s 5-fold cross-validation AP of 93% is mainly

driven by very high precision values. In other words, the

classifier shows good predictive performance when confronted

with new data characterized by changing environmental

conditions, species make-up, and animal movement dynamics.

On the contrary, the observed lower values of recall (52%), or the
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higher misclassification of ground-truth annotations, is

acceptable and compatible with a low degree of model over-

fitting (and high generalization capability), which is desirable in

our real-world conditions.

Nevertheless, the precision of the classifier did vary from site

to site and in particular we observed a drop in precision at the

Upper Slope site. This phenomenon required a higher confidence

threshold during tracking in order to eliminate the wrong false

positive detections possibly caused by the underrepresentation of

examples in the training set for the Upper Slope site.
FIGURE 4

Examples of sablefish detection and classification at Barkley Axis (NE Pacific), showing multiple pan positions (camera moving laterally) and
multiple tilt positions (camera moving vertically). The algorithm had to work under multiple illumination and seafloor configurations.
A

B

FIGURE 5

Automatically detected count time series at Node (A) and Axis (B) sites. Data from Upper Slope is not shown since there were only 4 instances
where sablefish was detected.
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4.2 Practical applications

The developed AI pipeline helps the transformation of a cabled

observatory’s camera into a biological sensor for the automated

delivery of numerical information about the observed ecosystem

(Aguzzi and Company, 2010; Aguzzi et al., 2011; Rountree et al.,

2020). Such “intelligent” observatories become appealing to

process the rising amount of imaging data for the production of

fishery-independent metrics supporting management of

economically-relevant stock resources (Cappo et al., 2004;

Bicknell et al., 2016; Langlois et al., 2018; Aguzzi et al., 2021).

Moreover, the use of the transfer learning approach combined with

the tracking algorithm makes the proposed pipeline usable in
Frontiers in Marine Science 10
different application contexts where footage needs to be analyzed

and complementing invasive methods such as trawling, and it is

particularly suited for megafauna monitoring in combination with

optoacoustic or molecular life-tracing technologies (Aguzzi et al.,

2019; Levin et al., 2019; Danovaro et al., 2020).

Our work presents a further step towards the integration of

automated tracking and classification of animals with AI routines

embedded in robotic platforms (Aguzzi et al., 2022). The

automation achieved here allows cameras to deliver time-series of

data for a species of commercial interest, in agreement with the

socioeconomic need for growing permanent robotic networks

worldwide (Danovaro et al., 2017; Aguzzi et al., 2019 Science).

Imaging approaches are currently the chief technological
A

B

FIGURE 6

Trend validation of automatically detected counts (A) at Node site compared to manually detected counts (B).
A

B

FIGURE 7

Trend validation of automatically detected counts (A) at Axis site compared to manually detected counts (B), for the period September-October 2019 only.
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application in ecological monitoring (Durden et al., 2016), but the

transformation of cameras into true sensors is facing difficulties due

to the lack of automated routines to extract relevant ecological

information on species and their abundances (Durden et al., 2016;

Bicknell et al., 2016; Aguzzi et al., 2019). Bandwidth is another

limiting factor for the transmission of images from remote

autonomous platforms to land stations, therefore the next steps

would include embedding the processing steps in the platforms in

order to reduce the output to numeric data which is easier to

transfer. Fishery-independent stock assessment programs (e.g., the

Norway lobster as an iconic fishery resource for the EU monitored

by Under-Water Tele-Vision surveys; Aguzzi et al., 2021) can

benefit from such advancements. Moreover, as the envisaged

development of industrial-level activities such as deep-sea mining

raises the need for effective and efficient assessment of their

environmental impact, data achieved with image-based

monitoring by networks of fixed and mobile platforms (Rountree

et al., 2020 OMBAR; Weaver et al., 2022) can provide fast and

flexible solutions. Finally, the same methodologies could be applied

to other strategic sectors of marine industry such as aquaculture

monitoring (e.g., Muñoz-Benavent et al., 2018), as well as offshore

hydrocarbon and energy-generating platforms (e.g., Gates et al.,

2019; McLean et al., 2020).

5. Conclusions

This pilot study showed that the methodology has overall

benefits in automatically processing big data, which is

more often generated in marine sciences applications.
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Automatically generated proxy abundances of the sablefish

subpopulation at Barkley Canyon, are interpretable and prove

to be reasonable, while validated with manually generated

counts. Therefore, we believe the full potential of the approach

can be next used to process yet larger amounts of archived

video data and produce a 10 years time series of proxy

abundance, which could support the comprehension of long-

term stock change, especially in light of rapidly changing

climatic and environmental conditions.
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available for reproduction at14.
A

B

FIGURE 8

Sensitivity analysis of automatic count calculations, by varying the parameter “m” (maximum number of consecutive empty frames to declare a
track lost) of the tracking algorithm. Increasing the value of “m” leads to more conservative results. Sites: Node (A) and Axis (B).
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