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As part of Blue Carbon ecosystems (BCEs), detached macrophytes can be transported
to the coast due to current and wave actions, and then deposited on the shore as beach
wrack. To date, the role of beach wrack in the material cycle in BCEs is still unclear. In
order to track the fate of beach wrack, this study conducted a monitoring survey on a
semi-sheltered beach in Odense Fjord (Denmark) using camera trap data. Deep learning
with a VGG network architecture was used to classify the image dataset acquired by
the camera trap. The VGG network demonstrated the capability to identify beach wrack
from different beach scenes, and the method can provide results on large datasets
within a short time (187 images analyzed within 5 min) compared to manual identification
of images. By combining the VGG detection with color-based segmentation, beach
wrack coverage was determined. To evaluate the impact of ambient conditions on
wrack deposition on the shore and relocation back to the sea, wind (including speed
and direction), water temperature, and tidal amplitude were analyzed as environmental
variables. Partial least squares regression (PLSR) analysis revealed that micro-tidal
action with an average amplitude of 0.41 m accelerated the movement of floating
macrophytes between the shore and the sea. Despite being exposed to the prevailing
southwesterly winds (average speed of 11 m/s), the beach was sheltered due to the
location in the inner part of Odense Fjord, limiting the transport of drifting macrophytes
from sea to the shore. By using the camera trap to conduct continuous monitoring, this
study presents a labor-saving and practical approach to track the dynamics of detached
macrophytes deposited on the shore. Furthermore, the application of deep learning in
image identification provides a study case for using a large image dataset to assist in
ecological studies of dynamic environments.

Keywords: beach wrack, camera trap, real-time monitoring, deep learning, image classification, blue carbon
ecosystems

INTRODUCTION

Detached seagrasses and drifting macroalgae are transported to the shore by currents and waves
and deposited as beach wrack (Rodil et al., 2008; Macreadie et al., 2017). Beach wrack is a
worldwide phenomenon along coastlines, providing food source and habitat for coastal life
in coastal meadows, saltmarshes, and mangroves (Dugan et al., 2003; Macreadie et al., 2017).
Furthermore, beach wrack is considered as one of the common ways of exporting detached
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macrophytes in BCEs in addition to deeper-sea transfer (Duarte,
2017; Duarte and Krause-Jensen, 2017). Compared to the
investigation of carbon buried in habitat sediments, exploring
the exported part from BCEs is still a challenge, including the
part transferred to deeper sea and the part deposited on the
shore (Duarte, 2017). Therefore, investigating the deposition
pattern of detached macrophytes on the shore is a priority
to track the exported part from BCEs, which can assist in
thoroughly exploring the fate of this part of exported carbon.
Moreover, beach wrack can become a nearshore emission source
of greenhouse gases. For instance, it was estimated that global
seagrass wrack (around 320 Tg C per year) can release between
1.31 and 19.04 Tg CO2-C per year (Liu et al., 2019). Hence,
monitoring of beach wrack is of significance for the exploration
of the carbon cycle in BCEs.

Nowadays, most of the studies on beach wrack accumulation
are based on field surveys at certain times of the season. For
instance, the annual accumulation of Mediterranean seagrass
wrack was estimated on the basis of 2-week sampling conducted
in spring and summer for 2 years in Mallorca Island, Spain
(Jiménez et al., 2017). This way of manually collecting data
in the field not only requires a lot of human labor, but also
fails to accurately estimate the accumulation of beach wrack
on a seasonal or yearly basis. Moreover, the accumulation of
beach wrack changes greatly in rough weather or over time
scales of hours and days (Jiménez et al., 2017; Perry et al.,
2018). For instance, wrack on the shore may return to the
sea after a storm or drifting marine vegetation may be washed
ashore by forcing waves (Nordstrom et al., 2011; Duarte, 2017).
Therefore, it is necessary to find a less labor-intensive method
to monitor short- and long-term dynamics of beach wrack
accumulation in real time.

Recently, camera technology and handling of large datasets
by computer programs have led to an increased use of camera
trap data in ecological studies (Norouzzadeh et al., 2018).
A camera trap is a type of remote and customized-automatic
image collection (O’Connell et al., 2010; Swanson et al., 2015).
By providing systematic and detailed information about various
species, camera trap images have become a powerful monitoring
tool for ecologists to better understand and protect natural
ecosystems (Swanson et al., 2015; Norouzzadeh et al., 2018).
For example, camera trap images were used to evaluate the
spatial and temporal dynamics of the mammalian species in
a Tanzanian national park (Swanson et al., 2015). However,
there are few studies on monitoring beach wrack with camera
traps (Mossbauer et al., 2012). With minimal disturbance
for the environment, camera traps enable continuous data
collection of beach wrack. Furthermore, camera traps can timely
record the distribution of beach wrack, which helps to study
the movement of detached macrophytes between marine and
terrestrial ecosystems. Yet, it remains a challenge to automatically
extract the desired information from the images. The image
analysis still mainly depends on manual labor contributions
(Norouzzadeh et al., 2018). Although there has been one study
using webcams to record beach wrack, beach wrack was visually
identified and the distribution area was manually calculated from
the images (Mossbauer et al., 2012). As the image database

acquired by a camera trap can include from thousands to
millions of shooting events, manual identification is time-
consuming and needs significant expert knowledge. For instance,
the largest project for surveying wildlife with camera traps in
the world, carried out in a Tanzanian national park, captured
a total of 3.2 million images. The images were classified by
about 68 thousand volunteer scientists (Norouzzadeh et al.,
2018). Moreover, the manual procedures in analyzing the
image cannot fully exploit the captured information, limiting
the potential usages of the image database for other research
and environmental conservation. Hence, automatic extraction
of the valuable information from the camera trap image
databases will further promote the application of camera traps in
ecological studies.

The objective of this study is to explore the potential of
camera traps as tools for short- and long-term beach wrack
monitoring. We aim to (1) propose an effective approach to
identify beach wrack from a time series of camera trap images
and to (2) estimate the contribution of environmental factors to
beach wrack dynamics. Furthermore, we aim to develop camera
trap into a labor- and cost-saving tool to observe the deposition
pattern of detached macrophytes on the shore. This monitoring
survey with camera trap can also provide a practical method
for monitoring the community and dynamics in habitats in
environmental conservation and management.

MATERIALS AND METHODS

Study Area
This study was conducted on a sandy beach (N 55◦31′18.8′′,
E 10◦32′25.4′′), in the outer part of Odense Fjord (Figure 1).
Odense Fjord is located on the Funen Island, Denmark. Funen
has an oceanic climate with an annual average temperature
of 8.7◦C (2000–2010) and an annual average precipitation of
812 mm (Molina-Navarro et al., 2018). Odense Fjord consists
of two parts: the inner part with an average water depth of
about 0.8 m and the outer part with an average water depth
of 2.7 m (Riisgård et al., 2007). The inner fjord accounts for
25% of the whole fjord, where the main tributary is Odense
River (Flindt et al., 2016). The outer part exchanges currents
with the open sea (Belt Sea) through a narrow opening in the
northern fjord, showing more wave activities (Flindt et al., 2016).
Eelgrass (Zostera marina) covering about 2% of Odense Fjord,
perennial macroalgae (Fucus vesiculosus and Fucus serratus)
and opportunistic macroalgae (Ulva lactuca and Chaetomorpha
linum) are the main marine macrophytes in the fjord (Kuusemäe
et al., 2016). Beach wrack consisted of eelgrass Z. marina,
macroalgae F. vesiculosus, green algae Ulva sp. and other red algae
that remained unidentified due to their stage of decomposition.
During snorkeling surveys in a 0.5 km radius near the coast,
patches of seagrass Z. marina, macroalgae F. vesiculosus, and F.
serratus were found (Figure 1).

Acquisition of Camera Trap Images
By being fixed on a stick, a Seissiger Special-Cam S358E camera
trap was placed 0.4 m above the ground to photograph wrack
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FIGURE 1 | Panel (A) shows the location of the study beach and potential nearshore marine macrophyte subsidies for beach wrack (Denmark’s Area Information,
Danmarks Miljøportal). The map in the left corner in panel (A) shows the bathymetry of Odense Fjord, where the study beach is located. Panel (B) is the subsidy area
of macroalgae Fucus vesiculosus and Fucus serratus, identified by snorkeling. Panel (C) is the subsidy area of eelgrass, Zostera marina, identified by snorkeling.

on the shore during 06/12/2019–27/01/2020. The camera trap
was mounted with an optical lens and an infrared sensor, which
enabled shooting at night. Combined with field measurement, it
was estimated that ∼6,000 m2 (120 m × 50 m) of the beach area
was shot with an eye-level camera angle (straight ahead). After
turning off the movement trigger function and video recording
function, the mode of photo-shooting was set with a time interval
of 2 h and each shooting took one image. The camera trap was
enclosed by a robust and waterproof case, making it suitable for
collecting data in the field. In total, 632 images were acquired.
Due to the short daylengths in Danish wintertime, around 36%
(226 images) of the total achieved images were taken in daylight
(mainly during daytime 08:00–16:00). Owing to the limited
spectral information of the objects captured in darkness, the
images taken in the dark were manually excluded from further
image analysis. Furthermore, the out-of-focus images (39 images)
caused by rough weather, such as foggy and rainy weather, were
also excluded. Hence, about 30% images (187 images) were used
for further image analysis.

After the field investigation of beach scenarios, the image
dataset was divided into two general categories according to

whether the beach was submerged by sea water or exposed to
air (Table 1). The beach wrack distribution was divided into
categories and subscenes based on the visual interpretation of the
beach wrack distribution recorded in the images (Table 1).

Beach Wrack Identification From the
Image Dataset
The obtained digital images were in RGB (red, green, and blue)
color space where the color components, such as the luminance
and chrominance, are presented as a combination of red, green,
and blue, resulting in the lack of component quantization
(Ganesan and Rajini, 2014; Hassan et al., 2017). With the purpose
of fully extracting the information of land objects captured by
camera trap, the acquired digital images were converted to the
HSV (hue, saturation, and value) model where all the color
components in the image can be expressed with different values
of color (hue), color depth (saturation), and brightness (value)
(Ganesan and Rajini, 2014; Ajmal et al., 2018).

Afterward, the deep learning with a convolutional neural
network architecture called VGG-16, developed by the Visual
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TABLE 1 | Beach scenarios and scenes of wrack distribution on the shore recorded in the camera trap images.

Category of
beach scenario

Scene of beach
wrack distribution

Description of beach wrack distribution Image (%) Example of beach scene recorded in the raw
camera trap image

1 1 The beach was entirely submerged. There was
no wrack on the shore.

21

2 The beach was partly submerged. There might
be wrack on the shore.

19

2 1 Low beach wrack distribution, indicating beach
wrack was scattered or there was no wrack on
the shore.

10

2 Medium beach wrack distribution, indicating
that beach wrack was distributed in patches,
and wrack coverage was lower than half of the
beach area.

41

3 High beach wrack distribution, indicating that
wrack covered more than half of the beach
area.

9

Geometry Group (VGG) from the University of Oxford in 2014
(Simonyan and Zisserman, 2014), was performed to identify
beach wrack from the time series camera trap images. In
order to reduce the running time and computational burden of
the proposed VGG network, the region of interest (ROI) was
restricted to the beach part after visual interpretation of the
camera trap image. As all the captured images were same size,
ROI for all the images was obtained by the trained VGG network
after visual interpretation. To describe wrack distribution on
the shore, the proportion of wrack pixels in the total number
of pixels in the ROI was considered as the coverage of beach
wrack. As an algorithm that can locate every pixel in the
image, color-based segmentation was applied here to calculate
beach wrack coverage based on the identification result by
the VGG network (Abu Shmmala and Ashour, 2013). When
training the VGG network, the image dataset was randomly
divided into 80% for training and 20% for validation. For
training purposes, the dataset was manually labeled as water
and beach wrack. After 10 epochs of deep learning, the VGG
network provided an accuracy of 0.94 with a loss 0.15 on the
training dataset and 0.77 accuracy with a loss of 0.43 on the
validation dataset.

To further assess the proposed method, manual recognition
was applied to evaluate the capability of the proposed method to
estimate the coverage of beach wrack in the camera trap images.
For this purpose, about 20% of the images were randomly selected
from each scene of beach wrack distribution as a verification
set for manual recognition. An image interpretation software,
eCognition, was used to determine beach wrack coverages in
the verification set through manual recognition. By comparing
beach wrack coverages achieved by the two methods of manual
recognition and the proposed identification method, the accuracy
of VGG algorithm for beach wrack identification was evaluated
using equation (1).

VGG network accuracy (%)

= (1−
| Coveragemanual− CoverageVGG|

Coveragemanual
) × 100% (1)

Where VGG network accuracy represents the accuracy of the
VGG network in identifying beach wrack from the image (in
%); Coveragemanual represents beach wrack coverage obtained by
manual recognition (in %) and CoverageVGG represents beach
wrack coverage obtained by the VGG network (in %).
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When the beach was fully submerged, beach wrack coverage
was zero identified by manual interpretation. In this situation,
equation (1) for evaluating VGG network performance could
not be used as Coveragemanual = 0. For this fully submerged
beach scenario, the average coverage difference of beach wrack
identified by the two methods was used to describe the
performance of VGG network. Smaller coverage differences
indicated better performance of VGG.

All the processes for image analysis described above were
performed in OpenCV.

Environmental Factors Driving Beach
Wrack Dynamics
To investigate the impact of ambient environments on beach
wrack deposition and relocation, wind (including wind speed
and direction), water temperature, and tidal amplitude were
considered here as the environmental drivers of beach wrack
dynamics. Partial least squares regression (PLSR) was performed
in R to evaluate the contribution of environmental factors to
beach wrack dynamics.

The environmental data were obtained from the Danish
Meteorological Institute (DMI). The hourly wind data were
from the station Røsnæs Lighthouse, measuring the wind speed
and direction blowing through the Great Belt Strait. The
hourly water temperature data were from the measuring station
Slipshavn located in the Belt Sea. The tide table from the
measuring station in Odense Fjord (Gabet) provided the daily
high and low tides. Here, the tidal amplitude was calculated to
represent the wave activity. When using PLSR, the environmental
variables corresponding to each image event were represented
by the average values of the environment factors between
two image events.

RESULTS

Automatic Beach Wrack Identification by
the Proposed 3-Step Method
After detecting the ROI, wrack on the shore was identified by
the proposed VGG network, and then beach wrack coverage was
estimated (Figure 2). The proposed algorithm demonstrated the
ability to identify beach wrack in different beach scenes recorded
by a camera trap. Furthermore, the identification ability of the
VGG network showed gradual improvements as beach wrack
coverage increased on the shore (Table 2). For the two scenes
where the beach was partially submerged (Category 1 of beach
scenario, Scene 2 of beach wrack distribution) and the beach
was not submerged but with scattered wrack (Category 2 of
beach scenario, Scene 1 of beach wrack distribution), the VGG
network showed similar capabilities of beach wrack identification
compared to manual recognition (Table 2). When there was more
wrack on the shore (Category 2 of beach scenario, Scene 2 of
beach wrack distribution), the VGG network performed better
with an identification accuracy of 70.25% (Table 2). When wrack
deposition increased further on the shore (Category 2 of beach
scenario, Scene 3 of beach wrack distribution), the VGG network

had an improved performance in wrack identification of 92.04%
accuracy. When it came to the scene where the beach was entirely
submerged (Category 1 of beach scenario, Scene 1 of beach wrack
distribution), an average of 1.7% of the water was misidentified as
beach wrack (Table 2).

Beach Wrack Dynamics Over
Environmental Variation
During the camera trap monitoring period, the prevailing
wind was from southwest, accounting for 61% of the wind
events, followed by northwest wind (18% of the wind events)
(Figure 3A). About 60% of the prevailing winds were above 10
m/s, and gale events (wind speed above 17 m/s) accounted for
5% of all the wind events. Water temperature ranged from 3.9
to 9.1◦C with an average of 6.3◦C during the monitoring period
(Figure 3B). There was a drop in water temperature from 8◦C
(on 17/12/2019) to 3.9◦C (30/12/2019) during late December
2019. The average tidal amplitude was 0.41 m with the highest
value of 0.59 m and the lowest value of 0.25 m (Figure 3C).
Unlike the regular tidal cycle twice per day, wind (including speed
and direction) and water temperature showed larger changes in
December 2019 than in January 2020 (Figure 3). For instance,
during the time period of Dec. 8–15 in 2019, wind increased from
12.3 m/s (Time: 03:00 on 10/12/2019) to 21.4 m/s (Time: 22:00
on 10/12/2019). Accordingly, the wind direction changed from
north to south (Figure 3A).

During the nearly 2-month monitoring period, 155 events of
wrack deposition on the shore were captured (Figure 4). The
maximum beach wrack coverage was up to 63.76% (16:26 on
07/01/2020). Approximately 35% beach wrack events were at a
low deposition (< 10% of the beach area). There were about
61% beach wrack events with the coverage of 10–50%. About
4% beach wrack events were with a high deposition (>50% of
the beach area). The residence time of the wrack on the shore
was very dynamic during the monitoring period (Figure 4).
Detached macrophytes could stay constantly on the beach with
an average coverage of 15% for about 98 h (Dec. 25–29 in
2019), while they could be frequently washed up onshore and
then back to the sea within several hours. For instance, a large
amount of drifting macrophytes were washed to the beach in
2 h, leading to an increase in coverage from zero to 45% (14:26–
16:26 on 12/12/2019) (Figure 4). Then most of beach wrack
was washed back to the sea 16 h later where the coverage of
beach wrack decreased to 0.35% (08:26 on 13/12/2019). There
were approximately 30 events of beach wrack deposition with
such dynamic changes, accounting for 19% events of beach wrack
deposition observed during the monitoring period.

Evaluated by PLSR, tidal amplitude had the largest impact
on beach wrack deposition, negatively affecting wrack deposition
on the shore (regression coefficient = –0.12, Table 3). As tide
changed from low to high (flood tide), drifting macrophytes
were transported to the beach enhanced by tidal-driven waves,
and then brought back to the sea by ebb tide (from high
to low), resulting in short time deposition of wrack on the
beach. Water temperature showed a positive relationship with
beach wrack deposition probably due to the amount of wrack
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FIGURE 2 | An example of the VGG network identifying beach wrack from a camera trap image: panel (A) is the raw camera trap image in RGB color space, shot at
12:26, 08/12/2019, the red square shows the beach captured in the image (region of interest, ROI); panel (B) is the ROI after conversion to the HSV color model;
panel (C) is the beach wrack identification result of the VGG network, highlighted in yellow and showing a coverage of 15.19%.

TABLE 2 | The evaluation of VGG algorithm performance in identifying beach wrack obtained from the verification set (20% of images from each beach wrack
distribution scene).

Category of beach
scenario

Scene of beach
wrack distribution

VGG network accuracy
(mean ± SE, %)

Example of image identification result

Raw image Manual recognition VGG identification

1 1 (n = 4) 1.70 ± 0.54*

2 (n = 4) 61.38 ± 6.72

2 1 (n = 2) 64.26 ± 0.42

2 (n = 8) 70.25 ± 7.10

3 (n = 2) 92.04 ± 0.85

The red square shows the ROI of beach captured in the raw image. Beach wrack identified manually and by VGG are highlighted in green and yellow, respectively. The value
in the image shows the estimated beach wrack coverage. *For the situation here (the beach was entirely submerged), the VGG network performance was represented by
the average coverage difference in beach wrack between manual and algorithm identification. The smaller the difference, the better the algorithm performance.

decreased with decreasing water temperature as the growth
season ceased in winter as well as the physical fragmentation of
beach wrack (regression coefficient = 0.11, Table 3). According

to the PLSR result, wind direction had a negative impact on
beach wrack deposition, which meant that winds from the
directions observed during the monitoring period (including
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FIGURE 3 | Variation in the ambient environmental factors at the study beach during the monitoring period. Panel (A) is the hourly wind data, where the color of the
wind rose in panel (A) indicates the wind direction (0–360◦) and the height of the column represents the wind speed (m/s). Panel (B) is the hourly water temperature
(◦C) and panel (C) is the daily tidal amplitude, representing the difference between the high and low tides (m).

FIGURE 4 | Wrack dynamics on the study beach during the camera trap monitoring period, achieved by the VGG network identification from the image dataset.
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TABLE 3 | Contribution of environmental factors to beach wrack deposition
evaluated by Partial least squares regression (PLSR).

Environmental factor Regression coefficient

Tidal amplitude -0.12

Water temperature 0.11

Wind direction -0.08

Wind speed 0.05

the prevailing southwesterly winds) removed beach wrack from
the shore (regression coefficient = –0.08, Table 3). Wind speed
showed a positive effect on beach wrack deposition (regression
coefficient = 0.05, Table 3), which indicated that higher wind
speed increased the movement of floating macrophytes to the
shore during the survey period.

DISCUSSION

Beach Wrack Monitoring by Camera Trap
and Using Deep Learning for
Interpretation of Images
With the capability of learning characteristics of image contents,
the deep learning method, in general, and the VGG network
architecture, in particular, has been applied to a wide range of
research fields in recent years, such as detection of leaf disease
in agriculture and identification of animals in conservation
areas (Simonyan and Zisserman, 2017; Norouzzadeh et al., 2018;
Sujatha et al., 2021). Here, the proposed VGG network showed
the ability to identify beach wrack in the camera trap images.
The performance of the VGG network was generally improved
with the increase in areal coverage of wrack in the image. When
wrack on the shore increased from scattered (<10% of the beach
area) to large areas (>50% of the beach area), the identification
accuracy of the VGG network improved from 61 to 92%. The
ability of the VGG network to learn the characteristics of beach
wrack was enhanced as wrack feature information extracted
from the image increased. During the training of the VGG
network, some wave shadows were misidentified as beach wrack,
especially when the beach was entirely submerged. To improve
the identification accuracy of the proposed approach under
near submerged beach scenarios, the learning ability of VGG
algorithm can be further developed in the future by combining
it with other machine learning algorithms during analysis of
the image dataset.

This in-situ monitoring survey of beach wrack indicated that
camera trap can be applied for real-time monitoring of beach
wrack in the field. Traditional methods of manual sampling
several times within a specific period can lead to a bias in the
estimation of deposition patterns of beach wrack due to the
uneven distribution of beach wrack over time. For instance,
the daily input and output of floating macrophytes in Biscayne
Bay (Florida) was estimated based on three manual sampling
times conducted in 1 year (May, August, and December) where
each sampling was with a duration of 5–8 days (Biber, 2007).

In this study, the application of camera trap to automatically
shoot the scene of beach wrack deposition every 2 h provided
a labor-saving way to conduct continuous monitoring of beach
wrack deposition. In future work, functional sensors, such as
multispectral and radar sensors (Klemas, 2013), can be equipped
on the camera trap to collect biomass information of beach wrack.
Combined with beach wrack coverage estimated by the VGG
network, the quantification of beach wrack can contribute to
estimation of the production exported from BCEs.

Although some studies have successfully applied Unmanned
Aerial Vehicles (UAVs) to map and monitor beach wrack, the
operation of UAVs are strictly limited to weather conditions in
the field. UAVs are sensitive to wind speeds and have a maximum
wind speed tolerance of 10 m/s and requires clear and cloudless
weather (Pan et al., 2021). In contrast, camera trap can be
applied in a wide range of environmental conditions. Here, the
camera trap still performed well in cloudy and rainy weather, and
approximately 68% raw images used for the algorithm analysis
were shot in cloudy weather (examples in Tables 1, 2) and despite
53% of the wind events exceeded 10 m/s during the monitoring
period, the scene of beach wrack deposition was successfully
recorded. Furthermore, the ability of the VGG network proposed
here to identify beach wrack from a large dataset of images with
different shooting backgrounds, also showed that camera trap
monitoring was feasible for field data collection. Usually, the
qualities of images acquired by camera trap are not as perfect
as by manual operation as the shooting conditions of camera
trap are affected by external factors in the field, such as the
light conditions and weather on site (Norouzzadeh et al., 2018).
During the camera trap monitoring period here under rough
weather conditions in autumn and winter, there were about 39
blurry images caused by poor shooting light and bad weather,
which were manually excluded from image analysis. Additionally,
only 30% of the acquired image dataset was analyzed due to
the failure of VGG network to detect images taken at night. In
future field monitoring, shorter time interval between camera
shootings can be set to acquire more images which are qualified
for the training of the VGG network. Furthermore, to further
save labor work and make full use of the image dataset, VGG
network should be developed to identify images shot at both
daytime and nighttime as well as the unfocused images. The
increase in the number of images will not affect the efficiency of
image analysis by the VGG network, as labor inputs are saved
to a large degree (Hsing et al., 2018; Tabak et al., 2019). In this
study, it took about 20 min to manually recognize and estimate
the coverage of beach wrack from one image, whereas it took
around 5 min to achieve the image identification results and the
estimation of beach wrack coverage from all the 187 images by
using the VGG network.

When the method has been sufficiently developed, large
datasets can be analyzed very fast, saving hours and days of
labor work and increasing the information of beach wrack
dynamics significantly. Similarly, in a study using camera trap
to monitor wildlife in conservation habitats, it was estimated
that >17,000 man hours were saved by relying on deep
learning with a VGG network architecture in the process of
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identification of animals from about 3.2 million camera trap
images (Norouzzadeh et al., 2018). Thus, the large image dataset
acquired during continuous monitoring by camera traps can be
analyzed efficiently using deep learning approaches.

Beach Wrack Dynamics Coupled With
Environmental Factors
This study demonstrated that deposition and relocation of
detached macrophytes on the shore as beach wrack was very
dynamic in natural environments. A large amount of floating
macrophytes were deposited on the shore in a couple of hours,
and then returned to the sea after a short time on the shore. In
one event beach wrack coverage increased from zero to 45% in
2 h followed by a decrease to 0.35% within 16 h and the same
pattern was repeated on several occasions, indicating that drifting
macrophytes were frequently washed between the beach and sea.
Similar findings of high dynamics in beach wrack deposition were
also observed along the coastline in Baltic Sea and Mediterranean
(Hammann and Zimmer, 2014; Jiménez et al., 2017; Chubarenko
et al., 2020). For instance, through weekly field sampling in the
western Baltic Sea, it was found that beach wrack was relocated
to coastal waters within weeks, leading to the decrease of beach
wrack amount from∼2,000 to∼300 g per meter of beach within
weeks (Hammann and Zimmer, 2014).

In this study, where the location was characterized as micro-
tidal with an average tidal amplitude of 0.41 m, the tidal
amplitude still affected beach wrack deposition with large
movements during tidal actions. Similarly, high dynamics in
annual deposition of beach wrack (range of 3,594–9,189 g dry
weight per meter of beach) was observed under meso- and
macro-tidal conditions (range of 2–4 m and >4 m, respectively)
(Colombini et al., 2000; Orr et al., 2005; Barreiro et al., 2013).
These studies support that regular tidal actions (flood and ebb
tides) accelerate the resuspension and redeposition of beach
wrack. Furthermore, wind direction had an impact on the
wrack deposition, with lowest deposition, when winds were from
westerly directions. The beach was generally sheltered being
located inside Odense Fjord, but westerly winds removed more
wrack from the beach compared to winds from the easterly
directions. This finding was supported by previous study on
seagrass export to the shore in northwest Mediterranean where
beach wrack showed different states on the exposed beach and the
sheltered one (steadier on the sheltered beach) under prevailing
winds (exceeding 6 m/s) (Jiménez et al., 2017). Similarly, another
study found that wind events did impact wrack deposition on
both exposed and sheltered beaches along the coastline in Barkly
Sound (British Columbia) when wind speed was >2.8 m/s (Orr
et al., 2005). In future work, together with local wind patterns
(including wind speed and direction), this monitoring survey of
beach wrack dynamics can be expanded to beaches with varying
exposure to wind directions along coastlines in different regions
to investigate the regional pattern of beach wrack deposition.

During the monitoring period, beach wrack deposition
generally decreased along with a decrease in the water
temperature. The general trend of beach wrack deposition
decreasing over time was probably as this survey was conducted

in winter, where the growth of macrophytes has ceased after the
growth season (Pessarrodona et al., 2019). The decrease in beach
wrack was twofold due to the physical fragmentation of wash up
as well as decomposition of macrophytes in the fjord and the
transport of wrack to deeper waters (outside Odense Fjord). In
British Columbia (Canada) coastal area beach wrack accumulated
more in winter compared with other seasons (Wickham et al.,
2020), whereas a survey along German Baltic coasts found that
wrack on the shore increased in late summer and fall (Mossbauer
et al., 2012). As the monitoring period here (around 2 months)
was relatively short, longer time-scale monitoring survey must be
carried out to address seasonal variations.

CONCLUSION

The proposed approach of real-time monitoring beach wrack
with a camera trap not only provided an effective way to
track the detached macrophytes exported from BCEs but also
a practical solution for the discontinuity of field monitoring
data in ecological research. Furthermore, the application of deep
learning provided a time- and labor-saving method for the
analysis of large image datasets, promoting the application of
camera trap in ecological monitoring survey and environmental
management. In future work, functional sensors can be equipped
on the camera trap to collect biomass information of beach wrack,
and longer-time monitoring surveys can be carried out along
coastlines in various areas to obtain temporal and spatial patterns
of beach wrack deposition.
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