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Formulated diets for animals is the primary source of nutrients in aquaponic systems
that need to maintain beneficial bacteria as well as for plants. Dietary protein is one
of the expensive macronutrients in fish diets, especially when fishmeal is used, and it
is the source of nitrogen (N) for other biotic components. Biofloc has the potential to
serve as the supplement diet for shrimp and reduce the need of expensive protein.
However, it is not clear if low dietary protein will be adequate to support the three
organisms (animals, plants, and bacteria) in an aquaponic system operated with biofloc
technology. The aim of the present study was to investigate the effect of shrimp
feed with different protein concentrations (30, 35, or 40%) on water quality and the
growth performance of Pacific whiteleg shrimp (Litopenaeus vannamei) and three edible
halophytic plants (Atriplex hortensis, Salsola komarovii, and Plantago coronopus) in
biofloc-based marine aquaponics. The experiment was conducted for 12 weeks, the
plants were harvested and seedlings transplanted every 4 weeks. Dietary protein
content did not influence shrimp growth in the current study, indicating that feeds with
lower protein concentrations can be used in biofloc-based marine aquaponic systems.
During the early and mid-stages of cultivation, plants grew better when supplied diets
with higher protein concentration, whereas no differences were observed for later
harvests. Hence, for maximum production with mature systems or in the scenario of
high concentration of nitrate, providing a higher protein concentration feed in the early
stages of system start-up, and switching to a lower protein concentration feed in later
stages of cultivation was recommended.

Keywords: marine aquaponics, crude protein concentration, nutrient management, Litopenaeus vannamei,
halophytic plants, biofloc, sustainable food production

INTRODUCTION

The primary source of nutrients into aquaponic systems is the feed for the animal. Bacteria and
plants then rely on waste excretions from the animal, solubilization of nutrients from uneaten feed
and feces, and/or conversion of nutrients by bacteria as their primary nutrient sources. Among
the macronutrients, protein is the main source of nitrogen (N). Dietary crude protein and the
constituent essential amino acids are vital for the growth and health of animals and waste N is
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excreted primarily as ammonia-N (NH3) across the gills of
aquatic animals. Excreted NH3 can be metabolized by bacterial
colonies within the system to nitrite-N (NO2

−) and nitrate-N
(NO3

−), which plants use as their N source. Several aspects of
nutrient input into aquaponic systems have been evaluated, such
as feeding frequency, feeding regime, feed amount to plant area
ratio, animal to plant ratio, water retention time, and subsystem
ratio (Rakocy, 2012; Liang and Chien, 2013; Lam et al., 2015; Yang
and Kim, 2019, 2020a; Chu and Brown, 2021a). However, the
effects of the dietary protein concentration on aquaponics have
not been fully evaluated.

Meeting the nutritional needs of target crops is vital
for successful operation. Insufficient dietary crude protein
concentrations will result in reduced growth of animals, lower
NH3 excretion and potentially inadequate concentrations of
NO2

− and NO3
− for plants. However, an excessive concentration

of dietary crude protein could result in the accumulation of toxic
nitrogen compounds. Dietary protein in aquatic animal diets is
generally considered one of the macronutrients that influence
the price of feeds; thus, the complex N flow through aquaponic
subsystems is a significant economic consideration. One of
the basic tenets in nutrition is quantification of the minimum
concentration of nutrient that results in maximum response. This
fundamental concept has not been fully explored in integrated
systems where both animal and plant nutrition is important.

Pacific whiteleg shrimp (Litopenaeus vannamei) are the
largest crustacean aquaculture industry globally (FAO, 2020),
can potentially produce 3–4 marketable crops per year, display
high market demand and value, are tolerant of a wide range
of salinities and stocking densities (FAO, 2016; Gao et al.,
2016; Ross et al., 2017; Araneda et al., 2020) and may alleviate
the “economic drain” associated with fish raised in freshwater
aquaponic systems (Quagrainie et al., 2018). The optimal dietary
crude protein concentration for shrimp varies as a function
of several factors, and one of them that influence protein
requirement is biofloc. It is generally considered to be in
the range of 25–45% of the diet (Xu et al., 2012; Xu and
Pan, 2014; Yun et al., 2016; Lee and Lee, 2018; Panigrahi
et al., 2019). The three plant crops (Atriplex hortensis, Salsola
komarovii, and Plantago coronopus) we have been working with
have high nutrient concentrations (Carlsson and Clarke, 1983;
Zhao and Feng, 2001; Koyro, 2006) and have been successfully
grown in marine aquaponics with Pacific whiteleg shrimp
(Chu and Brown, 2021a,b).

Biofloc technology (BFT) is one of the sustainable approaches
used in high-density aquaculture to manage water quality,
especially for shrimp farming (Avnimelech, 1999, 2006; Browdy
et al., 2012). The BFT system deviated from the strictly
recirculating culture systems by relying on heterotrophic bacteria
to help degrade waste products instead of attempting to
maintain nearly pure cultures of chemolithotrophs. Additional
organic carbon input is commonly required to maintain healthy
heterotrophic populations (Crab, 2010; Browdy et al., 2012; Crab
et al., 2012; Xu et al., 2016). Ecosystem services provided by these
diverse microbial communities include the recycling of waste
material and nutrient supply to the target crop (Avnimelech,
1999; Crab, 2010; Browdy et al., 2012; Crab et al., 2012). Several

reports indicated lower concentrations of dietary crude protein
did not significantly affect shrimp growth in biofloc systems (Xu
et al., 2012; Yun et al., 2016). However, it is not clear if low dietary
crude protein will be adequate in an aquaponic system operated
with biofloc technology.

The objective of this study was evaluation of varying
concentrations of dietary crude protein in practical diets fed to
shrimp raised in biofloc aquaponic saltwater systems.

MATERIALS AND METHODS

Aquaponic System Design
Nine experimental systems were designed, constructed, and
used in this research. Systems were located at the Aquaculture
Research Lab (ARL), Purdue University, West Lafayette, IN,
United States (40◦ 25′ 26.4′′ N, 86◦ 55′ 44.4′′ W). Systems
were described previously (Chu and Brown, 2021b). Briefly,
each aquaponic system had 113.6 L aquaculture tank, a 102.2 L
hydroponic tank, and an 18.9 L biofilter tank. Air stones were
placed in every aquaculture, hydroponic and biofilter tank.
Water temperature was maintained within the range of 26–28◦C
using submersible heaters (300w; Aqueon, WI, United States).
The airlift system moved water at a rate of 3 L/min. LED
lights (40w, 5,000 lumens, 4,000K daylight white; Kihung LED,
Guangdong, China) were suspended at a height of 6.5 inches
over the plant growth bed. Photosynthetic photon flux density
(PPFD) was determined by a quantum sensor (MQ-500 Full-
Spectrum Quantum Meter; Apogee Instruments, Inc., Logan,
UT, United States). The photosynthetically active radiation
(PAR) averaged 239 µmolm−2s−1. The photoperiod during the
experiment was set as 14 h light (6:00 am–8:00 pm) and 10 h dark
(8:00 pm–6:00 am).

Biological Material
Shrimp
Juvenile Pacific whiteleg shrimp (Litopenaeus vannamei) were
transported from a private producer (RDM Aquaculture, Fowler,
IN, United States) to the ARL in water of 24◦C and salinity
of 15 ppt. Shrimp were separated into three 700 L tanks
and quarantined for a week before moving into experimental
units. Shrimp were fed twice a day (8:00 a.m. and 5:00 p.m.)
with commercial shrimp feed (Zeigler Brothers, Gardners, PA,
United States) during quarantine. Daily feeding amount was 3.0%
of total biomass, divided into aliquots.

Plants
Seeds of three halophytic plants, red orache (Atriplex hortensis),
okahijiki (Salsola komarovii), and minutina (Plantago
cornonpus), were obtained from a commercial source (Johnny’s
Selected Seeds, Winslow, ME, United States). Seeds were sowed
in horticubes, soilless foam medium (OASIS Grower Solutions,
Kent, OH, United States), and irrigated with fresh water for
a week while germinating. Beginning the 2nd week, sea salt
(Instant Ocean, Blacksburg, VA, United States) was added to
increase the salinity in the irrigation water at a rate of 2–3 ppt
every 2 days to a final salinity of 15 ppt.
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Experimental Design and System
Management
The experiment was conducted for 12 weeks (October 17,
2020 to January 9, 2021). Growth assay of shrimp and
the three halophytes was determined as a function of three
different commercial diets containing 30% (P30), 35% (P35), or
40% (P40) crude protein (Supplementary Figure 1). Specific
ingredients concentrations were proprietary, but all three diets
are commercially available. One week prior to the experiment,
shrimp were weighed and placed in aquaculture tanks to produce
nutrients for plants. The stocking density of shrimp was 300
shrimp/m2 (60 shrimp/tank, 600 shrimp/m3), with an initial
average weight of 1.46 g. A total of 24 plants (8 plants per species)
were stocked in each hydroponic tank, which was equivalent to a
density of 100 plants/m2. Shrimp were fed three times per day at
8:00 a.m., 1:00 p.m., and 6:00 p.m., with a total daily amount of
3.0% of bodyweight divided into aliquots. Plants were harvested
every 4 weeks and new seedlings were transplanted.

Initial water in all experimental systems remained from prior
experiments. In the interim between experiments, evaporative
losses were replaced with well water, constant aeration was
provided to all subsystems and probiotics (EZ-Bio, Bacillus spp.,
Zeigler Brothers, Gardners, PA, United States) were added weekly
at a dose of 10 ppm EZ-bio once a week. Once shrimp moved into
experimental units, additional doses of probiotics were added
every other day in the 1st week, twice per week in the 2nd week,
and once per week beginning in the 3rd week continuing until
the end of the experiment (Crab et al., 2010; Chu, 2014; Chu and
Brown, 2021b). Molasses (Hawthorne Gardening Co., Vancouver,
WA, United States) was provided as an organic carbon source for
the adjustment of C/N ratio. The amount of molasses added was
based on the C/N content of shrimp feed and the carbon content
of the molasses to raise the C/N ratio to 15 (Table 1). If alkalinity
decreased below 75 mg/L, or pH lower than 7.2, potassium
bicarbonate was added to adjust environmental conditions. If pH
rose above 8.0, 10% sulfuric acid was applied.

The nine aquaponic systems used for this experiment were
each randomly assigned to one of three treatments (n = 3).
Throughout the 12-week experiment, no water was discharged or
exchanged, only added to replace evaporative losses.

Measurement of Water Quality
Dissolved oxygen (DO) and temperature (OxyGuard Handy
Polaris DO meter, Farum, Denmark), pH (pHTestr 10 Pocket

TABLE 1 | The amount of molasses needed to get C/N ratio to 15 for the three
commercial shrimp feed.

Product Protein
content (%)

Total
carbon (%)

C/N ratio Amount of
molasses needed

(g/g feed)

SI-30 30 42.1 8.7 0.85

HI-35 35 41.8 7.1 1.2

PL-40 40 42.0 6.9 1.5

Molasses – 35.0 – –

pH Tester, Vernon Hills, IL, United States) were measured
and recorded in each system twice daily at 8:00 a.m. and 6:00
p.m. before feeding. Salinity (Vital Sine Salinity Refractometer,
Pentair Aquatic Eosystems, Apopka, FL, United States) was
determined once per day at 8 a.m. Water samples were
collected twice weekly from aquaculture tanks before feeding, to
determine the concentrations of total ammonia-nitrogen (TAN),
nitrite-N (NO2

−), nitrate-N (NO3
−), phosphate (PO4

3−), and
alkalinity. TAN, NO2

−, NO3
−, and PO4

3− were measured
using Hach methods 8155, 8507, 8039, and 8048, respectively,
using a Hach DR3900 spectrophotometer (HACH, Loveland,
CO, United States). Alkalinity was determined with Hach kit
(HACH, Loveland, CO, United States). Total suspended solids
(TSS) and volatile suspended solids (VSS) were measured once
weekly following United States EPA method 1684.

Growth Performance
Shrimp
Weights and numbers of shrimp were collected at the beginning
and end of the experiment. Feed input was recorded every day
and summed. The following formulae were used to calculate
shrimp responses:

Survival (%) =
Final number of shrimp
Initial number of shrimp

× 100;

Weight gain (%) =

(Final biomass (g) −
Initial biomass (g))

Initial biomass
× 100; and

Specific growth rate (%) =

[Ln (Final biomass (g))−
Ln (Initial biomass (g))]

day
× 100.

Plants
Edible parts of all plants were collected and weighed individually
at the beginning and end of the experiment. Plant samples
were dried in an oven at 100◦C until constant weight and
then measured as dry weight. In addition, dried plant samples
were ground and filtered through a 10-mesh sieve and stored
in plastic vials for nutrient analysis. Plant tissue analysis was
done by the Midwest laboratory (Omaha, NE, United States).
Formula used to calculate plant growth indices and nitrogen use
efficiency were:

Relative growth rate (%) =

[Ln (Final biomass (g))−
Ln (Initial biomass (g))]

day
× 100;

Water content (%) =

(Final fresh weight (g) −
Final dry weight (g))

Final fresh weight
× 100; and,
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Nitrogen use efficiency (NUE) =
g N absorbed
g N supplied

× 100.

Statistical Analysis
Shrimp and plant responses, nutrient concentrations in plants,
and water quality parameters were subjected to analysis of
variance (ANOVA) using JMP Pro 16.0 (SAS Institute Inc.,
Cary, NC, United States). Interactions between treatment
and plant species or harvest time were tested by two-way
ANOVA. Statistical difference between means were determined
by Tukey’s honestly significant difference test (HSD) at
p ≤ 0.05.

RESULTS

Shrimp Response
There were no significant differences in final weight, weight
gain (WG), or specific growth rate (SGR) of shrimp among
dietary treatments (Table 2). Shrimp mortality increased in
the last 2 weeks of the experiment (Figure 1), and most
carcasses were soft-shelled and had traces of being eaten. The
average survival of P30, P35, and P40 treatments was 72.8,
66.1, and 49.4%, respectively (Table 2). To alleviate shrimp
mortality and the increasing TAN, feeding was reduced to
1/3 of the original amount from week 10 until the end
of the experiment.

Plant Response
Plant growth parameters of all three plants were significantly
(p < 0.05) affected by harvest time. Only okahijiki was
also affected by dietary crude protein concentration and the
interaction of dietary crude protein and harvest time (Figure 2).
In general, dietary crude protein concentrations significantly
(p < 0.05) affected the growth performance of red orache
and okahijiki in the first and second harvest, while there were
no significant (p > 0.05) differences among treatments in the
third harvest. Red orache and okahijiki had better final fresh
weight and final dry weight in the P35 treatment in the first
two harvests. In the third harvest, although there was no
difference among treatments, red orache had relatively better
performance in P40 than other treatments, whereas, okahijiki still

TABLE 2 | Growth parameters and survival of Litopenaeus vannamei fed with
three levels of dietary protein in marine aquaponics for 12 weeks.

Parameter Treatment

P30 P35 P40 P

Initial weight (g) 1.46 ± 0.01 1.45 ± 0.01 1.46 ± 0.01 ns

Final weight (g) 9.41 ± 0.68 9.46 ± 1.21 10.41 ± 0.73 ns

WG (%) 546.7 ± 47.1 551.8 ± 83.9 615.0 ± 51.2 ns

SGR (%) 2.22 ± 0.09 2.22 ± 0.15 2.34 ± 0.09 ns

Survival (%) 72.8 ± 2.5 66.1 ± 5.4 49.4 ± 20.2 ns

Each value represents means ± SD.
ns means no significant at p > 0.05.

performed better in the P35 treatment. The growth performance
of minutina was increased with the increasing protein level,
yet there were no significant (p > 0.05) differences among
treatments. The growth of the three plants was significantly
(p < 0.05) increased with harvest time (Figure 2). Red orache
and minutina’s fresh weight and dry weight were 1.5 to
twofold greater in the second and third harvests, and okahijiki’s
fresh weight and dry weight were 2–3 times as great as
the first harvest.

The interaction of plant species and treatment exerted no
significant effect on yield, NUE, or the concentration of N, P,
and K (Table 3). However, the yield, and the concentrations
of N, P, and K were significantly (p < 0.05) affected by plant
species, and NUE was significantly (p < 0.05) affected by plant
species, and treatment. The production of each plant species
was not significantly (p > 0.05) different among treatments.
When comparing the three plant species in each treatment, the
yield and NUE of okahijiki was significantly lower (p < 0.05)
than that of red orache and minutina regardless of protein level;
however, okahijiki contained the highest concentrations of N, P,
and K in tissues. NUE declined with increasing crude protein
concentration, and the lowest NUE of all three plant species was
in the P40 treatment.

Water Quality
During the 12-week experiment, temperature and dissolved
oxygen (DO) were maintained at 26–28◦C and 6.4–7.1 mg/L
in all treatments, respectively. The salinity was monitored and
controlled every day to maintain at 15 ppt. There were no
significant differences (p > 0.05) in alkalinity, TSS, VSS, or
environmental pH among treatments (Figure 3 and Table 4). The
pH in the three treatments decreased over time, but the decrease
was consistent across all treatment (Figure 3).

The concentrations of TAN, nitrite-N, nitrate-N, and
phosphate are shown in Figure 4. The concentration of
TAN and nitrite-N slightly increased after every harvest (day
28 and day 56), but remained below 0.9 and 0.4 ppm,
respectively (Figures 4A,B). However, the concentration of
TAN increased to around 2 ppm in P35 and P40 treatments,
and 1.5 ppm in P30 treatment on day 73 (Figure 4A). The
concentration of nitrite-N in the P35 and P40 treatments was
higher than that in P30 treatment after day 35 (Figure 4B).
Similar to TAN and nitrite-N, the concentration of nitrate-
N was higher in the higher protein treatment. However,
nitrate-N concentrations decreased over time in all three
treatments (Figure 4C). Unlike the fluctuation in nitrogenous
compounds, the concentration of phosphate steadily increased
over time (Figure 4D).

DISCUSSION

Shrimp Growth
Based on these data, dietary crude protein concentrations higher
than 30% do not appear to confer additional benefit to whiteleg
shrimp grown in aquaponic systems with biofloc. Lower dietary
crude protein concentrations commonly results in lower costs
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FIGURE 1 | Weekly (bar) and cumulative mortality (line) of Litopenaeus vannamei fed with three levels of dietary protein in marine aquaponics for 12 weeks.

diets. If there is no benefit feeding higher concentrations of crude
protein, this potentially results in improved economic efficiency.
Several studies have demonstrated that shrimp experience better
growth performance and lower FCR when fed higher protein
diets (Xia et al., 2010; Shahkar et al., 2014; Jana et al., 2021);
however, daily exchanges of water occurred in these studies. In
contrast, other researchers reported that there is the possibility
of reducing dietary crude protein concentration in shrimp feed
without affecting growth performance when BFT is applied
(Xu et al., 2012; Panigrahi et al., 2019). The present study
also implemented BFT and showed similar results to previous
research. These results could be attributed to the microbial
proteins, which serve as a source of supplemental protein
for shrimp in this kind of system (Ballester et al., 2010;
Browdy et al., 2012).

The high mortality rate that occurred at the late stage
of the present study might be related to competition for
space, cannibalism, pH decrease, insufficient ions, or increased
nitrogenous compounds (Abdussamad and Thampy, 1994;
Wheatly, 1999; Nga et al., 2005; Arnold et al., 2006). In
crustaceans, molting is associated with growth, and they are
vulnerable at postmolt, which has been viewed as a period
conducive to disease and dysfunction (Lemos and Weissman,
2021). In the postmolt period, the new cuticle is predominantly
mineralized with external calcium. Furthermore, Zanotto and
Wheatly (1995) reported that the uptake of calcium by shrimp
was reduced by 60% under low pH conditions. Insufficient
calcium in the water or a low pH can retard the calcification
of the cuticle and delay recovery from molting, leading
to mortality and cannibalism (Zanotto and Wheatly, 1993;
Wheatly, 1999). In the present study, pH decreased with
time, which might have contributed to low Ca uptake and

soft-shelled shrimp, along with high mortality in the later stage
of cultivation. Additionally, shrimp without a hard shell are
subject to attacks from fellow shrimp, and toxic substances
(TAN or nitrite-N) are also more likely to penetrate the
membrane into the body and cause poisoning and death (Lemos
and Weissman, 2021). This might be an explanation for the
relatively lower survival in higher protein treatments. More
research is needed to investigate the feeding and calcium
management, and determine the optimal pH range for shrimp-
based aquaponics.

Plants
Similar to the results with shrimp, there were no significant
benefits of feeding higher dietary crude protein concentrations to
yield and NUE of plants. The goal of food production systems is
to optimize nutrient use efficiency in order to increase production
yields while reducing inputs (USDA, 2007). In the present study,
plants provided with 40% dietary crude protein did not return
with higher growth and yield but resulted in low NUE, which
suggested excessive N was provided. Yield was numerically higher
in systems offered 35% dietary crude protein. More importantly,
yield increased over time.

Nutrient requirements for optimal growth of plants varies by
species, growth stage, temperature, pH, and other environmental
factors (Hawkesford et al., 2011; Abbasi et al., 2017; Prieto et al.,
2017). The yield of all three plant species increased significantly
(p < 0.05) with each harvest (Figure 2), which was similar to
the result published by Yang and Kim (2020b). They suggested
the increased production was related to the maturity of the
system. Furthermore, the ratio of NH4

+ to NO3
− and pH

decrease in the present study might also play a role in this
result. Plants grow better when provided a mixed supply of
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FIGURE 2 | Plant growth parameters of red orache, okahijiki, and minutina at three harvest times. Each value represents means. Values within rows followed by
different uppercase alphabet letters indicate significant differences (p < 0.05) between treatments. Values within columns with different lowercase alphabet letters
indicate significant differences (p < 0.05) between harvest times. ns, ∗, ∗∗∗ means no significant or significant at p ≤ 0.05, or 0.0001, respectively.

NH4
+ and NO3

−, while the optimal ratio varies from species
to species, common ratio of NH4

+: NO3
− are 1:9, 1:3, or 1:1

(Hawkesford et al., 2011; Zhang et al., 2019; Yang et al., 2020;
Zhu et al., 2021). At the early stage of the present study, the
concentration of NO3

− (>10 ppm) was relatively higher than
that of TAN (<0.5 ppm) and was the main source of N for
plants in the water. This could be the potential reason for
lower growth at the early stage, because NO3

− assimilation

consumes more energy than ammonium assimilation. Before
plant assimilation, NO3

− has to be reduced to nitrite and
then ammonium by nitrate reductase and nitrite reductase,
respectively (Hawkesford et al., 2011). The concentration of TAN
slowly increased over time, whereas that of nitrate-N presented
in an opposite trend (Figures 4A,C), which resulted in a mixed
nutrient in the middle and late stages of the cultivation, and
this could contribute to the improvement of plant growth in
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TABLE 3 | Average nutrient content, yield, and nitrogen use efficiency (NUE) of red orache, okahijiki, and minutina from the three harvests.

Treatment Plant species N (%) P (%) K (%) Yield (kg/m2) NUE (%)

P30 Red orache 4.52 ± 0.50a 0.58 ± 0.14c 1.77 ± 0.28c 1.45 ± 0.40a 13.88 ± 2.74a

Okahijiki 4.97 ± 0.38a 1.79 ± 0.24a 6.17 ± 0.53a 0.62 ± 0.38b 5.03 ± 1.61c

Minutina 3.87 ± 0.39b 1.38 ± 0.18b 2.31 ± 0.22b 1.82 ± 0.28a 10.54 ± 2.99b

P *** *** *** *** ***

P35 Red orache 4.79 ± 0.38a 0.64 ± 0.15c 1.75 ± 0.20c 1.55 ± 0.28a 13.71 ± 2.69a

Okahijiki 5.05 ± 0.32a 1.67 ± 0.14a 6.77 ± 0.79a 0.78 ± 0.36b 5.70 ± 0.53c

Minutina 3.87 ± 0.34b 1.35 ± 0.15b 2.54 ± 0.17b 1.93 ± 0.72a 9.43 ± 1.60b

P *** *** *** *** ***

P40 Red orache 4.80 ± 0.41a 0.65 ± 0.16c 1.77 ± 0.14c 1.51 ± 0.31a 11.70 ± 1.69a

Okahijiki 5.03 ± 0.31a 1.63 ± 0.21a 6.56 ± 0.61a 0.67 ± 0.34b 4.25 ± 0.97c

Minutina 3.82 ± 0.38b 1.41 ± 0.19b 2.45 ± 0.23b 1.92 ± 0.64a 8.36 ± 1.38b

P *** *** *** *** ***

ANOVA

Plant species *** *** *** *** ***

Treatment ns ns ns ns **

Plant species*Treatment ns ns ns ns ns

Each value represents means ± SD. Values in same columns of each treatment with different lowercase alphabet letters are significantly different (p < 0.05).
ns, **, *** mean no significant or significant at p ≤ 0.01, or 0.001, respectively.

FIGURE 3 | Dynamic of pH in marine aquaponics provided with varying concentrations of protein feeds for 12 weeks. Each point represents the means (±SD) of
three replicates in each treatment.

TABLE 4 | Average concentrations of water-quality parameters (range) in marine aquaponics provided with varying concentrations of protein feeds for 12 weeks.

Treatment Temperature (◦C) DO (mg/L) Alkalinity (mg/L) TSS (mg/L) VSS (mg/L)

P30 27.4 ± 0.2 6.9 ± 0.2 96.0 ± 15.0 38.8 ± 12.1 24.1 ± 9.3

(26.9–28.0) (6.4–7.1) (73–120) (22.2–63.7) (12.7–42.8)

P35 27.4 ± 0.2 6.9 ± 0.2 95.7 ± 19.8 36.5 ± 10.8 22.4 ± 8.1

(27.0–27.8) (6.4–7.1) (67–133) (26.3–66.3) (15.0–43.0)

P40 27.4 ± 0.2 6.8 ± 0.2 104.5 ± 22.3 55.0 ± 22.7 33.8 ± 16.0

(27.0–27.8) (6.4–7.1) (73–140) (28.0–105.9) (14.8–67.2)

Each value represents means ± SD (range).
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FIGURE 4 | The change of TAN (A), nitrite (B), nitrate (C), and phosphate (D),
concentrations in marine aquaponics provided with varying concentration of
protein feeds for 12 weeks. Values are means (± SD) of three replicates.
Lower-Case alphabet letters represent significant differences, followed by one
way ANOVA and Turkey’s HSD test (α = 0.05).

the last two harvests. In addition, the availability of nutrient
elements is higher when pH is lower (Somerville et al., 2014;
Goddek et al., 2019). Therefore, the better growth performance
and production of the three plants in the second and third
harvest might be explained by the mixed factors mentioned
above. More research is needed on successive harvests from
aquaponic systems.

Plank and Kissel (1989) reported the critical concentrations of
N, P, and K in plant tissue are 2.75, 0.3, and 2.0%, respectively.
The result of the plant tissue analysis (Table 3) indicated the
concentrations of N, P, and K were above those values, and
indicated that the plants were not N, P or K limited.

Stoyanova et al. (2019) reported that higher protein content
in fish feed was related to a higher concentration of nitrogenous
compounds and phosphate in the water and contributed to better
production of lettuce. In general, the growth performance of the
three plants in the present study were higher in P35 and P40
treatments than those grown in P30 treatment (Figure 2). This
result aligned with their findings.

Water Quality
The concentration of TAN remained below 0.9 ppm until day 70,
while nitrite-N remained below 0.4 ppm the during the course
of this experiment; however, pH decreased. The change in pH
is likely due to increasing biomass, increasing feed input and
increased CO2 excretion. The decreased pH affects the activity of
nitrifying bacteria and further impacts the process of nitrification
(Jadhav et al., 2010; Satapute et al., 2012). In general, optimal
pH range for ammonia-oxidizing bacteria (AOB) is 7.0–8.0,
and optimal pH for nitrite-oxidizing bacteria (NOB) is 7.5–8.0.
Because of these phenomena, the concentration of TAN and
NO2

− increased at the late stage of cultivation. In addition,
the efficiency of calcium absorption and utilization by shrimp
decreases with decreasing pH and likely contributed to the
mortality in this study.

In the present study, the concentrations of toxic substances
(TAN and nitrite-N) remained at acceptable ranges for shrimp
culture, and this could be attributed to the use of probiotics
and introducing mature water and bio-media from a stable
system. This result aligned with the findings reported by other
researchers (Otoshi et al., 2011; Xu and Pan, 2012; Cerozi
and Fitzsimmons, 2016; Chu and Brown, 2021a,b). TAN can
be stabilized and remain below 0.1 mg/L within 3 weeks
in new systems via inoculating probiotics on a regular basis
(Cerozi and Fitzsimmons, 2016; Chu and Brown, 2021b).
Xu and Pan (2012) demonstrated that the concentrations of
TAN and NO2

− remained under 0.51ppm and 1.25 mg/L,
respectively, by introducing biofloc from an established system
prior to the experiment. Chu and Brown (2021a) reused the
water and bio-media from previous experiment, and the toxic
compounds, TAN and NO2

−, remained below 0.2 ppm the entire
research period.

Steadily increased nitrate-N is commonly occurred in matured
aquaponics and has been reported by other researchers (Nozzi
et al., 2016; Boxman et al., 2017, 2018; Yang and Kim, 2019;
Pinheiro et al., 2020). However, the concentration of nitrate-N in
the present study decreased with experiment time. The potential
factor for this phenomena was the dominance of heterotrophic
bacteria (HB) in the water, which facilitated by the inoculation
of probiotics and additional organic carbon (Xu and Pan, 2012;
Cerozi and Fitzsimmons, 2016; Chu and Brown, 2021a,b). The
dominance of HB hinders the growth of AOB and NOB and
affects the process of nitrification (Zhu and Chen, 2001; Michaud
et al., 2006). Along with the absorption by plants, this can explain
the steady decrease of NO3

− in the present study. More research
is needed to investigate environmental pH, and the effect of
applying commercial probiotics.

Among the research in aquaponics, some researchers reported
low concentrations of PO4

3−, about 1–17 mg/L in the systems
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(Seawright et al., 1998; Al-Hafedh et al., 2008; Endut et al.,
2010; Huang et al., 2021). However, in the present study, the
concentration of PO4

3− accumulated with the experiment time,
which aligned with other studies, and this can be attributed
to several factors, including heterotrophic bacteria dominated
in biofloc results in fewer algae present to absorb P (Xu
et al., 2016), the presence of Na and Cl impacts P assimilation
(Nozzi et al., 2016), and daily P provided from aquafeed
exceeds plant’s ability to assimilate (Yang and Kim, 2020a). Due
to its scarcity and finite supply, phosphorus is an expensive
component in hydroponic solutions (Hawkesford et al., 2011;
Goddek et al., 2015). Between 30 and 85% of the dietary P
input ends up as uneaten feed, fish excretion, and feces, which
is the primary source of environmental contamination (Wu,
1995; Seawright et al., 1998; Schneider et al., 2005). Therefore,
growing plants with aquaculture effluent could address the
issues in both aquaculture and hydroponics. However, the
accumulation of PO4

3− needs to be addressed, both from an
environmental viewpoint as well as the potential ability to
produce more plant crops.

CONCLUSION

Among the findings of the present study, it was found that
shrimp growth was not affected by the protein content of
the feed, suggesting that it is possible to use feeds with
lower protein concentration when culturing shrimp in biofloc-
based marine aquaponics. However, plants grew better in the
treatments with higher protein content feed in the early and
middle stages of the operation. Hence, for a longer period
of shrimp cultivation, providing a higher protein content feed
(35%) until the middle stage and switching to a lower protein
content feed (30%) at the late stage of cultivation might be
feasible. Yet, more research is needed to study the feeding
scheme in biofloc-based marine aquaponics to provide better
guidelines for managing water quality for successful operation
and better production.
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