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The effect of hydrolyzed fish protein powder (HFP) on the growth, intestinal
development, gene mRNA expression, and enzyme activity in the intestine and liver
of juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ and Epinephelus lanceolatus
♂) was assessed after an 8-week feeding trial. Seven isonitrogenous (50%) and
isolipidic (9%) diets were fed to hybrid grouper with 0% (CT), 1% (H1), 1.5% (H2),
2% (H3), 2.5% (H4), 3% (H5), and 4% (H6) HFP. No significant difference (p > 0.05)
in weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR),
and survival rate (SR) was observed in all the groups. The crude protein content in
the H6 group was significantly higher than in the other groups (p < 0.05). Intestinal
lipase and trypsin activity were significantly higher in H3 and H5 groups (p < 0.05).
In the serum, superoxide dismutase (SOD) activity was significantly higher in H5 and
H6 groups, while malondialdehyde (MDA) activity was lower (p < 0.05) compared to
other treatments. Insulin-like growth factor (IGF-I) and target of rapamycin (TOR) mRNA
expression levels in the intestine and muscle were significantly higher in the H2 group
and H1 group (p < 0.05), respectively. The most abundant intestinal bacteria found
at the genus level are Acinetobacter, Vibrio, and Flavobacteriaceae. The villus was
significantly longer in hybrid grouper fed with different levels of HFP compared to the
control, and fish in the H2 group had thicker intestinal muscle compared to the other
groups (p < 0.05). In conclusion, the addition of HFP to the low fishmeal (FM) diets
of juvenile grouper improved the intestinal development and increased the levels of
intestinal digestive enzymes.
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INTRODUCTION

Aquaculture is anticipated to fulfill the global request for aquatic
animals due to the reduction in capture fisheries since the
1990s (FAO, 2020). In aquaculture practice, feed accounts for
over 50% of production cost, which is mainly composed of
protein (Tacon and Metian, 2008). About 22 million tonnes
of the world’s fish production in 2018 was used for non-food
purposes, of which 18 million tonnes were used to make fish
oil and fishmeal (FM) (FAO, 2020). Traditionally, the most
preferred dietary source of protein, which is the most expensive
and important nutrient influencing fish growth and feed cost,
especially in carnivorous fish, is obtained from FM due to its
high digestibility, well-balanced amino acid, and rich source of
essential n-3 fatty acids (Tacon and Metian, 2008; Olsen and
Hasan, 2012). Environmental and ecological distress on the use
of marine pelagic fish, limited supply, and increasing demand
for FM has resulted in the intensive study of identifying viable
alternative protein sources in aquafeed (FAO, 2020).

Processing fish produces a substantial amount of waste, which
includes skin/scales, bones, swim bladders, roes, intestines, blood,
and liver, representing about 57% of total weight. Large portions
of these by-products, which contain a large amount of bioactive-
rich materials, are wasted, discarded, or underutilized (Meeker,
2009; Kumar et al., 2018). Karayannakidis and Zotos (2016)
stated that recycling these by-products into profitable goods
for agriculture can be a waste management scheme. Quality
protein in animal by-products can be hydrolyzed to obtain small
molecular peptides which can act as a flavoring and good source
of amino acids (Choi et al., 2012; Kumar et al., 2012).

Groupers are among the most common fish and extremely
merchandized seafood in the Asia-Pacific region (FAO, 2020).
Due to its rapid growth rate, hardiness to environmental
conditions, high disease resistance, and high nutritional value, it
is an ideal species for intensive aquaculture (Ch’ng and Senoo,
2008; Jiang et al., 2015; Arrokhman et al., 2017; Bunlipatanon
and U-taynapun, 2017). With regard to marine fish culture
output in China, groupers are ranked third (Yang et al., 2021).
Hybrid grouper with a higher disease resistance, faster growth
rate, and better feed conversion ratio (FCR) was produced at
the University of Malaysia Sabah from brown-marbled grouper
(Epinephelus fuscoguttatus ♀) and giant grouper (Epinephelus
lanceolatus ♂) (Rahimnejad et al., 2015; Firdaus et al., 2016). The
hybrid produced grows to 1 kg in a period of 6–7 months, while
the parents require 8 months to 1 year to attain a similar weight
(Arrokhman et al., 2017).

Nutrient utilization and growth performance are the
conditions mostly used to assess substitute protein sources in
aquafeeds, whereas intestinal health and immunity are often
overlooked (Ye et al., 2019). Using hydrolyzed fish protein
powder (HFP) to replace FM has been studied by Nguyen et al.
(2012); Egerton et al. (2020), and Rimoldi et al. (2020) in gilthead
sea bream (Sparus aurata), Pacific white shrimp (Litopenaeus
vannamei), and Atlantic salmon (Salmo salar), respectively,
but they focused mainly on growth and intestinal microbiota.
This study aims to evaluate the effect of HFP on the growth,
survival, whole-body composition, serum and liver physiological

and biochemical indexes, intestinal morphology, digestive
enzymes, gene mRNA expression, and intestinal microbiota in
juvenile hybrid grouper.

MATERIALS AND METHODS

Experimental Diets
The HFP with 90% crude protein and 2% crude lipid (obtained
from Maoming Xipu Biotechnology Co., Ltd.) was used as a
substitute for FM in this experiment (Table 1). Seven fish diets
containing crude protein (50%) and crude lipid (9%) were
formulated, as shown in Table 2. The protein level of the
formulated feed was balanced using cottonseed protein, which is
in abundance and a good ingredient for fish feed, as observed
by Yin et al. (2018). The group CT was fed with a diet that
had no HFP replacing FM. Due to the high small peptides level,
the experimental groups, namely, H1, H2, H3, H4, H5, and H6
were fed with diets containing 1, 1.5, 2, 2.5, 3, and 4% of HFP
replacing the corresponding amount of FM, respectively. The raw
materials were crushed after visual inspection and sieved using
the 60 mm mesh screen. The raw ingredients were then weighed
and mixed thoroughly using the V-mixer-type machine (JS-14S,
Zhejiang Zhengtai Electrical Appliance Co., Ltd., China). Using a
Hobart-type mixer (Food Mixer B60, Guangdong Henglian Food
Machinery Co., Ltd., China), the ingredients were mixed with
water and choline chloride to form a moist dough. The feed was
pelletized into 2 and 2.5 mm granules, air-dried for 48 h, and the

TABLE 1 | Proximate composition of fishmeal (FM) and hydrolyzed fish
protein powder (HFP).

Ingredients FM/% HFP/%

Nutrient Moisture 8.15 4.04

Crude protein 64.32 90.02

Crude lipid 7.57 2.00

Amino acid Aspartate 5.76 7.14

Threonine 2.79 3.14

Serine 2.55 2.82

Glutamine 8.53 12.14

Glycine 3.89 11.36

Alanine 4.21 6.71

Cystine 0.63 0.04

Valine 3.20 3.37

Methionine 1.83 1.55

Isoleucine 2.68 2.62

Leucine 4.73 4.57

Tyrosine 2.23 1.55

Phenylalanine 2.76 2.44

Lysine 4.97 5.04

Histidine 1.98 1.58

Arginine 3.70 4.92

Proline 2.49 7.00

*Tryptophan 0.00 0.44

*Tryptophan in FM was not determined (manufacturer’s data).

Frontiers in Marine Science | www.frontiersin.org 2 March 2022 | Volume 9 | Article 830398

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-830398 March 8, 2022 Time: 17:24 # 3

Hlordzi et al. Hydrolyzed Fish Protein Powder

TABLE 2 | Formulation and nutrient composition of the experimental diets (% dry matter).

Diets and groups CT H1 H2 H3 H4 H5 H6

Fishmeal replacement ratio (%) 0 5 10 15 20 25 35

Poultry by-product meal 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Fishmealb 40.00 38.00 36.00 34.00 32.00 30.00 26.00

Hydrolyzed fish protein powdera 0.00 1.00 1.50 2.00 2.50 3.00 4.00

Cottonseed proteinb 4.10 4.90 6.27 7.66 9.05 10.45 13.25

Soybean mealb 13.50 13.50 13.50 13.50 13.50 13.50 13.50

Wheat glutenb 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Wheat flourb 18.20 18.20 18.20 18.20 18.20 18.20 18.20

Soybean oil 1.80 1.80 1.80 1.80 1.80 1.80 1.80

Fish oil 1.35 1.55 1.68 1.79 1.90 2.00 2.20

Soy lecithin 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Choline Chloride 0.40 0.40 0.40 0.40 0.40 0.40 0.40

Calcium monophosphate 1.50 1.50 1.50 1.50 1.50 1.50 1.50

Vitamin C 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Premix (Vitamin + Mineral)c 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Attractant 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Total (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Proximate compositiond

Crude protein 49.56 49.97 50.19 50.03 50.06 50.63 50.39

Crude lipid 9.11 8.47 9.36 9.80 8.84 8.61 8.88

Moisture 8.36 8.05 8.10 8.34 9.13 8.65 8.89

Ash 8.16 8.72 5.26 5.69 6.15 5.88 6.24

aHydrolyzed fish protein powder was provided by Maoming Xipu Biotechnology Co., Ltd. b Ingredients purchased from Zhanjiang HaiBao Feed Factory, Zhanjiang,
Guangdong, China. cPremix (vitamin + mineral) supplied the following per kilogram of the diet: vitamin A, 500,000 IU; vitamin D3, 100,000 IU; vitamin E, 4,000 mg;
vitamin K3, 1,000 mg; vitamin B1, 500 mg; vitamin B2, 1,000 mg; vitamin B6, 1,000 mg; vitamin B12, 2; niacin, 4,000 mg; calcium pantothenate, 2,000 mg; folic acid,
100; biotin, 10; vitamin C, 15,000 mg; iron, 10,000 mg; copper, 300 mg; zinc, 5,000 mg; manganese, 1,200 mg; iodine, 80 mg; selenium, 30 mg; cobalt 20 mg (obtained
from Zhanjiang Yuehai Feed Co., Ltd., Guangdong, China). dProximate composition was measured values.

dried feed was stored in sealed plastic bags at −20◦C until the
experiment started.

Experimental Fish and Feeding Trial
Healthy pearl gentian groupers purchased from Hongyun
seedling farm were used for the study. They were kept in aerated
cement tanks for an acclimatization period of 3 weeks and hand-
fed commercial diets (Dongwan No. 5 feed, China). This study
was conducted using indoor fiberglass tanks (0.3 m3) at the
Marine Biological Research Base of Guangdong Ocean University
with a natural photoperiod (12 h light/12 h dark) regime. A total
of 630 hybrid groupers with no signs of disease were starved
for 24 h, batch-weighed to determine an initial average weight
(31.56 ± 0.04 g), and randomly distributed at a stocking density
of 30 fish per tank. Each treatment was assigned to three replicate
tanks. The experimental feed was fed manually twice a day (08:00
and 16:00) until a visually apparent satisfied state was reached,
thus as much as they consume during feeding for 56 days. The
amount of feed consumed for the period was recorded to check
feed intake. Using single-air stones, aeration was provided, and
the water temperature was 27.2 ± 1.32◦C. Culture water was
maintained by changing about 70% in the tanks daily. Daily,
mortalities were checked, weighed, and recorded.

Sample Collection
Before the feeding trial, about 20 fish were randomly sampled and
stored at −20◦C for the initial chemical proximate composition
analysis. To obtain the optimum levels of body metabolism, fish

were starved for 24 h before the cessation of the experiment. The
final number of fish and body weight were checked and recorded.
Survival rate (SR), weight gain rate (WGR), FCR, and specific
growth rate (SGR) were calculated based on the recordings. The
weight and length of five fish per replicate were checked after
which their viscera were harvested and weighed to establish their
viscerosomatic index (VSI) and condition factor (CF).

Weight gain (%)

= 100 ×

average final individual weight
−average initial individual weight

average initial individual weight

Specific growth rate (%/day)

= 100 ×
logeaverage final weight−logeaverage initial weight

days of feeding

Feed conversion ratio =
Feed consumed

weight gain

Survival rate (%) = 100 ×
Final fish number
Initial fish number
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Protein production value (PPV) (%)

= 100 ×

(
Final weight × Crude protein)

−(Initial weight × Crude protein
)

Feed given× Crude protein

CF (%) = 100 ×
( final weight
(fish length)3

)
VSI (%) = 100 ×

viscera weight
body weight

Nutrient Composition
Nutrient composition (e.g., moisture, crude protein, crude lipid,
and ash) in feed and fish was determined using the standard
methodology of the Association of Official Analytical Chemists
(Baur and Ensminger, 1977).

Intestinal Enzyme Evaluation
Intestinal samples of 3 fish per replicate were weighed and
homogenized in 0.9% aseptic saline as described by the
specific operation method provided by the commercial kits
obtained from the Nanjing Jiancheng Institute of Biological
Engineering, China. Using the specific operation method
and calculation method provided by the kit, amylase and
lipase in the intestine were determined, and absorbance
was measured using the microplate reader. Chymotrypsin,
trypsin, and total protease activity in the intestine were
checked by Shanghai Enzyme-Linked Biotechnology
Co., Ltd., China.

Determination of Enzyme Activities
Blood was pooled from 3 fish per replicate using a 1-ml
sterile syringe. Blood obtained was transferred into 1.5 ml
Eppendorf tubes and stored at 4◦C overnight. The blood
samples were centrifuged at 4◦C at 4,000 rpm for 15 min.
The supernatant (serum) was collected and stored at −80◦C
to check the levels of total protein (TP), albumin (ALB),
superoxide dismutase (SOD), malondialdehyde (MDA), and
glutathione peroxidase (GHS-PX) using the test kits (Nanjing
Jiancheng Institute of Biological Engineering, China). The liver
was harvested from the fish and stored at −80◦C to check
SOD and MDA activities using the test kits (Nanjing Jiancheng
Institute of Biological Engineering, China). The absorbance
was read with a microplate reader (Thermo Fisher Scientific,
United States). The specific operation methods and calculation
formulas were used referring to the test kit instructions. Using
the isotope method, growth hormone (GH) and insulin (INS)
in the serum were checked by Beijing North Biotechnology
Research Co., Ltd.

RNA Extraction and Real-Time Quantitative Reverse
Transcriptase PCR
The samples of the muscle, liver, and intestine were taken from
3 fish per replicate, and total RNA was extracted using the
specific operation method of TRIzol (Invitrogen, United States)
reagent. Using 1% agarose gel electrophoresis, the integrity
of the extracted RNA was verified, and a spectrophotometer

[NanoDrop-2000 spectrophotometer (Thermo Fisher Scientific,
United States)] was used to measure the concentration and
purity of RNA. Reverse transcription was performed using
the PrimeScriptTM kit (TaKaRa, China) and its method. The
β-actin gene was used as the housekeeping gene, and real-
time fluorescent quantitative PCR assays were conducted to
detect gene expression levels for genes shown in Table 3 using
a quantitative thermal cycler (Bio-Rad CFX96; Bio-Rad Labs,
Hercules, CA, United States). Relative expression levels of genes
were calculated by 2−MMCT.

Intestinal Microbiota Analysis
The intestinal samples were sent to Beijing Biomarker
Technologies Co., Ltd., for DNA extraction and PCR
amplification using Illumina MiSep sequencing analysis.
Using NucleoSpin Soil kit, the total genome DNA in the stool
of the intestinal sample was extracted. Universal primers
(338F: 5′-ACTCCTACGGGAGGCAGCA-3′ and 806R: 5′-
GGACTACHVGGGTW TCTAAT-3′) were used to amplify
the V3-V4 region of the 16S rRNA gene for Illumina deep
sequencing. The microbiota alpha diversity, community
composition, and community abundance at phylum and genus
levels were performed by using the mothur (Schloss et al., 2009),
a free online platform.

Intestinal Morphology
A grouper per replicate was randomly selected, and its mid
intestine was harvested and stored in formaldehyde solution
for hematoxylin and eosin (H&E) staining using the sectioning
method. Results obtained were used for histological examination
of the villus length (VL), villus width (VW), and muscle thickness
(MT) using ImageJ software.

Statistical Analysis
All original data were subjected to statistical verification using
one-way analysis of variance (ANOVA) after consistency and

TABLE 3 | Primer sequence used for real-time quantitative PCR analysis.

Gene Primer sequence Source

β-Actin F:GGCTACTCCTTCACCACCACAG
R: TCTGGGCAACGGAACCTCT

Liu et al., 2020

TOR F: CCACTCTTTCTTTGCGGCTT
R: GGGTTCTCGTCCCTCACTTG

Ren et al., 2020

IGF-1 F:TATTTCAGTAAACCAACAGGCTATG
R:TGAATGACTATGTCCAGGTAAAGG

Wu et al., 2017

IFN-γ F: TCCGTCAGGATTGAAACAGT
R: CCTCCATCTTGGTGGTCAGTG

Liu et al., 2020

IL-β F:ATGGCAACTGTTCCTGAACTCAACT
R:TTTCCTTTCTTAGATATGGACAGGAC

Liu et al., 2020

FAS F: CGGGTGTCTACATTGGGGTG
R: GAATAGCGTGGAAGGCGTTT

Zou et al., 2019

LPL F: TTCAACAGCACCTCCAAAACC
R: GTGAGCCAGTCCACCACGAT

Zou et al., 2019

β-Actin-Beta Actin, TOR-Target of rapamycin, IGF-1-Insulin-like growth factor-I,
IFN-γ-Interferon-gamma, IL-β-Interleukin beta, FAS-Fatty acid synthase, LPL-
Lipoprotein lipase.
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TABLE 4 | Effect of hydrolyzed fish protein powder on the growth and survival of juvenile pearl gentian hybrid grouper.

Group WGR % SGR %/d FCR SR % CF (%) VSI (%)

CT 265.28 ± 0.31 2.34 ± 0.01 0.89 ± 0.04 100.00 ± 0.00 3.25 ± 0.17b 8.76 ± 0.17

H1 264.09 ± 13.13 2.35 ± 0.07 0.87 ± 0.01 100.00 ± 0.00 3.12 ± 0.12ab 8.27 ± 0.12

H2 231.92 ± 4.20 2.17 ± 0.07 0.95 ± 0.03 97.78 ± 2.22 3.03 ± 0.16ab 8.59 ± 0.16

H3 245.15 ± 4.26 2.24 ± 0.02 0.93 ± 0.01 100.00 ± 0.00 2.82 ± 0.02ab 8.31 ± 0.02

H4 238.01 ± 1.51 2.24 ± 0.03 0.93 ± 0.01 100.00 ± 0.00 2.78 ± 0.46a 8.58 ± 0.05

H5 251.31 ± 8.54 2.17 ± 0.03 0.85 ± 0.05 97.78 ± 2.22 2.81 ± 0.04ab 8.29 ± 0.04

H6 236.36 ± 0.53 2.17 ± 0.03 0.95 ± 0.04 100.00 ± 0.00 2.74 ± 0.03a 8.15 ± 0.03

Values are mean values of each group of hybrid grouper (three replicates) ± SE. Means in each row without superscript do not differ significantly (p > 0.05), while those
with superscript differ significantly (p < 0.05). WGR, weight gain rate; SGR, specific growth rate; FCR, feed conversion ratio; SR, survival rate; CF, condition factor; VSI,
viscerosomatic index.

FIGURE 1 | Effect of HFP on digestive enzymes activity in the intestine of juvenile pearl gentian hybrid grouper. Data are presented as Means ± SE. Means without
superscript do not differ significantly (P < 0.05), whiles those with superscript differ significantly (P < 0.05).

normality of data variance was checked. All statistical analyses
were performed using the SPSS 22.0 for Windows and general
differences were found to be significant at p < 0.05. Tukey’s
honest significant difference (HSD) test was used to compare
the mean values between individual treatments. Data are
represented as mean values of each group of hybrid grouper
(three replicates)± standard error (SE).

RESULTS

Growth Performance, Survival, and Body
Composition
The hybrid grouper did not have a significant difference in WGR,
SGR, FCR, SR, and VSI (p > 0.05) in all groups. CF of hybrid
grouper in the CT group was not significantly different with H1,
H2, H3, and H5 groups (p > 0.05) as summarized in Table 3.

In Table 4, it was observed that body moisture, crude lipid, and
PPV did not show significant differences (p > 0.05) in all groups.

The crude protein content in the H6 group was significantly
higher than CT and H1 groups (p < 0.05). Ash content in H1, H2,
H4, and H5 groups was significantly higher than the CT group
but significantly lower than in the H3 group (p < 0.05).

Intestinal Digestive Enzyme Activity
No significant difference in intestinal amylase activity was
observed among all the groups (p > 0.05), while lipase activity
was significantly higher in the H3 group compared to H5 and
H6 groups (p < 0.05). Intestinal trypsin activity was significantly
lower in the H1 group (p < 0.05). Intestinal chymotrypsin activity
was significantly lower in CT, H1, and H2 groups (p < 0.05). The
highest intestinal protease activity was observed in the H4 group
which did not differ significantly from H2, H3, and H5 groups
(Figure 1).

Enzyme Activities in the Serum and Liver
In Table 5, the serum TP level in the H3 group was not
significantly different from that of the H2, H4, H5, and H6
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TABLE 5 | Effect of hydrolyzed fish protein powder on the enzyme activities in the serum and liver of juvenile pearl gentian hybrid grouper.

CT H1 H2 H3 H4 H5 H6

Serum

TP 103.46 ± 2.78a 104.15 ± 3.51a 111.22 ± 6.59ab 135.36 ± 3.87b 116.75 ± 5.92ab 108.29 ± 4.41ab 127.59 ± 10.5ab

ALB 7.52 ± 0.71 6.57 ± 0.40 7.58 ± 0.56 7.40 ± 0.38 7.17 ± 0.17 5.30 ± 0.66 7.88 ± 0.63

SOD 90.64 ± 4.01ab 97.58 ± 2.31ab 86.78 ± 1.39a 81.70 ± 1.23a 100.66 ± 6.63ab 110.68 ± 5.24b 109.44 ± 3.96b

GSH-PX 372.86 ± 23.9 404.69 ± 4.28 325.71 ± 22.04 339.18 ± 44.44 351.83 ± 28.71 398.57 ± 22.65 354.69 ± 29.70

MDA 8.60 ± 0.27c 5.17 ± 0.61ab 7.36 ± 0.52bc 8.77 ± 0.52c 6.93 ± 0.26bc 5.35 ± 0.61ab 4.03 ± 0.17a

GH 3.47 ± 0.46a 5.09 ± 0.19abc 6.02 ± 0.76bc 5.82 ± 0.48bc 4.95 ± 0.08abc 6.44 ± 0.054c 3.94 ± 0.36ab

INS 16.39 ± 1.14a 24.70 ± 0.79ab 29.02 ± 1.95b 25.91 ± 2.02ab 25.44 ± 3.53ab 28.22 ± 2.07b 30.33 ± 1.75b

Liver

MDA 1.45 ± 0.09 1.80 ± 0.37 1.95 ± 0.36 2.04 ± 0.43 2.11 ± 0.32 2.52 ± 0.50 2.66 ± 0.10

SOD 3.76 ± 0.34 3.91 ± 0.43 4.60 ± 0.43 3.96 ± 0.33 3.92 ± 0.34 4.35 ± 0.18 4.00 ± 0.13

Values are mean values of each group of hybrid grouper (three replicates) ± SE. Means in each row without superscript do not differ significantly (p > 0.05), while those
with superscript differ significantly (p < 0.05). GH, growth hormone; INS, insulin; TP, total protein; ALB, albumin; SOD, superoxide dismutase; MDA, malondialdehyde;
GHS-PX, glutathione peroxidase.

TABLE 6 | Effect of hydrolyzed fish protein powder on mRNA IGF-I and TOR expression in the intestine, muscle, and liver of juvenile pearl gentian hybrid grouper.

CT H1 H2 H3 H4 H5 H6

Intestine

IGF-I 0.37 ± 0.08a 1.08 ± 0.08bc 2.12 ± 0.18c 1.60 ± 0.16bc 1.08 ± 0.17bc 0.96 ± 0.07ab 1.42 ± 0.13bc

TOR 1.02 ± 0.11a 1.62 ± 0.20ab 2.66 ± 0.18c 2.23 ± 0.25bc 1.48 ± 0.04a 1.05 ± 0.07a 1.67 ± 0.18ab

Muscle

IGF-I 0.79 ± 0.09ab 1.37 ± 0.55b 1.00 ± 0.04ab 0.64 ± 0.04ab 0.36 ± 0.05a 0.59 ± 0.09ab 1.09 ± 0.11ab

TOR 0.99 ± 0.03abc 1.47 ± 0.18c 0.99 ± 0.18abc 0.85 ± 0.06ab 0.48 ± 0.06a 0.54 ± 0.03a 1.26 ± 0.19bc

Liver

IGF-I 1.49 ± 0.08b 1.19 ± 0.10ab 1.02 ± 0.09a 1.02 ± 0.08a 0.98 ± 0.12a 1.08 ± 0.09ab 1.11 ± 0.13ab

TOR 1.39 ± 0.19 1.19 ± 0.13 0.92 ± 0.08 0.94 ± 0.07 0.92 ± 0.12 0.95 ± 0.06 1.04 ± 0.07

Values are mean values of each group of hybrid grouper (three replicates) ± SE. Means in each row without superscript do not differ significantly (p > 0.05), while those
with superscript differ significantly (p < 0.05). IGF-I, insulin-like growth factor; TOR, target of rapamycin.

FIGURE 2 | Effect of HFP on the expression of FAS, LPL, IL-β, and IFN-γ in the hepatopancreas of juvenile pearl gentian hybrid grouper. FAS, fatty acid synthase;
LPL, lipoprotein lipase; IL-β, interleukin beta; IFN-γ, interferon-gamma.

groups (p > 0.05) but significantly higher than CT and H1
groups (p < 0.05). There were no significant differences in
the level of ALB and GSH-PX activities in the serum in all
the groups (p > 0.05). Serum SOD was significantly higher
in H5 and H6 groups in comparison with groups H2 and H3
(p < 0.05) but similar to the remaining groups (p > 0.05).
Serum MDA in the H6 group was significantly lower but highest

in H3 and CT groups (p < 0.05). No significant difference in
MDA and SOD activity in the liver was observed for all groups
(p > 0.05).

The highest level of GH was observed in the H5 group
compared to CT and H6 groups (p < 0.05) but did not differ
significantly from H1, H2, and H3 groups (p > 0.05). For serum
INS levels, the CT group was significantly lower than H2, H5, and
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FIGURE 3 | Effect of HFP on genus (A) and phylum (B) diversity in the intestine of juvenile pearl gentian hybrid grouper.

H6 groups (p < 0.05) but did not have any significant difference
with H1, H3, and H4 groups (p > 0.05).

mRNA Gene Expression in the Intestine,
Muscle, and Liver
In the fish intestine, insulin-like growth factor (IGF-I) expression
in H1, H2, H3, H4, and H6 groups was significantly higher than
that in the CT and H5 groups (p < 0.05). The target of rapamycin
(TOR) expression level in the intestine was significantly higher
in the H2 group (p < 0.05), which was not significantly different
from the H3 group (p > 0.05).

The IGF-I expression level in the muscle was significantly
lower in the H4 group than the H1 group (p < 0.05) but was
not significantly different from CT, H2, H3, H5, and H6 groups

FIGURE 4 | Venn diagram demonstrating the distribution of operational
taxonomic units (OTUs) shared by juvenile pearl gentian hybrid grouper fed
with different levels of HFP.

(p > 0.05). TOR expression level in the muscle was significantly
higher in the H1 group (p < 0.05) but was not significantly
different when compared to CT, H2, and H6 groups (p > 0.05).

The IGF-I expression level in the liver was significantly
higher in the CT group compared to H2, H3, and H4 groups
(p < 0.05), but no significant difference in liver TOR expression
was observed (p > 0.05), as shown in Table 6. As shown in
Figure 2, fatty acid synthase (FAS) expression levels in the liver
were significantly higher in H3 and H4 groups than those in
other groups (p < 0.05). The higher lipoprotein lipase (LPL)
levels were observed in CT and H1 groups compared to the
remaining groups (p < 0.05). In the liver, the interleukin beta
(IL-β) expression level in the H6 group was significantly higher
than that in CT group (p < 0.05). No significant difference in
interferon-gamma (IFN-γ) expression levels was observed in all
the groups (p > 0.05).

Intestinal Microbiota
In the gut of juvenile hybrid grouper, the most abundant
bacteria found at the genus level are Acinetobacter, Vibrio, and
Flavobacteriaceae (Figure 3A). Proteobacteria, Bacteroidetes, and
Actinobacteria were observed to be the most abundant bacteria at
the phylum level, as shown in Figure 3B. As shown in Figure 4,
a total of 653 operational taxonomic units (OTUs) were shared
among all the treatments, and only H5 group had 1 unique OTU.
Vibrio, Flavobacteriaceae, and Acinetobacter were significantly
higher in H3, H4, and H2 groups, respectively, according to
the heatmap (Figure 5). From the beta diversity distance matrix
presented in Figure 6, the unweighted pair group method with
arithmetic mean (UPGMA) tree showed a distinct dissociation
from the control group. This indicates that HFP modified the
overall structure of intestinal microbiota in hybrid grouper.

Intestinal Morphology
The VL was significantly longer in the H2 group compared with
the CT group (p < 0.05). Compared to the other groups, the villus
was significantly wider in H5 and H6 groups (p < 0.05), and the
least VW was recorded in the H4 group. The intestinal muscle
layer in CT and H1 groups was significantly thicker than that of
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FIGURE 5 | Heatmap of the abundance of intestinal bacteria at the genus level of juvenile pearl gentian hybrid grouper fed with different levels of HFP. Color intensity
indicates the relative enrichment of OTUs.

the H2 group but significantly thinner than that of the three other
groups (p < 0.05), as summarized in Table 7 and Figure 7.

DISCUSSION

The HFP is a promising ingredient used in the diet of aquatic
animals due to its potential function to improve growth as
well as immune status (Siddik et al., 2019b). HFP used to
partially replace FM in the experimental diets in this study
contains about 78.5% of small peptides less than 1,000 Da
(Figure 8). No significant difference and high SR were observed
in this study, which showed that all nutritional requirements
were met in all the diets and experimental conditions were
suitable for hybrid grouper in this study (Wei et al., 2016).
The growth performance of hybrid grouper fed with different
levels of HFP was slightly reduced, but there was no significant
difference to the control group. This reduction in growth

performance was also observed by Oliva-Teles et al. (1999) and
Khieokhajonkhet and Surapon (2020) when HFP was added
to the diet of Nile tilapia (Oreochromis niloticus), and juvenile
turbot (Scophthalmus maximus), respectively. However, results
observed in this study were not in accordance with the study
conducted in juvenile barramundi (Lates calcarifer) fed with
different levels of HFP which contained peptides with a molecular
size of <3,000 Da (Siddik et al., 2019b). It might be a result
of an increase in the catabolism of small peptides and amino
acids via the gut wall due to the limited availability of peptide
transporters (Bakke-McKellep et al., 2000). This can be related
to reduce growth rate performance in this study. It is also
possible that the macronutrients’ requirements by hybrid grouper
were met by FM, hence, masking the profitable effect of HFP
(Wei et al., 2016).

At various inclusion levels of HFP, whole-body ash and crude
protein contents were altered similar to the results observed
by Zheng et al. (2012) in Japanese flounder (Paralichthys
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FIGURE 6 | Unweighted pair group method with arithmetic mean-clustering
tree of juvenile pearl gentian hybrid grouper fed with different levels of HFP.

olivaceus) when fed with feed containing HFP with about 66.4%
small peptides with a size between 100 and 1,000 Da. Sources
of hydrolysates and small peptide-sized molecules may have
influenced these results. Fish fed with different levels of HFP
obtained significantly higher crude protein levels compared to
those fed the control diet. In aquatic animal nutrition, levels of TP
have been regarded as an indicator of the health and physiological
condition of an aquatic organism (Harikrishnan et al., 2003).

The IGF-I and TOR levels have been evaluated to correlate
with growth in different aquatic animals, such as European
sea bass (Dicentrarchus labrax) (Carnevali et al., 2006), tilapia
(O. niloticus) (Yan et al., 2013), juvenile turbot (S. maximus)
(Wang et al., 2016), and pacific white shrimp (Liu et al., 2018). In
this study, it was observed that hybrid grouper fed with different
levels of HFP obtained a significantly higher total crude protein
level compared to the control. A higher level of IGF-I and TOR

mRNA gene expression in the intestine of hybrid grouper was
also observed in fish fed with different levels of HFP compared to
the control. Wei et al. (2020) also observed a higher IGF-I mRNA
gene expression when FM was replaced with HFP in the diet of
turbot. This could be due to better digestion and absorption of
hydrolysate protein and signifies an improvement in general fish
health (Khosravi et al., 2015).

The addition of suitable amounts of ingredients with small-
sized peptides in feed increased digestive enzyme activity in
the intestine of hybrid grouper (Yang et al., 2021), turbot (Jia
et al., 2019), and sea bass (Zambonino Infante et al., 1997).
Small-size peptide in HFP may play essential roles in regulating
enzyme activity by promoting the secretion of digestive enzymes
in aquatic animals (Madeira and Paula-Barbosa, 1999). In this
study, intestinal trypsin and chymotrypsin were significantly
high in the H5 group. These results show that 3% HFP in the
diet of hybrid grouper could efficiently increase trypsin and
chymotrypsin activity; hence, the presence of rich small-sized
peptides could be linked to high levels of digestive enzymes.

The immunity and health of fish are greatly linked to the
antioxidant defense system (Ahmadifar et al., 2019). Small-
sized molecular peptides can improve and stimulate the capacity
and activity of antioxidants in fish (Moure et al., 2006; Wu
et al., 2018), and resistance in oxide damage is performed by
antioxidant capacity (Lopes et al., 2001). The highest SOD activity
in the serum was observed in the H6 group which contained
4% HFP. This shows that a 35% replacement ratio of dietary
FM with HFP can increase the level of SOD in the serum
(Moure et al., 2006).

Cytokines, which are small glycoprotein messengers, help
in intercellular communication to support adaptive and innate
immune responses against parasites, bacteria, and viruses (Bruce
and Brown, 2017). Kotzamanis et al. (2007) stated that bioactive
peptides with antibacterial and immunostimulating properties
are produced during the procedure of hydrolysis. HFP used
in this study is assumed to contain these peptides. IL-β is a
pro-inflammatory cytokine in fish, which enhances lysozyme
synthesis and defense mechanism with regard to bacterial
colonization (Kim and Austin, 2006; Giri et al., 2015). IL-β was
significantly higher in groups fed with different levels of HFP
compared to the control. This was in agreement with Siddik et al.
(2019a) who observed an upregulation of IL-β when HFP was
included in the diet of juvenile barramundi. Results observed

TABLE 7 | Effect of hydrolyzed fish protein powder on the body composition of juvenile pearl gentian hybrid grouper.

Group Moisture Crude protein Crude lipid Ash PPV (%)

CT 56.21 ± 0.94 66.17 ± 0.78ab 21.03 ± 0.71 9.95 ± 0.74a 35.26 ± 0.29

H1 56.75 ± 1.56 64.91 ± 0.39a 20.19 ± 1.03 12.98 ± 0.58b 37.29 ± 3.23

H2 53.11 ± 2.26 66.55 ± 1.01abc 20.45 ± 0.36 12.96 ± 1.21b 34.50 ± 0.12

H3 57.60 ± 1.65 68.50 ± 1.38abc 21.96 ± 0.74 18.60 ± 0.38c 35.15 ± 0.85

H4 56.92 ± 1.83 71.12 ± 1.03abc 22.83 ± 0.99 13.60 ± 0.44b 31.89 ± 0.91

H5 57.25 ± 1.16 72.51 ± 1.68bc 20.90 ± 1.18 13.33 ± 0.29b 27.82 ± 6.73

H6 55.25 ± 0.49 72.88 ± 3.03c 20.38 ± 1.31 12.18 ± 0.06ab 32.77 ± 0.51

Values are mean values of each group of hybrid grouper (three replicates) ± SE. Means in each row without superscript do not differ significantly (p > 0.05), while those
with superscript differ significantly (p < 0.05). PPV, protein production value.
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FIGURE 7 | Effect of HFP on the intestinal morphology of juvenile pearl gentian hybrid grouper (H&E, 20×). VL, villus length; VW, villus width; MT, muscle thickness.

in this study could be due to the sufficient content of bioactive
peptides in HFP used (Tang et al., 2008; Bui et al., 2014).

Fish gut comprises different groups of microbial communities,
including virus, protists, fungi, and bacteria. The bacterial
community, which is the dominant group found in the intestine,
affects the immune system, metabolism, and health (Wardwell
et al., 2011; Tran et al., 2018). The intestinal bacteria community
can be influenced by feed composition (Merrifield et al.,
2009). The results of this study were not entirely different
from Kuebutornye et al. (2020) and Amoah et al. (2021) in
tilapia (O. niloticus) and northern whiting fish (Sillago sihama),
respectively. They noted that prevalent bacteria phyla found
in the gut of fishes include Actinobacteria, Bacteroidetes, and
Proteobacteria. At this level, Proteobacteria were the most
abundant bacteria which increased and later decreased with
increasing HFP inclusion in this study.

In this study, VL was significantly affected by HFP with the
highest value observed when 1.5% HFP was used to replace
FM. Improvement in the intestinal morphology, thus VL, is a
positive indication of the fish’s ability to digest feed and absorb
nutrients in the digestive canal (Dimitroglou et al., 2009; Tan
et al., 2018). Villi growth and intestinal digestive enzymes are
effectively stimulated by small peptides (Zhang et al., 2017;
Jia et al., 2019). The intestinal surface available for nutrient
absorption can be expanded by VL and VW, while the efficiency
of nutrient absorption is determined by MT in the intestine (Geda
et al., 2012; Lauriano et al., 2016).

FIGURE 8 | The molecular weight distribution of peptides in hydrolyzed fish
protein powder (HFP). Da, Dalton.

CONCLUSION

The addition of HFP to a low FM diet of hybrid grouper will
increase the activity of intestinal trypsin and chymotrypsin and
the deposition of crude protein and ash in hybrid groupers. An
improvement in antioxidant capacity and the development of the
intestine in hybrid grouper fed with different levels of HFP was
observed. A 5% replacement ratio using 1% HFP is suggested in
the diet of hybrid grouper due to a higher WGR compared to the
other groups containing HFP.
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