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Understanding diversity patterns and associated driving factors are the critical topics
in macroecology and conservation biology. Phytoplankton are highly susceptible to
environmental changes in estuaries, particularly eutrophication. This study examined
phytoplankton alpha and beta diversity using investigation data in May (springtime),
August (summer) and November (autumn) 2009 in China’s Jiulong River estuary, where
it was easily polluted because of considerable discharge from a highly dense human
population and low self-purification capacity with its limited river basin area, potentially
resulting in eutrophication and then influencing phytoplankton diversity. Potential
influencing factors were also explored, including dissolved oxygen, salinity, nutrients,
nutrient ratios, geographic and hydrologic distance, and so on. The results indicated that
Shannon’s index (H’) and Pielou’s index (J) decreased from the estuary’s upper to middle
and then increased from middle to lower reaches, Simpson’s (D) observed the opposite
trend and species number (S) gradually increased from the estuary’s upper to lower
reaches. For beta diversity, all the indices showed a gradual decrease trend from the
estuary’s upper to lower reaches, where also, turnover dominated beta diversity for all
seasons. It is noteworthy that the significant roles that nutrients and nutrient ratios played
in shaping phytoplankton diversity patterns and the nutrient balance were characterized
by excess nitrogen (N) and silicon (Si) and limited phosphorus (P), which could potentially
cause diatom blooms. Findings also showed that decreasing Si concentrations can help
to reduce overall pollution levels as well as the restoration of the estuary’s ecosystem
better than just reducing N alone. Accordingly, this study advocates for the protection
of the entire estuary system with particular emphasis on its upper reaches. Moreover,
greater attention should also be paid to impacts associated with N input and nutrient
ratio trade-offs to the prospective watershed management of this estuary. This study
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provides a practical approach to explore estuarine diversity in a comprehensive way,
which can inform effective biodiversity conservation and also be applied to other marine
ecosystems to better guide sustainable management and conservation practices.

Keywords: phytoplankton, diversity pattern, nutrient ratio, nutrient, driving factors

INTRODUCTION

Reducing biodiversity loss has become a global issue on both land
and sea (Blowes et al., 2019; Pinsky et al., 2019; Cooper et al.,
2020; Trisos et al., 2020). The Earth is presently experiencing
an extinction crisis that is largely the result of anthropogenic
exploitation, which has caused widespread changes in the global
distribution of organisms (Chapin et al., 2000), where roughly
one million species are threatened with extinction (Balvanera,
2019). The biodiversity of ocean systems is higher than terrestrial
systems, while the rate of loss in marine biodiversity occurs much
quicker compared to terrestrial biodiversity caused by climate
change and anthropogenic impacts (Blowes et al., 2019; Pinsky
et al., 2019; Cooper et al., 2020; Trisos et al., 2020). Furthermore,
a decline in marine biodiversity has caused to reduction or loss of
some ocean or coastal ecosystem services and functions (Blowes
et al., 2019; Pinsky et al., 2019; Cooper et al., 2020; Paul et al.,
2020; Trisos et al., 2020).

Estuaries act as transitional zones between brackish and
freshwater, where intense material exchanges take place among
terrestrial, riverine, and marine ecosystems, subsequently playing
a critical role in biogeochemical cycling (Srichandan et al.,
2019). High diversity and productivity are critical characteristic
of estuarine systems (Dursun and Tas, 2019), which comprise
of various ecosystem services and a high natural capital value
(Costanza et al., 1997). However, estuaries are susceptible to a
variety of natural and anthropogenic disturbances (Gillanders
et al., 2011; Atwood et al., 2012; Bucci et al., 2012; O’Brien
et al., 2016). It has been estimated that greater than 60% of
the world’s population and two-thirds of mid- to large-sized
cities are distributed within and around estuarine and coastal
areas (Ma and Mao, 2014; O’Brien et al., 2016). Over the
past half century, intensive anthropogenic disturbances have
dramatically increased nutrient inputs into estuaries from inland
sources, causing widespread eutrophication (Nixon, 1995; NRC
(National Research Council), 2000; Rabalais, 2002; Ho et al.,
2019) that ultimately results in the degradation of habitats and
a decrease in biodiversity (NRC (National Research Council),
2000; Bricker et al., 2008; Zhao et al., 2010; Clark et al., 2015).
Accordingly, nutrient pollution in estuaries and associated effects
have garnered increasing attention throughout the world (Liu
and Shen, 2001; Li et al., 2014; Paerl et al., 2014; Wallace
et al., 2014; Fennel and Testa, 2018; Barletta et al., 2019;
Wurtsbaugh et al., 2019).

Being both the most important primary producer and the
fundamental component of the food web, phytoplankton are
an essential constituent of marine ecosystems (Dursun and
Tas, 2019). However, phytoplankton is susceptible to nutrient
concentrations (Redfield, 1934; Paerl et al., 2007), whose biomass
and patterns will be dramatically altered in the presence of

such nutrients. To some extent, the composition, structure,
function, and spatiotemporal distribution of phytoplankton
indicate the environmental quality status and the biological
integrity of aquatic ecosystems (Ekwu and Sikoki, 2006).
In macroecology and conservation biology, it is critical to
understand phytoplankton spatial diversity patterns (Collen
et al., 2013). In doing so, previous studies primarily focused
on alpha and gamma diversity (Muylaert et al., 2009; Rochelle-
Newall et al., 2011; Guo et al., 2014; Bharathi and Sarma, 2019;
Dursun and Tas, 2019), while little attention has been paid to
beta diversity. Although both alpha and gamma diversity are
indicative of species richness, their spatial scales dramatically
differ, where the former refers to in-site diversity (i.e., local
species pools) and the latter refers to overall diversity (i.e.,
regional species pools). Notably differing from alpha and gamma
diversity, beta diversity refers to between-site diversity across
different habitats, ecosystems, or regions (Whittaker, 1960),
which reflect community construction processes as well as
biodiversity formation and maintenance (Condit et al., 2002;
Kraft et al., 2011; Legendre and De Cáceres, 2013; Li et al.,
2016). Given the considerable habitat gradients of estuarine
systems (e.g., that associated with salinity levels), beta diversity
(used in conjunction with alpha and gamma diversity) and
associative patterns provide much more informative results.
This approach is key to understanding estuarine response to
anthropogenic activities.

Numerous studies have documented many factors that
contribute to phytoplankton diversity, which mostly include
alpha diversity, such as salinity (Elliot and Whitfield, 2011;
Mousing et al., 2016; Bode et al., 2017; Stefanidou et al., 2020),
nutrients (Bode et al., 2017), organic matter variables (Bode et al.,
2017), hydromorphology (Elliot and Whitfield, 2011), sunlight
(Wang et al., 2020), and spatial structure (Moresco et al., 2017;
Yang et al., 2017). However, there is only limited information on
potential factors that influence beta diversity patterns (Mousing
et al., 2016; Moresco et al., 2017; Yang et al., 2017; Stefanidou
et al., 2020; Wang et al., 2020), and even less on the different
factors between alpha and beta diversity. It is important to note
that the significant role that nutrients concentrations play in
phytoplankton diversity is widely recognized among researchers
(Huppert et al., 2002, 2005; Ji et al., 2016). Additionally,
although nutrient ratios have attracted considerable attention
from the scientific community, the role they play in natural
ecosystems is not well understood (Redfield, 1934; Falkowski
and Davis, 2004; Koeve and Kähler, 2010; Mills and Arrigo,
2010; Weber and Deutsch, 2010; Peñuelas et al., 2013). This
is because relevant studies have mostly conducted controlled
experiments (Chislock et al., 2014; Xu et al., 2014; Thrane et al.,
2016; Jacquemin et al., 2018; Schulhof et al., 2019; Bach et al.,
2020; Zhou et al., 2021).
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The Jiulong River estuary is one of China’s most important
estuarine systems. It is characterized by an extremely dense
human population (13.39 million) that subsists within a limited
river basin area (1.47 × 104 km2) (Fujian Provincial Bureau of
Statistics, 2020), which roughly corresponds to approximately
41% of the areas of the Hudson River basin, Canada, under a
population density equivalent to New York City, United States.
A highly dense human population in conjunction with highly
intensive anthropogenic activities pose great pressure on the
Jiulong River estuary, where annual dissolved inorganic nitrogen
(DIN) flux is 8.278 × 104 t·yr−1, soluble reactive phosphorus
(SRP) flux is 0.195 × 104 t·yr−1, and dissolved silica (DSi)
flux is 17.831 × 104 t·yr−1 (Wu et al., 2017), which may
shape and influence phytoplankton diversity patterns, given that
phytoplankton are the most sensitive aquatic community to
nutrient pollution. This study used the Jiulong River estuary as
the study area to (i) examine spatial patterns of phytoplankton
species diversity along estuary to offshore gradients, using both
alpha and beta diversity; to (ii) explore potential factors that
shape diversity patterns, particularly within an environmental
context, and to test whether differences exist between alpha
and beta diversity; and to (iii) evaluate the relative roles that
nutrient concentrations and nutrient ratios play in shaping
diversity patterns.

MATERIALS AND METHODS

Study Area
The Jiulong River estuary is situated along China’s southeastern
coast at the southern point of the East China Sea. This estuary
originates from Longyan and Zhangzhou cities, with a total
length of 1,923 km and a basin area of 1.47× 104 km2 (Figure 1;
Huang, 2008). Nutrient and pollutant runoff flows into the
estuary through three tributaries, namely, the Beixi River, the
Xixi River, and the Nanxi River, which together strongly impact
the Jiulong River estuary. The estuary is comprised of several
ecosystems, such as mangrove, salt marsh, tidal flats, and brackish
water, which provide important spawning ground habitats for
many marine organisms. In 1988, the Jiulong River Estuary
Provincial Mangrove Reserve (with a total area of 420.2 ha) was
established to protect its mangrove ecosystem, wetland waterfowl
community, and endangered wildlife. The Jiulong River estuary is
an also important habitat for the Indo-Pacific humpback dolphin
(Sousa chinensis), which the IUCN Red List of Threatened Species
has classified as “Vulnerable.” The estuary also acts as a migratory
“stopover” for thousands of migratory waterfowls in the East
Asian–Australasian Flyway.

Methodological Approach
The study approach is provided in Figure 2. First, species
diversity indices were selected and calculated, including alpha
and beta diversity. Then, a quantile-quantile test (i.e., Q–Q
test) was used to verify data normality of alpha diversity,
while Ordinary Kriging was used to map distribution. At the
same time, the study area was divided into different subregions
based on salinity clustering and geographical characteristics,

and beta diversity distribution was mapped for pairwise site
and subregion comparisons. Finally, Pearson’s r was applied to
calculate the relationship between environmental variables and
diversity indices, after which optimal equations were obtained
by means of stepwise regression, which was used to identify
critical environmental factors that contribute to spatial patterns
in phytoplankton diversity.

Data Sources
The phytoplankton and environmental data used in this study
were obtained from Yu et al. (2012). These data were collected
at 21 locations along the estuary during three field campaigns,
namely, in May (springtime), August (summer), and November
(autumn) 2009 (Figure 1). All samples were obtained during low
tide. Niskin bottles (5 L) was used to collect water samples, where
two water depths were conducted, i.e., surface samples at a water
depth below 5 m and bottom samples at a water depth above 5 m.
Three duplicate samples were also collected from each location.

Phytoplankton organisms contained in the samples were
then transferred to glass sampler bottles and fixed in a 2%
glutaraldehyde solution. Referring to traditional phytoplankton
identification systems (Jin and Chen, 1960; Hu et al., 1980;
Tomas, 1997), species identification and phytoplankton
enumeration were conducted using an epifluorescence
microscope. The original phytoplankton species data supporting
Yu et al. (2012) were provided in the Supplementary Table 2.

The environmental data of 15 variables were extracted from
the Figures of Yu et al. (2012), including pH, dissolved oxygen
(DO), chemical oxygen demand (COD), temperature (T), salinity
(Sal), water depth (WD), Total nitrogen (TN), DIN (i.e., the
sum total of ammonium, nitrate, and nitrite), silicate (SiO4

−-Si),
nitrate (NO3

−-N), nitrite (NO2
−-N), ammonium (NH4

+-N),
total phosphorus (TP), dissolved inorganic phosphorus (DIP),
suspended particulate matter (SPM). A multi-parameter probe
(YSI 6600 V2) was used to measure pH and DO. A conductivity-
temperature-depth (CTD) system was used to measure T, Sal,
and WD. Samples used for nutrient concentration measurements
were kept in 2 L plastic bottles at −4 ◦C and measured within a
12 h period at a laboratory. TN, DIN, SiO4

−-Si, NO3
−-N, NO2

−-
N, NH4

+-N, TP, DIP, SPM, and COD were measured following
the National Standard of the Oceanographic Survey of China
(GB/T 12763.4-2007). Other environmental variables were also
calculated based on the above procedure, including the dissolved
inorganic nitrogen (DIC) to phosphorus (P) ratio (N/P), the TN
to TP ratio (TN/TP), the silicon (Si) to P ratio (Si/P), and the Si
to DIN ratio (Si/N).

Hydrologic data used to calculate the hydrologic distance
was extracted from Jing et al. (2011), including hydrologic
direction and velocity.

Statistical Analysis
The phytoplankton diversity indices selected for this study cover
both alpha and beta diversity. For alpha diversity, four typical and
widely used indices were selected, including the Shannon index
(H
′

), Simpson’s index (D), Pielou’s evenness index (J), and the
Species number (S) index. For beta diversity, this study used the
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FIGURE 1 | Study area and sampling sites of Jiulong River estuary.

FIGURE 2 | Methodology flowchart.

BAS approach (Baselga, 2010, 2012) to calculate and decompose
beta diversity, where the Sørensen pairwise dissimilarity index
(beta.SOR) was first calculated and then decomposed to a
turnover value (beta.SIM) and a nestedness value (beta.SNE).
Supplementary Table 1 provides the diversity index equations,

which were conducted in the packages “vegan” and “beta.part” of
R 4.0.2 (Baselga and Orme, 2012).

Spatial subdivision was conducted to further quantify the
diversity distribution. The salinity clustering results showed that
five distinctive groups were found according to their geographic
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FIGURE 3 | The hclust (Average Linkage Clustering) of the sites according to the salinity.

location, i.e., tributary (S1–S4, S21), river mouth (S5, S6),
southern part of middle estuary (S7, S8, S15), northern and
eastern part of middle estuary (S9, S10, S13, S14, S16, S17) and
outer estuary (S11, S12, S18–S20) (Figure 3). Based on salinity
clustering groups, combined with the consideration of sampling
sites number balance, the study area was subdivided into three
subregions, including the upper (Area I), middle (Area II), and
lower reaches (Area III) of the estuary (Figure 4).

Results from the Q–Q test indicated that alpha diversity data
followed normal distribution (see Supplementary Figure 1),
suggesting that Ordinary Kriging was applicable in mapping
the distribution of alpha and gamma diversity, where a linear
function was selected as the semi-variant model used in Ordinary
Kriging, given that the linear function was optimal for accuracy
of cross-validation evaluation. A pairwise site comparison of
beta diversity was mapped using a connective line, and averages
were used to represent the beta diversity of each subregion.
The “ggplot2” package in R 4.0.2 was used to conduct the Q–
Q test. ArcGIS 10.7 was used to conduct Ordinary Kriging and
biodiversity mapping.

Pearson’s r was used to quantify relationships between
environmental and geographic parameters and diversity indices,
which was conducted to identify the driving factors of
phytoplankton diversity patterns in the Jiulong River estuary.
In total, 63 datasets obtained from three field campaigns were
used to analyze correlations between environmental variables
and alpha diversity. In total, 210 datasets, covering data from
three field campaigns that were mixed among any two sites,
were used to analyze correlations between beta diversity and
environmental and geographic variables, where differences in
environmental variables among pairwise site comparisons were
used, while geographic distance and hydrologic distance were
used to represent geographic variables, which were, respectively,
obtained using the point distance tool of proximity analysis
and SDM toolbox incorporating the north and east components

of mean flow velocity at 6 h during low tide (because of a
regular semidiurnal tide in Jiulong River estuary, Liu, 2012)
as the cost resistance surface in ArcGIS 10.7. Additionally,
based on Pearson’s r results, stepwise regression was conducted
to obtain optimal equations between variables and diversity
indices after data was normalized. This was done to enhance
comparisons at the same scale. Forest plots were used to visualize
the coefficient strength of key variables in the optimized equation.
Pearson’s r, normalization, stepwise regression, and forest plots
were conducted in packages “corrplot,” “clusterSim,” “car,” “grid,”
“magrittr,” “checkmate,” and “forestplot” in R 4.0.2, respectively.

RESULTS

Spatial Patterns of Phytoplankton Alpha
Diversity
Supplementary Table 3 and Figure 5 provide the overall spatial
variation of phytoplankton alpha diversity indices across three
seasons. Shannon index (H’) values ranged from 2.23 to 3.51 (2.90
average), where the highest value was measured at S11 (i.e., at the
lower reaches of the estuary) and the lowest value was measured
at S8 (i.e., at the middle reaches of the estuary). Simpson’s index
(D) values ranged from 0.15 to 0.71 (0.28 average), where the
highest value was measured at S1 (i.e., at the upper reaches of
the Beixi River estuary) and the lowest value was measured at
S3 (i.e., at the upper reaches of the Xixi River estuary). Pielou’s
evenness (J) values ranged from 0.55 to 0.84 (0.67 average), where
the highest value was measured at S3 (i.e., at the upper reaches
of the Xixi River estuary) and the lowest value was measured
at S20 (i.e., the lower reaches of the estuary). Species number
(S) values ranged from 27 to 59 (45 average), where the highest
value was measured at S19 (i.e., the lower reaches of the estuary)
and the lowest value was measured at S4 (i.e., the upper reaches
of the estuary).
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FIGURE 4 | The sub-regions of study area.

Results generally showed a wide range of values in all
alpha diversity indices, indicating significant spatial variation
among the different sites. A similar gradient was observed in
H’ and J values, which gradually decreased from upper to
middle and then increased from the middle to lower reaches
of the estuary (Supplementary Table 3 and Figures 5A,B). D
gradually decreased from the upper to lower reaches of the
estuary (Supplementary Table 2 and Figure 5C). Conversely, S
gradually increased from the upper to lower reaches of the estuary
(Supplementary Table 3 and Figure 5D). Among the different
subregions, the highest H’ and S values were observed in Area III,
the highest J value was observed in Area I, and the highest D was
observed in Area II.

Season variations of spatial patterns were observed
(Supplementary Table 3). The highest H’ value was found
in autumn (3.43 average), followed by spring (2.79 average) and
summer (2.46 average), where spatial patterns varied greatly
across different seasons, i.e., H’ value in spring decreased
from upper to lower reaches of estuary, while the opposite
trend was found in autumn. The highest J value was found
in autumn (0.75 average), followed by spring (0.70 average)
and summer (0.56 average), where their spatial patterns were
similar with H’. The highest D value was found in summer (0.42
average), followed by spring (0.24 average) and autumn (0.19
average), where their spatial patterns were nearly opposite to
H’ and J. The S values in autumn (24 average) and summer (23
average) were higher than that in spring (16 average), with an
increasing spatial trend from upper to lower reaches of estuary
for all three seasons.

Spatial Patterns of Phytoplankton Beta
Diversity
Pairwise beta diversity site comparisons are shown in Figure 6.
The beta.SOR values ranged from 0.27 to 0.81 (0.4 average),
and this large range indicated significant variation between
the different sites. A gradual decreasing trend was observed
from the upper to lower reaches of the estuary. The highest
beta.SOR value was observed between S3 (the Xixi River) and
S21 (the Nanxi River) at the upper reaches of the estuary,
characterized by a low hydrologic exchange between these two
different tributaries. On the other hand, the lowest beta.SOR value
was observed between S10 and S20 at the lower reaches of the
estuary, characterized by a small geographic distance and a high
hydrologic exchange.

Supplementary Table 3 show the beta diversity of each
subregion and associated components. beta.SOR values ranged
from 0.34 to 0.51 (0.4 average); beta.SIM values ranged from 0.31
to 0.43 (0.35 average); beta.SNE values ranged from 0.03 to 0.07
(0.05 average). beta.SOR, beta.SIM, and beta.SNE values exhibited
the same distribution pattern, namely, a deceasing trend from the
upper to lower reaches of the estuary, where the highest value was
measured at Area I and the lowest value was measured at Area
III. Furthermore, beta.SIM dominated beta.SNE regardless of the
area (i.e., the upper, middle, or lower reaches of the estuary),
indicating that species turnover was dominant.

The seasonal similarities and differences of beta diversity
patterns were provided in the Supplementary Table 3. The
same pattern was observed for beta.SOR and beta.SIM, where
temporally, their values in summer and spring were slightly
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FIGURE 5 | The spatial distribution patterns of alpha diversity and species number. (A) Shannon-wiener diversity index. (B) Pielou evenness index. (C) Simpson
diversity index. (D) Species number. The darker color indicates the higher diversity.

higher than that in autumn, and spatially, the highest value was
found at Area I and the lowest value was found at Area III,
indicating a deceasing trend from the upper to lower reaches of
the estuary for all three seasons. Fluctuations in beta.SNE values
differed from the other two indices, it showed inconsistent spatial
trends across different seasons, where the highest value was found
in Area III in spring, while Area II observed the highest value
in summer and autumn. It was noted that beta.SIM value was
greatly higher than beta.SNE across all subregions and seasons,
indicating that species turnover was dominant.

Relationships Between Phytoplankton
Biodiversity and Environmental and
Spatial Variables
Pearson’s r values between phytoplankton alpha diversity and
environmental variables are shown in Figure 7A. Results showed
that H’ significantly and negatively correlated to T (r = −0.45;
p < 0.01) and NO2

−-N (r = −0.46; p < 0.01). J significantly and
negatively correlated to T (r = −0.31, p < 0.01), Sal (r = −0.28;
p < 0.01), NO2

−-N (r = −0.46; p < 0.01), and positively
correlated to NO3

−-N (r = 0.32; p < 0.01), and DIN (r = 0.26;

p < 0.01). D positively correlated to T (r = 0.32; p < 0.01).
Compared to the other alpha diversity indices, S was affected by
more environmental variables, where the top six environmental
variables that showed a high correlation were Sal (r = 0.61;
p < 0.01), WD (r = 0.59; p < 0.01), and pH (r = 0.36; p < 0.01)
and those showing a negative correlation were COD (r = −0.45;
p < 0.01), NO3

−-N (r = −0.44; p < 0.01), and DIN (r = −0.4;
p < 0.01).

The development of optimal regression equations between
phytoplankton alpha diversity indices and environmental
variables indicated that alpha diversity was influenced by
interactions among several environmental factors, and their
parameters and coefficients are shown in Supplementary
Figure 2. The equation for H’ parameterized with T and
NO2

−-N (adjusted R2 = 0.27; p < 0.001; Akaike information
criterion [AIC] = −19); J parameterized with Sal and NO2

−-N
(adjusted R2 = 0.41; p < 0.001; AIC = −31); D parameterized
with T (adjusted R2 = 0.09; p < 0.001; AIC = −6). By contrast,
more parameters were included in the S equation, which
parameterized with WD, Sal, NO3

−-N, and TN:TP (adjusted
R2 = 0.58; p < 0.001; AIC = −48), among which salinity,
nutrients (NO3

−-N) and nutrients ratio (TN:TP) were the
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FIGURE 6 | The spatial distribution of pairwise-site beta diversity (beta.SOR).

FIGURE 7 | The Pearson’s correlation coefficient matrix between diversity and environmental variables and spatial distances. (A) The Pearson’s correlation coefficient
matrix between alpha diversity and environmental variables. (B) The Pearson’s correlation coefficient matrix between beta diversity and environmental variables and
spatial distances. Red represented negative correlations, and blue represented positive correlations. The size of circle indicated the strength of correlation.

most influential environmental variables, yielding high absolute
coefficient values. In general, results indicated that H’, D, and J
were strongly affected by temperature, salinity, and nutrients,
while S was mainly affected by salinity, nutrients and nutrient
ratios, including NO3

−-N and TN:TP. Low and negative AIC

values in all equations indicated the goodness-of-fit of the
equations shown above.

Pearson’s r between phytoplankton beta diversity and
environmental variables are shown in Figure 7B. Results showed
that much more environmental variables significantly influenced
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beta.SIM, the top four that showed high correlations were PO4
−-

P (R2 = −0.48; p < 0.01), NH4
+-N (R2 = −0.39; p < 0.01),

Si:P (R2 = 0.37; p < 0.01) and TP (R2 = −0.34; p < 0.01). The
correlation strength of the top five (i.e., between beta.SNE and
environmental variables) was as follows: Sal (R2 = 0.34; p < 0.01),
pH (R2 = 0.32; p < 0.01), SiO4

−-Si (R2 =−0.30; p < 0.01), NO3
−-

N (R2 = −0.23; p < 0.01), and SPM (R2 = −0.22; p < 0.01).
Analogously, beta.SOR correlated to NH4

+-N (R2 = −0.44;
p < 0.01), PO4

−-P (R2 = −0.42; p < 0.01), Sal (R2 = 0.28;
p < 0.01) and DIN (R2 = −0.33; p < 0.01). Additionally, all
beta diversity indices significantly and positively correlated to
geographic distance (beta.SOR, R2 = 0.85, p < 0.01; beta.SIM,
R2 = 0.76, p < 0.01; beta.SNE, R2 = 0.31, p < 0.01), and hydrologic
distance (beta.SOR, R2 = 0.86, p < 0.01; beta.SIM, R2 = 0.81,
p < 0.01; beta.SNE, R2 = 0.24, p < 0.01).

The optimal regression equations between phytoplankton
beta diversity indices and environmental and spatial variables
were subsequently developed, and their parameters and
coefficients are shown in Supplementary Figure 3. The
equation for beta.SIM parameterized to the nutrients (PO4

−-P,
TP, DIN), nutrients ratio (Si:P) and spatial variables (GD,
HD) (adjusted R2 = 0.78; p < 0.001; AIC = −313), where
the nutrients ratio (Si:P) was the crucial parameter with a
higher absolute coefficient value. beta.SNE parameterized to
nutrients (SiO4

−-Si), nutrients ratio (Si:P and N:Si), others (Sal,
COD, SPM), and spatial variables (HD) (adjusted R2 = 0.51;
p < 0.001; AIC = −143), among which nutrients (SiO4

−-Si)
was the most influential environmental variables with the
highest absolute coefficient value. beta.SOR parameterized
to nutrients (NO3

−-N, NH4
+-N, TN, and DIN), and spatial

variables (GD, HD) (adjusted R2 = 0.83; p < 0.001; AIC =−366),
among which nutrients (NO3

−-N, NH4
+-N, TN, and DIN)

were the most influential environmental variables with
high absolute coefficient values. Low and negative AIC
values for all equations indicated the goodness-of-fit of the
equations shown above.

DISCUSSION

Diversity Patterns Incorporating Alpha
and Beta Diversity
Phytoplankton species diversity in the Jiulong River estuary
was calculated at two different scales, namely, alpha and beta
diversity, where alpha diversity reflects with-in site diversity
and beta diversity reflects between-site diversity between sites
or subregions. Different diversity scales represent fundamental
aspects of biological communities (Socolar et al., 2016), and this
is due to the different constructs and mathematical expressions
among the various indices.

For overall alpha diversity across three seasons, H’ and J values
decreased from the upper to middle and then increased from
middle to lower reaches of the Jiulong River estuary. D exhibited
the opposite trend, and S gradually increased from the upper
to lower reaches of the Jiulong River estuary Alpha diversity
patterns were observed to be complex, and this was due to their
multiple indices, which differ in their theoretical foundation and

interpretation (Morris et al., 2014). Moreover, H’ was equally
sensitive to rare and abundant species; J emphasized evenness; D
was sensitive in the presence of abundant species; S was sensitive
to rare species (Shannon, 1948; Simpson, 1949; Pielou, 1969; Peet,
1974; Magurran, 1988; Krebs, 1998; Morris et al., 2014). Observed
patterns in the different diversity indices indicated that species
abundance was relatively evenly distributed in the upper reaches
of the estuary, a greater number of abundant species was observed
in the tributary estuary, while a greater number of rare species
was observed in the lower reaches of the estuary.

For overall beta diversity across three seasons, beta.SOR,
beta.SIM, and beta.SNE values exhibited a general gradient,
gradually decreasing along with an increase in salinity gradients
from the upper to the lower reaches of the estuary. This
trend also reflects the strength of environmental gradients
under the hypothesis that diversity is greater in heterogeneous
environments. In other words, the standard deviation of most
environmental variables in the upper reaches of the estuary was
higher than corresponding values in the middle or lower reaches,
including T, DO, SPM and all nutrients and nutrient ratios
except for NO2

−-N (Supplementary Table 4). Analogously, beta
diversity patterns of the three subregions showed that their
variations gradually decreased from the upper reaches (Area
I) to the middle reaches (Area II) to the lower reaches (Area
III) of the estuary (beta.SOR: 1I−II = 0.146, 1I−II = 0.024;
beta.SIM: 1I−II = 0.114, 1I−II = 0.014; beta.SNE: 1I−II = 0.032,
1I−II = 0.01). Results indicated that phytoplankton communities
in the hyposaline upper reaches of the estuary were the
most diverse and heterogeneous in species composition, while
hypersaline communities were the least diverse and most
homogeneous. Besides, there was not seasonal difference in
spatial pattern of beta.SOR and beta.SIM, which was consistent
with the decreasing gradient aforementioned from the upper to
the lower reaches of the estuary. Slight seasonal variation was
found for beta.SNE, but beta.SNE value was largely lower than
beta.SIM (see Supplementary Table 3).

Beta diversity decomposition can help clarify processes
associated with phytoplankton community construction, which
typically decompose into species replacement (or turnover)
and richness differences or nestedness (i.e., species gain or
loss) (Harrison et al., 1992; Williams, 1996). The relative
importance of these two components may help us better
understand the underlying mechanisms that shape and maintain
community diversity distribution patterns (Baselga, 2010; Podani
and Schmera, 2011; Fu et al., 2019). In this study, beta diversity
patterns in the Jiulong River estuary were mostly dominated
by turnover (spring: 90%, summer: 90%, autumn: 88%), which
appears to be a common phenomenon across a wide range of taxa
in estuary or marine ecosystems, such as macrobenthos (Alsaffar
et al., 2017), aquatic plant communities (Bertuzzi et al., 2018), and
marine fish (Liggins et al., 2015).

When alpha and beta diversity was combined, although
species richness increased along with gradients (i.e., from
the upper to lower reaches of the estuary), phytoplankton
composition became more homogeneous as environmental
differences decreased (see Supplementary Table 4). With-in and
between-site variation are both important to comprehensively
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FIGURE 8 | Relative contribution of environmental variables and spatial distances to phytoplankton diversity of the overall.

explore biodiversity patterns. Since the different scales and the
different levels of biodiversity make it relatively complex, a
single index cannot reasonably be used to explore diversity
patterns. Although a variety of diversity indices have been
developed to express various aspects of biodiversity, there is no
consensus on which diversity index is best (Socolar et al., 2016).
Different indices will yield different diversity patterns, showing
different aspects of the same natural phenomenon. In Jiulong
River estuary, our study indicated that the species richness
of phytoplankton was relatively higher in the lower estuary,
while phytoplankton was more diverse and heterogeneous in
species composition in the upper estuary, informing flexible
conservation strategies in line with different objectives. Thus, it is
better to explore diversity patterns hierarchically, incorporating
both alpha and beta diversity with various other indices.

Key Factors That Shape Phytoplankton
Diversity Patterns
Pearson’s r and stepwise regression results indicated that
a few variables correlated to diversity patterns. To more
comprehensively identify key factors, this study quantified
relative contributions by calculating the absolute coefficient
percentage value to all statistically significant variables
(p < 0.001) obtained from the optimal regression equations (see
Supplementary Figure 2 and Figure 3). Results showed that
environmental variables, including T, NO2

−-N, Sal, N:P, and Si:P,
were the key determinants that shaped alpha diversity patterns
in the Jiulong River estuary (see Supplementary Figure 2).
Differences were observed among the different indices, namely,
NO2

−-N and T in H’ contributed 51 and 49%, NO2
−-N and Sal

in J contributed 52 and 48%, respectively, while a greater number
of environmental determinants in S were observed, including Sal
(42%), NO3

−-N (25%), TN:TP (18%), and WD (15%) (Figure 8).
For beta.SOR, beta.SIM, and beta.SNE, environmental and

spatial factors drove beta diversity, where the total contributions
of environmental variables were 88, 65, and 96% and that of
spatial variables were 12, 35, and 4%, respectively (Figure 8).
Key environmental determinants of beta.SOR included DIN
(36%), TN (5%), NO3

−-N (32%), and NH4
+-N (16%), followed

by spatial variables (12%, GD: 8%; HD: 4%). Environmental
variables contributed of beta.SIM the highest were Si:P (25%),
DIN (16%), PO4

−-P (14%), and TP (11%), followed by spatial
variables (35%, HD:16%, GD: 19%). Compared to the low spatial
variables contribution (4%, HD) of beta.SNE, environmental
variables played a significant role, namely, SiO4

−-Si (38%),
COD (27%), Sal (12%), Si:P (8%), SPM (6%), and N:Si (3%).
Although phytoplankton beta diversity was shaped by the limited
contribution of spatial variables in the Jiulong River estuary,
which could admittedly be due to the relatively small spatial scale
of our study, a significant correlation was observed between beta
diversity and spatial distance (Figures 8, 9), which is in agreement
with findings from previous studies across various taxa in estuary
ecosystems (Josefson and Göke, 2013; Josefson, 2016).

Combined with the key factors that influenced alpha and
beta diversity, our study found that environmental factors
significantly influenced alpha and beta diversity. Moreover, beta
diversity was also influenced by spatial distances. Although many
studies have shown a strong relationship between spatial distance
and beta diversity respective to different taxa in estuarine systems,
such as phytoplankton (Josefson and Göke, 2013), benthic
invertebrates (Josefson and Göke, 2013), and bivalve mollusks
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FIGURE 9 | Relative contributions of nutrients, nutrient ratios and spatial distances in beta diversity.

(Chust et al., 2013), most of these studies focused on passive
dispersal or less mobile species, and the relationship between
distance and highly mobile species in estuarine systems is not
yet clear. In our study, compared with environmental variables,
spatial distance (geographic and hydrologic distance) showed a
lower contribution, for example, only about 12% contribution
of spatial distances to the beta.SOR (Figure 9), which might
be mainly because of the limited spatial scale in Jiulong River
estuary. Thus, it was worthy to examine the contribution of
spatial distance to phytoplankton beta diversity in a larger scale
in further studies.

Roles of Nutrients and Nutrient Ratios in
Shaping Phytoplankton Diversity
Patterns
Our study found high correlations between phytoplankton
diversity indices and environmental variables of nutrients
and nutrient ratios in the Jiulong River estuary, indicating
that nutrients and nutrient ratios contributed significantly to
phytoplankton biodiversity patterns, which is in agreement
with findings from previous studies conducted in similar
estuarine environments (Schoor et al., 2008; Li et al., 2010;
Huang et al., 2013; Chu et al., 2014; Zhang et al., 2015; Anselme
et al., 2018). The relative contribution was quantified by
calculating the percentage of the absolute coefficient value
of all relevant variables that yielded a statistically significant

value (p < 0.001) from optimal regression equations (see
Figures 9, 10). Results showed that nutrients contributed
25, 52, 51, 40, 38, and 88% to S, J, H’, beta.SIM, beta.SNE,
and beta.SOR, respectively, while nutrients ratio contributed
17, 12, and 25% to S, beta.SNE, and beta.SIM, respectively
(Figures 9, 10). In general, nutrients and nutrient ratios
contributed significantly to beta diversity and overwhelmingly
to alpha diversity, where nutrient ratios influenced S,
beta.SIM and beta.SNE and nutrients significantly influenced
beta.SOR.

The results indicated that key variables with greatest
contribution to beta diversity varied among different seasons,
i.e., nutrients in spring, spatial distances in summer and nutrient
ratios in autumn, respectively (see Supplementary Table 4). The
seasonal difference above might due to the variation of specific
variable, such greatest variation of nutrients (TN and TP) found
in spring, nutrient ratios (N:P and Si:P) in autumn; by contract,
the variation was slight for environmental variables in summer,
so spatial distance played a more important role in shaping
communities differences between sites (Figure 9).

Previous studies conducted on nutrient ratios primarily
focused on N:P and Si:P (Schoor et al., 2008; Li et al., 2010; Huang
et al., 2013; Chu et al., 2014; Zhang et al., 2015), while relatively
few focused on Si:N (Li et al., 2010; Chu et al., 2014). Justić et al.
(1995) proposed that P limitation could potentially occur under
conditions where Si:P > 22 and N:P > 22, N limitation could
potentially occur under conditions where N:P < 10 and N:Si < 1,
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FIGURE 10 | Relative contributions of nutrients and nutrient ratios in alpha diversity.

and Si limitation could potentially occur under conditions where
Si:P < 10 and N:Si > 1. In our study, P limitation could
potentially occur under conditions of high Si:P and N:P in
the Jiulong River estuary, where the former ranged from 19 to
933 (118 average) and the latter ranged from 16 to 322 (51
average) (Figure 11). Additionally, the fact that both N:P and
Si:P exceeded a value of 10 at all sampling sites (Figure 11),
the probability of Si and N limitation was low. Our study
found that P was a potential limiting factor in the Jiulong River
estuary, while the estuary was clearly N-enriched, Si-enriched,
and P-limited.

The same nutrient ratio phenomenon was observed in the
Yangtze River and Pearl River estuaries, being the two largest and
most densely populated and economically developed estuaries in
China, where Si:P and N:P values exceeded the recommended
threshold (22) (Yin et al., 2001; Li et al., 2010), indicating that
similar to the Jiulong River estuary, they were also N-enriched,
Si-enriched, and P-limited. However, compared to these two
large estuaries, Si:P, N:P, and N:Si values in the Jiulong River
estuary were all lower (Figure 12), indicating that the nutrient
condition of the Jiulong River estuary was more balanced than
these estuaries, even with respect to the general condition along
the Chinese coast (Figure 12).

Given that different phytoplankton species differ in their
nutrient demands, nutrient concentrations and nutrient ratios
may affect phytoplankton diversity (Redfield, 1934; Paerl and
Justić, 2013). Additionally, N and P are essential nutrients

for all phytoplankton species (Paerl and Justić, 2013), while
Si is mostly specific to diatoms (Officer and Ryther, 1980).
Taking this into account, we inferred that N played a
more important role in phytoplankton diversity patterns than
P and Si in the Jiulong River estuary. This is because
of a nutrient concentration imbalance in different elements
characterized by enriched N, limited P, and specifically Si.
We also found that diatoms became more prevalent in the
Jiulong River estuary as Si concentrations increased, where
diatoms accounted for large proportion of species composition
of the phytoplankton community (i.e., 90% in summer and
87% in autumn). Therefore, nutrient concentrations and
nutrient ratios may influence phytoplankton diversity patterns.
Accordingly, more attention should be paid to trade-offs among
nutrient elements instead of just solely focusing on specific
nutrient concentrations.

Recommended Jiulong River Estuary
Ecosystem Management Practices
Increasingly, beta diversity has been used to guide biodiversity
conservation, such as the design of protected areas, the
identification of priority areas, and the establishment of
ecological corridors (Cody, 1986; Thomas, 1990; Harrison
et al., 1992; Pimm and Gittleman, 1992; Nekola and White,
1999; Myers et al., 2000; Wu et al., 2010; Fattorini, 2011).
The two beta diversity components reflect two different
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FIGURE 11 | The range and average of nutrient ratios. Yellow line represented the range values of nutrient ratio in Jiulong River Estuary, and yellow square
represented their average. Red dashed line represented the threshold of nutrient ratios to inform potential P, N, and Si limitation (Justić et al., 1995).

FIGURE 12 | The average of nutrient ratios in Yangtze River Estuary (Li et al., 2010), Pearl River Estuary (Yin et al., 2001), Jiulong River Estuary and Chinese coastal
waters (Wang et al., 2021). Red dashed line represented the threshold of nutrient ratio to inform potential P, N, and Si limitation (Justić et al., 1995).

or even opposite processes in community construction
(Gaston and Blackburn, 2000; Baselga, 2012); thus, beta diversity
decomposition should be incorporated into biodiversity
conservation rather than accounting for beta diversity
alone (Angeler, 2013). Baselga (2010) suggested that when
turnover dominates, the entire area should be protected,
while when nestedness dominates, only sites or areas with
the highest species richness should be protected to conserve
the entire area. On this account, the entire Jiulong River

estuary should be protected due to its dominant turnover
pattern (accounting for 85%). Additionally, when using
alpha and beta diversity, more attention should be paid to
conserving diverse species composition of phytoplankton in
the upper reaches, and protecting its species abundance in the
lower reaches.

This study showed that the Jiulong River estuary is
N-enriched, Si-enriched, and P-limited, where an excess in N
and Si may lead to eutrophication and impact phytoplankton
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diversity. Compared to the Yangtze River and Pearl River
estuaries, the nutrient status in the Jiulong River estuary was
more balanced. Phytoplankton take up extraneous nutrients at
a fixed ratio (Redfield ratio: C:N:P = 106:16:1; Redfield, 1934) to
meet their own growth and survival requirements, and diatoms
specifically require Si in addition to C, N, and P, absorbing Si and
N on a 1:1 M basis (Officer and Ryther, 1980). Although there is a
strong consensus that N is the primary cause of eutrophication in
aquatic marine ecosystems (Paerl, 2009; Cosme et al., 2015), the
relatively high Si (compared to N) in the Jiulong River estuary
poses a potential algal bloom threat. With an increase in Si
concentrations in the Jiulong River estuary, the composition of
phytoplankton species richness gradually led to the dominance
of diatoms. For example, diatoms accounted for roughly 90% of
phytoplankton species richness in our study, which may impact
phytoplankton diversity. Therefore, instead of solely focusing
on reducing N pollution, it is recommended to also reduce Si
concentrations during ecosystem restoration initiatives. This will
help restructure the phytoplankton community and prevent algal
blooms (via diatoms).

CONCLUSION

Phytoplankton is one of the most susceptible aquatic organisms
to environmental change in estuaries, especially regarding
eutrophication. In this study, phytoplankton diversity patterns
and their potential factors (particularly nutrient concentrations
and nutrient ratios) were examined, using both alpha and beta
diversity in the Jiulong River estuary, China. Our study indicated
that diversity patterns were shown to vary at different scales,
in different seasons and in different indices in Jiulong River
estuary, where the phytoplankton species richness was higher
in autumn and in the lower estuary, while phytoplankton was
more diverse and heterogeneous in its composition in the
upper estuary, highlighting that it is better to explore diversity
patterns hierarchically to inform an effective conservation
strategy. Environmental factors had a significant influence on
both alpha and beta phytoplankton diversity in Jiulong River
estuary, particularly nutrient concentrations and nutrient ratios,

characterized by an excess in N and Si but limited P. Our findings
provide an important information to enhance biodiversity
conservation in Jiulong River estuary in a comprehensive way,
and also offer a practical approach and analytically based
information to protect estuarine or even other marine ecosystem
diversity, which can be applied to other estuaries to better guide
sustainable management and conservation practices.
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