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Regular oxygen depletion is occurring every summer in the depression area of the
Bohai Sea. The community structure and potential functions of microbes in expanding
marine hypoxic area are of great importance due to their roles in biogeochemical
cycling. In this study, the diversity and distribution of bacteria based on 16S rRNA
gene in sediment along an inshore-offshore transect across the oxygen-depletion
area in the Bohai Sea was investigated in June, July and August of 2018 by
employing high-throughput sequencing. Results revealed that the bacteria community
was dominated by Proteobacteria (42.67%), Actinobacteria (14.13%), Chloroflexi
(13.02%), Acidobacteria (8.01%), and Bacteroidetes (6.30%). During oxygen depletion,
the bacteria community from inshore site A3 subjected to dramatic variation from June
to August, but the composition tended to be stable in sites from the depression area
along the transect. Distinct switch of bacteria from aerobic to anaerobic group was
observed when the DO concentration <4.2 mg/L, typically represented by dominance
of Anaerolineaceae in August sample. Further, KEGG prediction by PICRUSt confirmed
the variations by showing significant difference in functional pathways, especially the
nitrogen metabolisms, before and after DO depletion (p < 0.05). These variations could
be influenced by depth, NO2

− concentration and DO availability based on RDA analysis.
The details in diversity and composition of bacteria under continually observation provide
insights into both instant and long-term response of bacteria community to oxygen
depletion, and the distinct functional switch under this process expands our knowledge
on the metabolic character of bacteria in worldwide hypoxia areas.

Keywords: Bohai Sea, sediment, oxygen depletion, 16S rRNA, community switch, function prediction

INTRODUCTION

As a vital part of marine ecosystem, sediments are impacted by geological, hydrodynamical,
physicochemical and biological processes (Köster and Meyer-Reil, 2001) and acting as both
source and sink of adsorbed nutrients (Zhou et al., 2017), heavy metals (Dou et al., 2013), and
persistent hydrophobic organics (Lofrano et al., 2017). The microbes that living in the sediments
are responsible for various biogeochemical transformations and organic matter decomposition by
means of uptake and release of chemicals (Petro et al., 2017). Due to excessive anthropogenic
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nitrogen inputs resulted from application of synthetic
nitrogenous fertilizers and industry activity, nitrogen pollution
in coastal ecosystem has led to deleterious ecological changes
(Canfield et al., 2010; Cui et al., 2013). The negative effects
including eutrophication and harmful algal blooms (Anderson
et al., 2002; Bricker et al., 2008), expanding hypoxia and anoxic
zones (Diaz and Rosenberg, 2008; Paulmier and Ruiz-Pino,
2009; Breitburg et al., 2018) are increasing in high frequency.
Additionally, as a key environmental factor, dissolved oxygen
(DO) affects biochemical processes of marine organisms and
also acts as one of the vital drivers in the global carbon and
nitrogen cycling (Voss et al., 2013; Mahaffey et al., 2020). Bacteria
is an important contributor to the net loss of fixed nitrogen in
oxygen minimum zones (OMZ) of oceans (Lam et al., 2009;
Ward et al., 2009; Stramma et al., 2020). At the same time, some
autotrophic denitrifying bacteria and anaerobic ammonium
oxidizing (anammox) bacteria are also involved in the fixation
of carbon dioxide (CO2) by activating electron acceptors: the
former fixes CO2 while reducing sulfur, forming compounds
with nitrate; the latter fixes CO2 while oxidizing ammonium
plus nitrite to dinitrogen, both of which are under anaerobic
environment (Koeve and Kähler, 2010).

Certain bacterial community are sensitive enough to be
an indicator when inferring bacteria changes under hypoxic
environment (Wright et al., 2012), such as Proteobacteria,
Bacteroidetes, Actinobacteria, and Planctomycetes. Some
members belonging to the suboxic-related phyla can use electron
acceptors as an alternative to oxygen, by which mechanisms
driving changes in the bacterial community to response oxygen
depletion or totally lack of dissolved oxygen. Therefore, the
community composition of bacteria and unique biogeochemical
cycling processes in hypoxic area have been extensively studied in
recent years (Beman and Carolan, 2013; Li et al., 2014; Fuchsman
et al., 2019; Sen et al., 2021). Certain bacteria have been reported
to be adapted for low-oxygen environments, such as SAR11
bacteria, NC10 bacteria and Protochlorococcus (Füssel et al.,
2012; Padilla et al., 2016), which are related to ocean hypoxia and
nitrogen loss and generally distributed in the core hypoxic area
with high abundance (Thiele et al., 2019) or intensive activity
(Tsementzi et al., 2016). In addition, some investigations have
determined the metabolic basis for SAR11 and confirmed their
role as a model to study the carbon and nitrogen cycles in the
OMZs (Tsementzi et al., 2016; Bertagnolli and Stewart, 2018;
Ruiz-Perez et al., 2021). However, direct clues on the effects
of oxygen depletion on bacterial diversity and metabolism are
still limited. Therefore, to explore the response mechanism of
the functional bacterial groups in hypoxia environment is of
great importance.

It is a common method to achieve information about bacteria
diversity and abundance by profiling the 16S-rRNA gene.
Moreover, examining the functions of bacterial communities
is critical for estimating and understanding of how bacterial
communities respond to the changes of ecosystem (Ward et al.,
2017; Escales et al., 2019). Recent investigations on functional
potential prediction of bacteria by employing PICRUSt2 in
different environments, including soils (Toole et al., 2021),
seawater (Xue et al., 2021), marine sediment (Su et al., 2018) are in

help to decipher the detailed function variations successfully. In
addition, benefiting from the function prediction of bacteria from
the 16S rRNA gene sequences solely, diverse unknown microbes
could be identified phylogenetically (Tsaban et al., 2021). With
the unique contribution of each clade to Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways are developed, PICRUSt2
prediction is increasingly applied in microbial ecology studies.

Bohai Sea, with an area of 77,000 km2 and the average water
depth of 18 m, is semi-enclosed and located in northern China.
It is characterized by a long water exchange half-life as much
as 17–21 months (Hao et al., 2002; Luo et al., 2021). Due to
the long-term impact of industry and agriculture, heavy metal
pollution and excessive inorganic nitrogen has been accumulated
in the Bohai Sea (Duan and Li, 2017; Mu et al., 2017), which led
to severe eutrophication and the formation of oxygen-deficient
zone in the central Bohai Sea (Zhao et al., 2017). Microbes are
suffering from severe ecological pollution but also argued to
be key for remediation since the denitrification bacteria could
remove excessive nitrogen from marine environment. Based
on current study on microbial composition, Proteobacteria and
Bacteroidetes are widely distributed in Bohai Sea sediments
(Wang et al., 2013, 2014; Li et al., 2017), with temperature and
DO are the key impacting factors. Moreover, other environmental
vital drivers such as salinity (Lv et al., 2016) and pH (Zhang
et al., 2017) have been proved to determine bacterial communities
also. However, to the best of our knowledge, the detailed
information on bacteria diversity in the coastal Bohai Sea
sediments remain limited, and none of the above studies put
emphasize on the variation of bacterial communities under
hypoxia in sediment of Bohai Sea.

In this study, the diversity and distribution of bacteria along
one transect covering inshore and oxygen-depleted offshore area
of Bohai Sea were investigated from June to August, 2018.
By employing 16S rRNA gene high-throughput sequencing,
in combination with metagenomic analysis, bacteria diversity,
distribution, phylogeny and functions during oxygen depletion
was evaluated and predicted. Furthermore, key environmental
factors driving the bacterial communities were discussed. All
of which provide insights into the relationship between oxygen
depletion and relating microbial functions.

MATERIALS AND METHODS

Sample Collection
Samples were collected in four cruises carried out in June, July,
early and late August of 2018, respectively, in the Bohai Sea along
one inshore-offshore transect (A3–A7:39.38◦–39.69◦N, 119.63◦
–120.55◦E) (Figure 1), details of sampling site and date were
listed in Supplementary Table 1. The sediment samples were
collected in stainless steel 0.1 m2 GyO’Hara box corer, and the
top 1–2 cm surface sediment were gently scraped off before
subsampling were made after homogenization. All the samples
were stored in sterilized 60 ml centrifuge tubes and frozen in
liquid nitrogen immediately. It is worth to note that samples
were attached to dry ice during transportation and then stored
at –80◦C until DNA extraction.
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FIGURE 1 | Map showing the sampling sites in Bohai Sea along inshore—offshore transect. The blue dash line oval showing the reported hypoxic area.

Physic-Chemical Parameters
At each site, the salinity, dissolved oxygen (DO), pH, and
temperature of seawater was recorded in situ by employing
the SeaBird model SBE9 conductivity-temperature-depth
(CTD) recorder (Sea-Bird Electronics). The pore water from
sediment cores were obtained by centrifuging at 6,000 r/min
and poisoned by HgCl2 before analysis. Concentration of
ammonium, nitrite and nitrate were determined by using a AA3
nutrient Auto Analyzer.

DNA Extraction and High-Throughput
Sequencing
The DNA extraction and PCR amplification were following
the published procedures (Wang et al., 2019) with replacement
of primer sets targeting the V3, V4 region of 16S rRNA
gene. Phylogenetically diagnostic sequences were amplified using
the universal primers 338F (5′-ACTCCTACGGGAGGCAGCA-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) (Dai
et al., 2016). High-throughput sequencing was performed using
Illumina MiSeq system (Illumina MiSeq, United States).

Statistical Analysis
The OTUs (operational taxonomic units) were defined by 97%
identity for taxonomy assignment using Uclust method (Edgar,
2010). Rarefaction analysis was performed for all the OTUs
using Mothur (version v.1.30) and R with the aim to ensure
the amount of the sequences was as reasonable as possible
(Supplementary Figure 1). Mothur software was then used to
evaluate the species richness and alpha diversity index of the
samples (Shannon, Simpson, ACE and Chao 1). Beta diversity
at phylum level was calculated between the five sites and
four sampling time using non-metric multidimensional scaling

analysis (NMDS) based on binary-jaccard distance using the
R (3.6.3). Phylogenetic analysis of the representative sequences
from dominant OTU (top 18 OTUs of 16S rRNA gene) was
conducted with the software of MEGA7.0. Neighbor-joining tree
of the representative OTUs and the reference sequences from
NCBI GenBank was established with 1,000 replicates of bootstrap
value. Bacterial community dynamics at generic level with eight
environmental variables (Temperature, salinity, pH, DO, NO3

−,
NO2

−, NH4
+) were analyzed using canonical correspondence

analysis (CANOCO v.5.02) and mapped with R language vegan
package. Significance test was conducted using one-way ANOVA
by employing SPSS 17.0.

Functional Prediction of Bacteria by
PICRUSt
Functional potential of microbial communities in sediment
samples were predicted using PICRUSt (phylogenetic
investigation of communities by reconstruction of unobserved
states) (Langille et al., 2013). PICRUSt is a bioinformatics tool
that predicts the functional composition of a metagenome using
16S rRNA gene sequences and a reference genome database.
Sequences used for PICRUSt prediction were clustered into
OTUs (97% similarity) against the Greengenes 13.5 database
using QIIME2 software (version 2.9.1). Then the rarefied
OTU table was used for normalization of 16S rRNA gene
copy numbers. The normalized OTU table and the KEGG
database were compared to obtain different function files for
each sample. Finally, PICRUSt was used to obtain information
at three pathway levels. The KEGG orthology (KO) genes that
involved in nitrogen transformation in the KEGG database were
compared with the PICRUSt function prediction results, and the
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KO related to nitrogen metabolism with the gene copy numbers
in the respective sample was selected for analysis.

Nucleotide Sequences Accession
Numbers
The annotated nucleotide sequences of 16S rRNA gene were
deposited to NCBI under accession numbers SRR17253936-
SRR17253955.

RESULTS

Biogeochemical Characteristics of Bohai
Sea
In total, 20 sediment samples were collected from 5 sites
and 3 months along inshore-offshore transect covering
oxygen depletion area (Supplementary Table 1). The
hydrological parameters (except depth and NO3

−) showed
significant variation before and after DO depletion (p < 0.05,
Supplementary Table 1), but no significance was observed
among sites within each sampling time. As shown in
Supplementary Figure 2, both DO and salinity decreased
in August, especially in the reported oxygen depletion area (sites
A4–A7 in this study). At the same time, concentration of NO2

−

and NH4
+ were also accumulated in August. The variation of

NO3
− concentrations was not significant in sediment across

sampling time, and the highest value occurred in August A5 site,
which was also core of the oxygen-depletion zone.

Community Composition of Bacteria
During Oxygen Depletion
By applying high-throughput sequencing targeting V3, V4
region of bacterial 16S rRNA gene, 1,198,861 reads and 77,560
clean reads were achieved from 20 samples. Based on 97%
similarity, 8,032 OTUs were identified by reference from NCBI.
A rarefaction curve was plotted with 34,070 sequences for each
sample (Supplementary Figure 1). The community composition
revealed by 16S rRNA gene at phylum level and genus level
was shown in Figure 2. In general, Proteobacteria dominated
by 42.67% among all the detected communities, followed by
Actinobacteria (14.13%), Chloroflexi (13.02%), Acidobacteria
(8.01%), Bacteroidetes (6.30%), and Gemmatimonadetes
(2.95%). Phylum of Proteobacteria was mainly composed
of classes Gammaproteobacteria, Deltaproteobacteria, and
Alphaproteobacteria, among which, Gammaproteobacteria
obviously was the most dominant class (19.12%). The relative
proportion of every phylum within each sample was changing
between sampling sites and time. Proteobacteria was most
abundant in A3826 (56.75%), but overall, they tend to distribute
in offshore sites (Figure 2B). From A3 to A5, Chloroflexi
was less than Actinobacteria in June and July, but greater
than Actinobacteria when time turned to August. But this
variation was observed in the offshore samples A6 and A7.
With their location in the reported core hypoxia area, the
relative abundance of these phylum kept constant along the four
sampling times. Phylum Firmicutes was only abundant in A3 and

A4 sites before the oxygen began to deplete. For the dominant
phylum, strong variation was observed in inshore sites, and
their relative composition tend to be stable in the offshore and
core hypoxia sites.

Switch of bacteria was observed after oxygen depletion.
Members of class Acidimicrobiia under phylum Actinobacteria
were dominant in June and July, genus Woeseia (9.61%) of
Proteobacteria was dominant and evenly distributed at all sites
across all sampling time, and their dominance was replaced
by the anaerobic bacteria Anaerolineaceae that belonging to
Chloroflexi by 12.5% in August (Figure 2A). In addition,
specific genera including Amphiplicatus, Ellin6067, Dokdonella,
Defluviimonas from Proteobacteria, OLB12, and Rikenella from
Bacteroidetes, Lactobacillus from Firmicutes and Mucispirillum
from Deferribacteres, most of which were aero-tolerant or
anaerobic bacteria, were also detected as a result of oxygen
depletion with first occurrence in August samples.

The spatial distribution of bacteria was evaluated by non-
metric multidimensional scaling (NMDS) analysis based on the
binary-jaccard method (Figure 3). Samples from the same sites
were clustered together, while samples from different sampling
time were separately distributed. Among which, samples from
A6 and A7 overlapped with each other, which suggested the high
similarity of community composition of bacteria in A6 and A7.

Spatiotemporal Variations of Alpha
Diversity
ACE and Chao 1 indices showed that the greatest diversity of
16S rRNA gene was observed at the offshore site A6 in June
and July, while the lowest value occurred at the nearest inshore
site A3 in Late-August. The diversity indices decreased slightly
in the reported core oxygen depletion sites when oxygen began
depleted, but decreased sharply in site A3, which subjected to
low DO only in this study. The indices of Shannon and Simpson
showed consistent trend with ACE and Chao1. Spatially, the
diversity of the 16S rRNA gene was higher at offshore sites
than the inshore; temporally, higher diversity was appeared
in June, and decreased in August. As shown in Table 1,
the differences observed was not significant between sites or
sampling times (p > 0.05).

Functional Prediction of Bacteria by
PICRUSt
Community prediction using PICRUSt was performed to
determine the function of the observed bacteria. Based on the
KEGG database, 6 categories of biological metabolic pathways
were obtained, including metabolism, genetic information
processing, environmental information processing, cellular
processes, human diseases and organismal systems. Metabolism,
genetic information processing and environmental information
processing appeared to be the primary components, accounting
for 51.88, 20.22, and 11.12% of all components, respectively. An
analysis on the secondary functional levels of predicted genes
identified 39 sub-functions, with relative abundance greater than
1% are shown in Figure 4A. A large proportion of the microbial
functions were found in carbohydrate metabolism (9.76%),
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FIGURE 2 | The community composition of dominant bacteria at phylum and genus level from each sampling time (A) and site (B).

amino acid metabolism (9.63%), membrane transport (9.40%),
energy metabolism (9.11%), replication and repair (8.78%),
translation (6.09%), metabolism of cofactors and vitamins
(5.37%), and nucleotide metabolism (4.23%). The results showed
that the relative abundance of bacteria in the carbohydrate
metabolism and membrane transport was higher in the nearshore
station (DO sufficient area). The abundance of bacteria in
relatively offshore sites (DO depletion area) was high in other
functional pathways that account for a relatively large proportion.

To gain more insight into nitrogen metabolism, the functional
genes that involved in nitrogen metabolism were analyzed
further and 31 KOs relating to nitrogen metabolism with
the corresponding gene copy numbers in the sample were

selected (Figure 4B). Results showed that a majority of
the genes were significantly differentiated among the sites
(p < 0.05) (Supplementary Table 2). KO predictions K00366
(nirA), K00367 (narB), and K02575 (narK), which were
associated with denitrification pathway, were highly abundant
in oxygen-depleted sites for each month. Surprisingly, other
denitrification related genes were abundant in nearshore sites,
including K00371 (narH), K00370 (narG), K00374 (narI),
K00363 (nirD), K00362 (nirB), where the content of DO
was not depleted, but the dominance was weak. Additionally,
during the transition period between non-hypoxia and hypoxia
(sample from July), the expression of functional genes related
to denitrification decreased significantly in sites A3 and
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FIGURE 3 | Non-metric multidimensional scaling (NMDS) plot depicting phylum-level bacteria composition of each sample from different sampling time and site.
(Axis define 2D space that allows the best spatial representation of sample distance, based on binary-jaccard distance with stress = 0.154. The points in different
color represent sampling sites, different symbol represent sampling time, and the distance between points represents the degree of difference).

A4 (p < 0.05) (Supplementary Table 2), which were only
slightly recovered in August. The KOs responsible for nitrogen
fixation were found to be abundant in offshore sites and

TABLE 1 | Alpha diversity index of 16S rRNA.

Sample ID Shannon Simpson ACE Chao1

A3611 0.98 7.46 554.39 557.22

A4611 0.99 7.67 554.12 574.50

A5611 0.98 7.14 590.18 599.21

A6611 0.98 7.17 584.99 612.79

A7611 0.99 7.30 591.21 602.00

A3719 0.99 7.70 553.64 563.46

A4719 0.99 7.82 564.73 572.25

A5719 0.98 7.21 585.98 601.12

A6719 0.98 7.15 604.10 606.90

A7719 0.99 7.37 586.25 586.00

A3808 0.98 7.29 586.75 589.68

A4808 0.98 7.32 565.93 584.00

A5808 0.98 7.15 563.31 590.50

A6808 0.98 6.95 570.63 593.00

A7808 0.99 7.30 575.53 587.52

A3826 0.97 6.34 448.81 468.00

A4826 0.98 7.42 576.34 597.75

A5826 0.97 6.98 581.70 603.12

A6826 0.98 7.25 553.67 584.89

A7826 0.99 7.32 559.15 555.89

p p p p

Sampling Time 0.10 0.09 0.16 0.28

Site 0.11 0.07 0.46 0.42

August samples (DO-depleted areas) for the following genes:
K01915 (glnA), K04751 (glnB), and K04752 (glnK), while
differences in expression of functional genes were not significant
in these samples.

Environmental Drivers on Community
Compositions of Bacteria
RDA (redundancy analysis) was performed to find out the
relationship between the environmental parameters and
bacterial structure (Figure 5). Identified phylum along with
8 environmental variables (Depth, Temperature, salinity, pH,
NO3

−, NO2
−, NH4

+, DO) were analyzed using CANOCO.
The length of an environmental parameter arrow in the
sorting diagram indicated the strength of the relationship of
that variable with community composition. For the first two
RDA dimensions, 53.57 and 72.50% of the environmental
variables were explained for the total variance, and the results
showing that depth (p < 0.01), DO and NO2

− (p < 0.05) were
the key impact factors shaping the community composition
encoded by 16S rRNA gene. NO2

− and temperature were
positively correlated with the samples in site A7, indicating
the microbial communities from this site were significantly
influenced by these two parameters. Depth and NO3

− were
positively correlated with samples from A5 and A6, and DO
mainly influenced samples from A3 and A4. Further, a triplot
revealed that Chloroflexi, Acidobacteria were positively
correlated with NO3

− and depth. The most abundant
phylum, Proteobacteria was highly influenced by NO2

−

and temperature. In general, the concentration of nitrogen
was key to the bacterial communities in the studied area.
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FIGURE 4 | Heatmap profiles showing the functional categories (KEGG level 2) of bacteria communities predicted by PICRUSt analysis (A) and nitrogen
metabolism-related KO based on predicted gene copy (B) in each sampling time and site. (Rows represent the 22 KEGG orthology (KO) functions, columns
represent the twenty samples, and the color intensity in the heatmap represents the relative abundance (%) of the functional genes. Pathways are displayed on the y
axis, the number (1–5) in front of pathway names correspond to the number (1–5) of Pathways Level 1 shown on the right).

These results suggested that the distribution of bacteria was
affected by multiple environmental factors rather than a
single parameter.

DISCUSSION

Switch of Bacteria Community in
Response to Oxygen Depletion
The ocean OMZs were found extending globally, typical
OMZ had been reported from the Indian Ocean (Arabian
Sea, the Bay of Bengal), the Pacific Ocean and the Atlantic
(Namibian upwelling) (Stramma et al., 2008; Wright et al.,
2012; Schmidtko et al., 2017). Under the increasing pressure

of anthropogenic activity and climate change, oxygen depletion
zone began to occur in central Bohai Sea (Zhai et al., 2012, 2020;
Wei et al., 2019), with a regular occurrence every August ranging
from 1.07 to 3.60 mg/L (bottom layer water) in the past
10 years. In our monthly investigation from June to August
covering marginal and central Bohai Sea in 2018, although
the disturbance by typhoon Yagi (landed on August 11 and
continued until August 16, 2018) braked the layers and vertical
mixing increased the DO content of the reported oxygen-
depleted area, the gradually depletion of DO was also observed
from July to August, and the lowest value was 4.2 mg/L in the
reported hypoxic sites.

With key roles in metabolism played by marine microbes,
dissolved oxygen had been confirmed to be an important
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FIGURE 5 | Redundancy analysis (RDA) shows the relationship between environmental variables and the bacteria communities.

impacting factor and further influence the microbial
biogeochemical cycling in marine sediment (Durbin and
Teske, 2012; Spietz et al., 2015; Lipsewers et al., 2017). The
instant variations of bacteria composition in Bohai Sea sediment
during the depletion of oxygen were revealed by our monthly
investigations. Distinct switch of dominant groups, such as the
continuous change of dominant groups from Acidimicrobiia
in June, Woeseiaceae in July and Anaerolineae in August
(Figure 2A), revealed the specific response of bacteria to
oxygen depletion. Anaerolineae could thrive in anaerobic,
organic carbon-enriched environments, and in turn, eutrophic
and anoxic conditions in the marine sediment favored the
proliferation of this group of bacteria (Moncada et al., 2019).
Anaerolineae had been reported in the middle and deeper
layers of the hypoxic coral reef sand (Red Sea), further
indicating their preference to the oxygen depletion environment
(Schöttner et al., 2011; Andreote et al., 2012), which was also
in accordance with our study by showing dominance only in
oxygen-depleted August samples. Switch of bacteria under
depletion of oxygen was also reflected by the occurrence of
the anaerobic species, including Rikenella (Abe et al., 2012),
Lactobacillus (Marcial-Coba et al., 2018), and Mucispirillum
(Herp et al., 2019). Although they were rare species, their instant
response to oxygen depletion in our study were evidences for
their potential ecological role in Bohai Sea. Furthermore, switch
of bacteria also included some strictly aerobic species, such
as Amphiplicatus, which was also a thermophilic bacterium
(Zhen-Li et al., 2014). It could be suspected that the high
temperature rather than DO facilitated their occurrence in
August in inshore sites. Additionally, combined with the results
from functional prediction, genes involved in denitrification
were abundant in DO sufficient sites. Ellin6067 had been

reported as a group of significant ammonia oxidizing bacteria
(Podlesnaya et al., 2020) and could be inhibited by activity when
DO content was low (Huang et al., 2018). The only occurrence
of both Amphiplicatus and Ellin6067 in August in our study
indicated that oxygen might not be a limiting factor but could
be an indicator for their distribution in marine environment.
Moreover, the distribution and diversity of bacteria was also
influenced as a function of sediment annum or impacted by
seasonality (Laverock et al., 2014; Ebah et al., 2016; Huang
et al., 2018). Although in general the abundance and diversity
of bacteria in June and July were higher than in August, the
difference was not significant (p > 0.05), possibly because
the short interval for our sampling time limited the transport
and sedimentation of sediment since it was an inter-annual
or seasonal event.

Diversity and Distribution of Bacteria in
Bohai Sea Sediment
Bacteria in marine sediments had been widely studied,
Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria
and Bacteroidetes were revealed to be the main component in
marine environment (Kerfahi et al., 2014; Walsh et al., 2016;
Hoshino et al., 2020; Wang et al., 2020; Peng et al., 2021). But
generally, and also obviously, the dominant groups varied due
to the influence of geographical locations and environmental
factors (Antunes et al., 2020). Compared to changes in
relative abundance on a sampling time scale, Proteobacteria,
Actinobacteria and Chloroflexi were evenly distributed among
the studied sites, however, Acidobacteria and Bacteroidetes
varied along the transect (Figure 2B). Acidobacteria, that were
dominated in nearshore sites (A3 and A4), had been revealed
to be involved in nitrate reduction process (Kielak et al., 2016).
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This may also be the reason for the high abundance of genes
that mediate the denitrification process in nearshore sites
(Figure 4B). Bacteroidetes had been reported to be preponderant
in nutrient-rich waters (Gomes et al., 2019), which also in
support of our results that the abundance of Bacteroidetes was
higher in the nutrient-rich sites regardless of the sampling
time. Most of the sequences assigned to phylum Actinobacteria
belonged to class Acidimicrobiia, and two most representative
OTUs were classified as uncultured Actinobacterium (previously
classified as OM1 clade), an eosinophilic family (Goodfellow
et al., 2012; Chen et al., 2016). This group of bacteria was usually
abundant in high salinity and pH sediments, and related to the
capability of metabolizing hydrocarbon compounds (Queiroz
et al., 2020). Their great abundance in the studied sites might
contribute to the degradation of severe oil pollution in the coast
of Bohai Sea (Liu et al., 2016; Yu et al., 2018). Woeseia, which
belonging to Proteobacteria and most abundant in the inshore
sediments of the Bohai Sea, had the capability for both aerobic
and anaerobic growth (Du et al., 2016). For oxygen-independent

respiration, Woeseia may take part in a truncated denitrification
pathway which including periplasmic dissimilatory nitrite and
the membrane-bound nitric oxide reductase by employing
NirS and NorB gene, respectively (Mußmann et al., 2017). This
ubiquitous and abundant group might substantially contribute
to nitrous oxide emissions from coastal sediments due to its
truncated denitrification which revealed by our nitrogen gene
function prediction results that the inshore sediments had
more functional genes which playing role in denitrification. In
addition, it proved that the role of coastal sediments in nitrogen
loss made more contribution than assumed, and may account
for a large part of the global oceanic powerful emission of
greenhouse gas nitrous oxide.

Aiming to figure out the origin or the phylogenetic distance of
bacteria in Bohai Sea sediment, with special focus on the oxygen
depletion sites, the phylogenetic analysis was further performed
with dominant sequences (top 18 OTUs) and the reference
sequences from GenBank by constructing Neighbor-joining tree.
Results revealed that bacteria from Bohai Sea oxygen depletion

FIGURE 6 | Neighbor-joining phylogenetic tree of the dominant OTUs (Top 18) in the sediment samples of Bohai Sea (Bootstrap values were 1,000 replicates).

Frontiers in Marine Science | www.frontiersin.org 9 February 2022 | Volume 9 | Article 833513

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-833513 February 5, 2022 Time: 14:49 # 10

Guo et al. Bacteria in Oxygen-Depleted Sediment

sites had a diverse phylogenetic relationship with bacteria in
typical OMZs, such as the Yangtze River estuary, the Gulf of
Mexico, the Arabian Sea, the west coast of the Indian Ocean, the
North Indian Ocean, and the Bay of Bengal (Figure 6). Moreover,
novel hypoxic-adapted species in the sediments of Bohai Sea were
also predicted, such as OTU64, OTU82, which were grouped
with reported OMZ species but formed a unique clade in
the phylogenetic tree. Anaerolineae and SAR11, represented by
OTU45, OTU62, respectively, clustered together with most of the
sequences from OMZs. As mentioned above, Anaerolineae was
strictly anaerobic, which was a typical and specific bacterium in
the Bohai Sea oxygen depletion area. While for SAR11 members,
which were group of aerobic Alphaproteobacteria, had the ability
to assimilate nitrogen-rich organic compounds by allocating
surrounding resources when experiences nitrogen stress (Smith
et al., 2013). Therefore, this group of bacteria could function as
a specific object for research on nitrogen cycle in hypoxic zone.
Moreover, due to the close geographic distance, a high degree
of kinship of Bohai Sea sediment with the sediment sequences
in Jiaozhou Bay, the Yellow Sea and the South China Sea were
revealed from the phylogenetic tree.

Environmental Factors Shaping the
Community Composition
As early as decades ago, a number of studies supported the
view that different depth would be associated with changes
in sediment bacterial community composition (Urakawa et al.,
2000; Haglund et al., 2003). At present, Huang et al. (2018)
mentioned that nitrification bacteria were highly abundant in
shallow sediments, which may explain our result that high
abundant functional gene related to nitrification were observed in
offshore sites where sampling depth was shallower. Additionally,
NO2

− played a key role in shaping bacterial community. As
an important substrate in the nitrogen cycle, nitrite participates
in the nxr-mediated NO2

− to NO3
− nitrification process and

denitrification pathway mediated by nir which reducing NO2
−

to NO (Zumft, 1997). Nitrite contents and sampling depth may
make influence on nitrogen transforming bacteria, especially the
nitrifier and denitrifier communities. Furthermore, a recent study
found that the nitrogen transforming microbial communities
in the hypoxia area and non-hypoxic area of the Yangtze
River Estuary are different (Wu et al., 2019), which was highly
consistent with our study, that denitrifiers prefer non-hypoxia
area and genes involved in nitrification dominant in oxygen
depletion area. Dissolved oxygen content substantially influenced
bacterial structure and potential function with the discovery and
expansion of the global ocean hypoxic zone.

CONCLUSION

During the occurrence of oxygen depletion from June to
August, distinct community switch of bacteria was observed
in the sediment of Bohai Sea. Members of class Acidimicrobiia
and genus Woeseia affiliating with Gammaproteobacteria
dominated before oxygen depletion, while Anaerolineae
affiliating with Chloroflexi was absolutely dominant in August

when DO < 4.2 mg/L. Occurrence of anaerobic rare species
after oxygen depletion indicated their potential roles in Bohai
Sea sediment. Spatially, Proteobacteria distributed evenly from
inshore to offshore regardless of sampling time, however,
relative abundance of Actinobacteria and Bacteroidetes varied
among inshore sites but tended to be stable in offshore sites.
Firmicutes was only abundant in nearshore and oxygen sufficient
samples. KEGG pathways prediction by bacterial community
showed significant variation before and after DO depletion
(p < 0.05). the Predicted functional genes involved in nitrogen
metabolism revealed abundant denitrification pathways in both
oxygen rich (inshore) and depleted samples (offshore), while
nitrogen fixation pathway was only abundant in oxygen-depleted
sites. Local environmental factors including depth, NO2

−

together with DO play important roles in shaping bacterial
community (p < 0.05). Variations in diversity and distribution
of bacteria communities over oxygen depletion in the sediment
of Bohai Sea provided detailed insights into bacterial response to
world expending OMZs.
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