
fmars-09-813024 March 18, 2022 Time: 16:3 # 1

ORIGINAL RESEARCH
published: 24 March 2022

doi: 10.3389/fmars.2022.813024

Edited by:
Cristiana Moreira,

University of Porto, Portugal

Reviewed by:
Peimin He,

Shanghai Ocean University, China
Pedro R. Costa,

Portuguese Institute for Sea
and Atmosphere (IPMA), Portugal

*Correspondence:
Yiping Ren

renyip@ouc.edu.cn

Specialty section:
This article was submitted to

Marine Pollution,
a section of the journal

Frontiers in Marine Science

Received: 11 November 2021
Accepted: 18 February 2022

Published: 24 March 2022

Citation:
Sun M, Li Y, Ren Y and Chen Y

(2022) Redefine Sustainable Fisheries
Targets Under the Impact of the

Southern Yellow Sea Green Tide:
Mitigating the Recurring Surge

in Natural Mortality.
Front. Mar. Sci. 9:813024.

doi: 10.3389/fmars.2022.813024

Redefine Sustainable Fisheries
Targets Under the Impact of the
Southern Yellow Sea Green Tide:
Mitigating the Recurring Surge in
Natural Mortality
Ming Sun1,2, Yunzhou Li1,2, Yiping Ren1,3,4* and Yong Chen2

1 College of Fisheries, Ocean University of China, Qingdao, China, 2 School of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, NY, United States, 3 Field Observation and Research Station of Haizhou Bay Fishery
Ecosystem, Ministry of Education of the People’s Republic of China, Qingdao, China, 4 Laboratory for Marine Fisheries
Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao,
China

The massive green tide blooms caused by macroalgae Ulva in the Southern Yellow Sea,
China, threaten the local fish populations. However, green tides are not factored into
the determination of sustainable fisheries targets, which hinders the achievement of the
maximum sustainable yield (MSY). Using a local fishery as a case study we highlighted
the need to redefine the MSY-based targets in the face of green tides. We modeled the
green tide blooms as natural mortality events and evaluated their effects on fisheries
with the “green-tide-free” sustainable fishing intensity FMSY. We then recalculated these
targets by accounting for the surges in natural mortality. We found that green tides
caused at least 10% losses in biomass and catch when unaccounted for. Additionally,
FMSY must be reduced by 4–8% to achieve MSY in the face of the green tide, which
was approximately 20% lower than the “green-tide-free” value, indicating the damages
of green tides could be partially mitigated.

Keywords: green tide, harmful algal bloom, natural mortality, sustainable fisheries, Yellow Sea

INTRODUCTION

Harmful Algal Blooms (HABs) have been increasingly occurring in recent years worldwide,
threatening the well-being of fish stocks and fisheries (Burkholder, 1998; Zhang J. et al., 2019; Liu
et al., 2021a,b; Zhuang et al., 2021). From the perspective of fisheries ecology, HABs are considered
as an event that can cause dramatic surge in natural morality of fish, which is not only hard to
quantify in retrospect but also hard to predict in advance (Ward and Tunnell, 2017). As a socio-
economic and ecological interfaced sector, capture fisheries can be susceptible to HABs even when
well managed. For example, fish kills due to red tides are among the most critical ecological issues
in the Gulf of Mexico (Cruz-Rivera et al., 2015; Ward and Tunnell, 2017; Harford et al., 2018). The
severe red-tide event in 2005 caused a quadrupled natural mortality for the Gulf of Mexico red
grouper, which translated into the fish biomass loss of 11,000 mt (Southeast Data, Assessment, and
Review [SEDAR], 2015). The summer-long HAB in the Lake Erie from 2011 to 2014 resulted in
more than five million dollars loss for the local recreational fishery (Wolf et al., 2017). Commercial
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shellfish fisheries in the Gulf of Maine and North American
West Coast were also strongly impacted by local HABs events
and suffered economic losses (Jin and Hoagland, 2008; McCabe
et al., 2016). The red tides in the Seto Inland Sea, Japan, has been
causing huge fishery damages in natural bivalves for more than
four decades (Imai et al., 2006; Imai and Yamaguchi, 2012).

Factoring the influence of HABs into fisheries management is
crucial to the achievement of sustainable fisheries (Burkholder,
1998). The definitions and operational targets of sustainable
fisheries may vary by case, but the fundamental idea is to fish
at an optimal level to maximize the yield without compromising
the stock productivity to preserve the long-term yield, defined as
maximum sustainable yield (MSY) (Beverton and Holt, 1957).
The MSY can also be defined with the fishing mortality (F)
imposed on the stock (i.e., FMSY) and the equilibrium stock
biomass (B) supporting MSY (BMSY). Natural mortality is a
key vital rate in estimating these quantities. However, this is
challenging in the face of HABs. Natural mortality is difficult
to estimate; most practical stock assessment often assumes it as
invariants (Brodziak et al., 2011; Then et al., 2015). Additionally,
distinguishing HABs-related mortality from the total natural
mortality is even more difficult, since the direct link between
natural mortality and HABs is vague. Previous approach to
incorporate HAB into fisheries population dynamics is to treat it
as a natural mortality event (Harford et al., 2018). The increases
in natural mortality were assumed to be related to the intensity
of HABs, linked by a standardized index quantifying intensity
of blooms (Walter et al., 2013; Southeast Data, Assessment, and
Review [SEDAR], 2015). Nevertheless, this method was only used
to advise modifications of pre-existing catch limits (Harford et al.,
2018), not to address more general concerns in defining targets
for sustainable fisheries.

The green tide in the South Yellow Sea, China, caused
by the expansion of Ulva prolifera is the largest HABs ever
reported for macroalgae (Liu et al., 2013). Since the first
appearance in 2007, green tides have occurred for more than
15 consecutive years offshore Jiangsu and Shandong provinces
(Liu et al., 2010; Zhang Y. et al., 2019). The recurrence of
the green tide has a rather consistent temporal pattern: the
bloom-forming U. prolifera starts to dominate the small-scale
local algal community in the southern part of the Yellow
Sea in late April to early May, and then moves northward
under the influence of wind and currents, followed by massive
blooms in the whole coastal area to the south of the Shandong
peninsular in June and July (Sun et al., 2008; Zhou et al.,
2015; Zhang Y. et al., 2019). Satellite and field observations
indicate that the green tide biomass originates from the
Neopyropia maricultural facilities (particularly rafts), which
serve as nurseries for U. prolifera (Liu et al., 2010, 2021c,
2022; Zhang Y. et al., 2019). When the synergistic effects of
environmental factors such as temperature, light intensity, and
wind are suitable, U. prolifera would proliferate and rapidly
develop into large-scale HABs (Cui et al., 2015; Gao et al.,
2017). The local eutrophication level is also considered a
major contributor to the periodically recurring blooms, which
is reported to exacerbate in recent years due to the growing
inputs from land and aquaculture wastes (Xing et al., 2015;

Zhang et al., 2015). The socio-economic damages caused by
the Yellow Sea green tide are substantial. The unprecedented
bloom in 2008 inflicted a considerable direct economic loss
of 2.8 billion RMB (∼440 million USD), including the 2
billion RMB governmental expenditures to handle the floating
algal mat and the 800 million RMB direct economic losses
of the local aquaculture industry (Ye et al., 2011). Green
tides also bring great environmental harm to the Yellow
Sea. Documented changes in environmental indicators include
increased seawater pH, decreased oxygen concentration rate,
and increased bacterial abundance (Zhang Y. et al., 2019). The
consequent hypoxia and acidification may take tolls on the entire
marine ecosystem (Backer, 2009; Ye et al., 2011; Lewitus et al.,
2012; Glibert et al., 2014).

Unfortunately, there are no assessments on the green tide’s
effects to the Southern Yellow Sea fisheries. Given that the Yellow
Sea contributes more than 25 million tons of marine fisheries
catch (MARA, 2018), the increased natural mortality due to green
tides could have already impacted the status of fish population
as well as the yields. We do not have adequate information on
the Yellow Sea fisheries and the green tides to include green
tides in stock assessment, not to mention to assess their impact
to fisheries management. Recent studies based on data-limited
methods have defined model-based sustainable targets (such as
FMSY and BMSY) for some fisheries in the Southern Yellow Sea
and showed that the biomass of major commercial fisheries is
below the BMSY level (Sun et al., 2018a,b; Wang et al., 2020).
However, it is still largely unknown to what extent green tides
contribute to the loss as they were never considered in the
process of developing fisheries management regulations and
stock assessment, rendering the previously defined FMSY and
MSY less reliable.

The present study uses a fishery in the Southern Yellow Sea
as a case study, aiming to evaluate the biomass and catch losses
of fisheries under predefined FMSY and MSY in the face of
green tides, and redefine their values by accounting for green
tide blooms. The green tide blooms are modeled as an event
that cause periodically recurring surges in natural mortality
for the fish population. The outbreak period of green tides is
modeled based on its relatively consistent temporal patterns
(Sun et al., 2008; Zhou et al., 2015; Zhang Y. et al., 2019).
The magnitude of surge in natural mortality rates is related to
the intensity of green tide blooms based on the historical data.
Influences of green tides on the fishery are projected under
different bloom intensities. Through the simulation, we expect
to highlight the damages in the Southern Yellow Sea fishery
due to green tides that were not well studied and understood
and provide guidance for improved estimation of sustainable
fisheries yields.

MATERIALS AND METHODS

Study Region and Data
We focused our study on the southern part of the Yellow
Sea offshore Jiangsu and Shandong provinces (Figure 1). This
region was selected because commercial fishing and green tide
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FIGURE 1 | The southern part of the Yellow Sea offshore Jiangsu and Shandong provinces as study region. A fishery is simulated based on the random-stratified
survey data from the illustrated region (Xu et al., 2015). Approximate monthly distribution of the green tides is shown in different colors.

outbreaks were overlapped according to previous observation
and monitoring (Xu et al., 2015; Zhang Y. et al., 2019).
We used the historical green tide records since 2007 from
a series of publications to derive the intensity of bloom by
year (Liu et al., 2013; Zhou et al., 2015; Zhang Y. et al.,
2019). The intensity of the blooms was primarily measured
with the size of algal distribution area (Figure 2A). The data
for the fishery in the region were provided by a fisheries-
independent survey (Xu et al., 2015). The survey followed a
random-stratified station design and has provided sufficient data
to support the development of a fisheries projection simulator
which was used in this study as the simulation platform
(Sun et al., 2021a). Other than this, fisheries in the Southern
Yellow Sea were subject to limited data, resulting in the lack
of formal stock assessment and harvest control rules (Sun
et al., 2018a). We simulated a fishery in the region based on
the small yellow croaker fishery (Larimichthys polyactis). We
linked the green tide blooms to the population dynamics of
the fishery and performed simulations under different bloom
intensities to showcase the dynamics of fisheries under the
impact of green tides.

Linking Natural Mortality With Green
Tide Bloom
Green tides can affect fish populations in many ways. In this
study, the green tide bloom was modeled as a periodical recurring
event, based on the data we had, that caused surge in natural

mortality rates (M) of the fish stock. This approach has been
adopted to advise fisheries management in the Gulf of Mexico
to counter the substantial fish kills due to the local harmful red
tide blooms (Southeast Data, Assessment, and Review [SEDAR],
2015; Harford et al., 2018).

In the realm of stock assessment, M was notoriously difficult
to determine. Prevailingly, empirical methods developed from
metadata were used as the most reliant approach to provide M
estimates, which would be subject to large prediction errors at
the case-specific level (Then et al., 2015). To cope with this issue,
we designed a workflow to repetitively generate a range of M
estimates for each year with available data. The workflow started
by estimating von Bertalanffy growth parameters (asymptotic
length L and growth rate K) with the genetic algorithm-based
electronic length frequency analysis (Taylor and Mildenberger,
2017). This approach was sensitive to the initial guess value and
might return different joint estimated L and K at convergence.
Each set of determined L and K were then used to calculate M
following:

M = 4.118K0.73
× L∞−0.33 (1)

which was widely recommended as the most reliable estimator
for M (Then et al., 2015). 200 sets of M estimates were generated
for the period from 2011 to 2018.

These M estimates were then investigated for their
relationships with the green tide bloom intensity of the
same year. Due to the lack of a standardized bloom intensity
index, we chose the distribution area of the green tide as the
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FIGURE 2 | (A) Historical green tide intensity measured with distribution
areas, where the intensities of the 12 historical documents are categorized
into high (red), medium (yellow), and low (green) levels. (B) The linear
relationship fitted between the log-transformed natural mortality and the green
tide bloom intensity. (C) The values of natural mortality multiplier under the
historical bloom intensity (indicated with the red dots).

intensity indicator. The bloom intensity would shape M via a
multiplier to the baseline natural mortality rates (M0) with the
function (Harford et al., 2018):

BIy = log(θy)/c (2)

where BIy is bloom intensity in year y, θ is the multiplier, and c is
a scaling constant. The M affected by blooms would be:

My = M0 · ec · BIy (3)

where My is the shaped natural mortality rate, and M0 is the
baseline natural mortality rate set constantly at 0.2. Here we did
not consider the age effect in natural mortality.

The parameterizations for Equations (2) and (3) were
determined using the estimated M and the corresponding green
tide bloom intensities in the historical years. Log-transformation
was performed to Equation (3) to convert it into a linear model
with ln (My) and BIy being the responsive and explanatory
variables, respectively. We then conducted a linear regression
analysis as demonstrated in Figure 2B. The slope parameter was
significantly different from zero (P < 0.05), indicating that the
log-transformed natural mortality rate was positively related to
the green tide intensity for each year. The established linear
relationship was used in the following part of the study to deduce
a consequent multiplier for M when different green tide bloom
intensities were simulated (Figure 2C).

Simulation Framework
The employed simulation platform was essentially a closed-
loop projection framework simplified from a fisheries population
dynamic model (Sun et al., 2021a). The framework modeled the
key ecological processes for the population including migration,
spawning, mortality, and growth (Figure 3). The simulated
fishery and stock were parameterized according to the small
yellow croaker in the region, which was one of the four China’s
major domestic commercial fisheries (Table 1). The projection
framework forwarded on a monthly time step and accounted
for the management measures that were realistically applied in
the region, including the 4-month summer moratorium (from
the beginning of May to the end of August), the local no-
fishing zone, and the mesh size limits regulated as the national
standard (Table 2).

The natural mortality process was specifically enriched to
accommodate the impact of green tides. Historical records
indicated that the green tide occurred in a fairly consistent
temporal pattern (Zhang Y. et al., 2019): it emerged at the
beginning of May in a small scale, followed by a rapid escalation
and maintained at peak level until the end of July. Therefore, we
assumed full bloom intensity for June and July, and half intensity
for May. The increase in M would occur at an annual level
calculated with Equation (3), which was then allocated into May,
June, and July proportionally according to the bloom intensity.
Consequently, a bump in M would be formed within each year as
a result of green tides (Figure 3). The height of the bump would
be dictated by the bloom intensity. Note that we did not consider
other factors influencing M so that the baseline M scenario free
of green tide was a flat line.

Simulation Scenario
Projections were performed under a suite of scenarios featuring
different green tide bloom intensities. The baseline scenario
without green tide was set as a reference. We grouped the 12-year
historical green tide bloom into high, medium, and low intensity
levels and used them to set three corresponding simulation
scenarios (Figure 2). The simulated stock was projected for 20
years for each of these scenarios. The projections were designed
to be stochastic using the Monte Carlo approach (Arunraj et al.,
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FIGURE 3 | Flowchart of the simulation framework used in this study. The framework is connected by three models and the components under them. Two types of
natural mortality pattern are simulated in this study to mimic the population dynamics unimpacted (green panel) and impacted by the green tide (red panel).

2013), where the bloom intensity in each simulated year would
be sampled from the distributions containing the corresponding
historical intensities. The projections were iterated for 1,000
times. The intermediated time length (20 year) was deemed as an
optimal temporal scale, because short-term projections would be
too short to demonstrate the influence of green tides, while long-
term projections might be less robust when neglecting dynamics
from other drivers that could affect natural mortality, such as
climate change. The fishing intensity was set constantly at a level
that could lead to the (FMSY). The values of FMSY and MSY were
determined from the baseline scenario (Figure 4) and applied to
all scenarios, although the complications in M might render these
estimations biased, which were revealed by the simulations.

Performance Metrics
The influence of green tides on the simulated fishery was
evaluated with a set of metrics. We used the total stock biomass
as the ecological indicator because it represented the status of
fish population. Catch yielded by the fishery was also examined.
The four scenarios were compared for their performance in
final stock biomass and total catch over the simulation period.
Considering that the onset of green tide would induce fish kills
undesirable to management, it would be necessary to revisit
the determination of optimal exploitation level under such
circumstances. Therefore, we further investigated how fisheries
management should adapt to the existence of green tides by
recalculating the optimal fishing level FMSY under different
bloom intensities. This was achieved by plotting the catch at

TABLE 1 | Population dynamics simulated with the projection model.

Process Details

Migration Nts+1,i,a = Nts,i,a × migration.factor

where N = abundance, ts = time step, i = patch, a = age,

migration.factor = 46.49% (November) and 161.33% (May)

Movement Tb
ts, i =

Tmax

1 + Ae
−

ln(A)
B∗i

× Sts,i

Tts,i = Tb
ts,i ×

Sts,i
Pi∑ Sts,i

Pi

× 2

where Tb
ts, i is the basic movement rate for patch i in time step ts,

Tts,i is the final movement rate, Tmax is the maximum movement
rate (1), A = 9, B∗i indicates the carrying capacity of patch i
measured with biomass (1460.75 and 65.62 mt), and Sts,i is SSB,
Pi indicates the size of patch i (95.66 and 4.34% of the region)

Spawning R = α × S
1+β × S

where R = recruited age 1 abundance, S = spawning biomass,

α = 0.1427, β = 2.56 * 10−9

Mortality Zts,i,a = Mts,i,a + Fts,i,a

Nts+1,i,a = Nts,i,a × eZts,i,a

where Z = total mortality rate, M = natural mortality rate

Growth Wa = W∞ × (1− e−k×(a− t0))
3

where W = weight, W∞ = asymptotic average weight, k = Brody
growth rate, t0 = theoretical age at zero weight

equilibrium under a wide gradient of fishing mortality rates and
identifying the fishing mortality rates that corresponded to the
peak value of the curve (Figure 3). The BMSY and MSY derived
from the recalculated optimal exploitation levels were compared
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TABLE 2 | Management measures simulated for the fishery.

Measure Details

Summer moratorium Effective from the beginning of May to the end of August. During this period, fishing mortality rates are considered as 0 for the simulated
fishery.

Local no-fishing zone Effective year-round. Modeled with a two-patch spatial structure. The fishing mortality rates in the closed patch are 0. The size of the closed
patch accounts for 4.34% of the study region (Li et al., 2019).

Mesh size limits Effective year-round. The selectivity curve is shaped by this regulation. As a result of this, selectivity for age 1 is 0.45, while other age groups
are fully selected (Sun et al., 2018a).

FIGURE 4 | Catch at equilibrium under different fishing mortality rates for the
simulated fishery without green tide blooms. The maximum sustainable yield
(MSY) and FMSY are identified as the peak of the curve indicated by the green
dot.

among the four scenarios. The final age-structures were also
compared to demonstrate any potential age-dependent patterns.
The projections to recalculate FMSY were also iterated for 1000
times to account for the associated uncertainty in intensities of
green tide blooms.

RESULTS

Biomass and Total Catch Under Various
Green Tide Bloom Intensities
The simulated biomass and catch were demonstrated with their
trajectories over the simulation period and final distributions for
four simulation scenarios (Figure 5). In general, the occurrence
of green tide strongly affected the stock biomass and total catch.
The biomass trajectories fell consistently below the baseline
scenario throughout the simulation (Figure 5A). The final
biomass was reduced for the baseline scenario by approximately
100 mt (10%), 150 mt (15%), and 300 mt (>20%) when the
intensities of green tide bloom were low, medium, and high,
respectively (Figure 5C). The variations in biomass due to
stochastic sampling were negligible, likely because the historical
bloom levels were relatively similar within each intensity group.
The trends and final distribution showed a pattern highly

similar to that for biomass (Figures 5B,D), except that the
disparity in the final total catch among different bloom intensities
were much larger.

Maximum Sustainable Yield Reference
Points Under Various Green Tide Bloom
Intensities
The catch at equilibrium was plotted against the gradient of
fishing mortality rates for four simulation scenarios to determine
the scenario specific FMSY and MSY (Figure 6). MSY was
determined as the peak value of the curve, while FMSY was the
fishing mortality rate corresponding to the peak. Compared to the
original value defined from the baseline scenario free of green tide
at 0.25, the adjusted values of FMSY in the context of green tide
were reduced to 0.24, 0.24, and 0.23 when the intensities of green
tide bloom were low, medium, and high, respectively. However,
the values of MSY were greatly reduced for approximately
20, 30, and 40 mt for the low, medium, and high scenarios,
respectively. The biomass at equilibrium (BMSY) was also strongly
reduced for these scenarios (Figure 7). Specifically, the median
BMSY estimated under the low, medium, and high green tide
bloom intensities were 1,195, 1,122, and 1,034 mt, respectively,
compared to the baseline scenario at 1,263 mt. The variations in
BMSY were also negligible. The age structure at equilibrium was
compared for the four scenarios (Figure 8). The abundance-at-
age was reduced as the intensity of green tide increased from
low to high. However, the age structure was not truncated by
the occurrence of green tide at any intensity, indicating that the
consequent surge in natural mortality did not accumulate over
age when age-specific mortality was not accounted for.

DISCUSSION

Overall, green tides proved to affect fisheries in the Southern
Yellow Sea in two ways: (1) they cause losses to fishery by
reducing population biomass and catch, and (2) they force
the targets of sustainable fisheries to be redefined to mitigate
their negative effects. Projection results demonstrated that losses
in stock biomass and total catch were obvious even at low
bloom intensity when fishing at the pre-defined FMSY, which
was regarded as the optimal exploitation level without green
tides. This finding underscores the risk of ignoring green tides
in fisheries management and the necessity to redefine sustainable
targets under such circumstances. This conclusion aligns with
the simulation results from Harford et al. (2018), which report

Frontiers in Marine Science | www.frontiersin.org 6 March 2022 | Volume 9 | Article 813024

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-813024 March 18, 2022 Time: 16:3 # 7

Sun et al. Sustainable Fishery Under Green Tide

FIGURE 5 | Simulated biomass (A) and total catch (B) trajectories under different green tide bloom intensities. The distributions of the final biomass (C) and total
catch (D) are also presented.

an increased risk of overfishing and the stock being overfished
when blooms are not considered during setting catch limits. This
study also revisited the threshold of sustainable management
approaches by reevaluating MSY, which was the most important
reference point in fisheries.

Effects of Green Tides Bloom to
Maximum Sustainable Yield
Variations in the FMSY and MSY were observed when assessing
the management effects at equilibrium under different fishing
mortality rates. The reductions in FMSY were minor, while
reductions in BMSY and MSY were much larger, indicating
that the damages caused by green tides could only be partially
compensated by reducing exploitation rates. Harford et al.
(2018) tested precautionary and reactive modifications to the
original strategies as two management alternatives for the Gulf
of Mexico red grouper assuming that dynamics of blooms could
be unpredictable and that FMSY could be difficult to estimate.
These two approaches showed trade-offs between catch and
biomass, which are identical to our observation from the adjusted
FMSY curve (Figure 6). Age structures were not truncated by
green tides, mainly because we did not incorporate age-specific

mortality effects in our simulation. The age-unspecific model
design is adequate, given that there is currently a lack of
supportive materials addressing the age-dependent vulnerability
of fish to green tides or similar HABs.

Fisheries Modeling in the Context of
Green Tides Bloom
Modeling the occurrence of green tide as a periodically recurring
event causing surge in natural mortality is a feasible approach
to accommodate green tide in fisheries stock assessment
and management. Linking fish kills to natural mortality is
straightforward and can avoid introducing additional processes
as well as uncertainty that may be hard to quantify (Burkholder,
1998; Glaser et al., 2014).

There are two factors that need to be considered when
contemplating the natural mortality event related to HABs. First,
the natural mortality event may have different characteristics
under different temporal resolutions. Fisheries assessment
models pervasively assume constant natural mortality rates due
to the difficulty in estimating their values (Johnson et al., 2015).
In this case, the occurrence of green tides would result in episodic
natural mortality fluctuations that are unable to be specified
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FIGURE 6 | Catch at equilibrium under different fishing mortality rates under different green tide bloom intensities. The red dots indicate the fitted FMSY and MSY for
each scenario. The green dots indicate the FMSY and MSY for green tide-free scenario.

FIGURE 7 | The distribution of BMSY under different green tide bloom
intensities.

for their magnitudes with the annual level stock assessment.
Nevertheless, many HABs have relatively consistent seasonal
patterns, such as green tides in the Southern Yellow Sea and
the summer-long HAB in the Lake Erie, which may result in

seasonal surge in natural mortality rates to fish populations
(Wolf et al., 2017; Zhang Y. et al., 2019). It is not only
meaningful but also realistic to reconcile the interannual and
interseason characteristics. In this study, we achieved this task by
linking annual natural mortality rates to the intensity of green
tides bloom and specifying the seasonality of surge in natural
mortality. Specifically, we estimated natural mortality rates for
separated years based on growth parameters (Then et al., 2015)
and performed projections with month time-steps to reflect the
bloom seasonality. This approach is applicable to other fisheries
with similar issues.

The second factor that needs to be addressed is the
quantification of HAB intensity. Standardized intensity
indicators are necessary to develop comprehensive fisheries
management strategies as suggested by previous practices
(Walter et al., 2013; Southeast Data, Assessment, and Review
[SEDAR], 2015). Due to the limited data with fisheries and green
tides, the size of the distribution area of U. prolifera is the only
reliable and coherent indicator among years (Zhang Y. et al.,
2019). Although the positive relationship between annual natural
mortality rates and the size of distribution area is significant
(P < 0.05), the predicting ability of such relationship still needs
to be justified with more years of documentations. Modeling
the spatial overlap of fish distribution and green tide coverages
and tracing multispecies interactions may also be promising
approaches to link HABs effects to single-species fisheries
management (Walter et al., 2013; Sagarese et al., 2014; Grüss
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FIGURE 8 | The final abundance-at-age (A) and age-structure (B) under
different green tide bloom intensities.

et al., 2016). However, these approaches are data intensive and
require the underlying models to be developed. There need to
be achieved by developing more comprehensive survey station
designs to fill the gaps in spatial coverages of green tides and
fisheries-independent survey. Despite this, it is still critical
to implement the “best available science” to develop more
proactive management actions to ensure sustainable fisheries in
the face of green tides (Burkholder, 1998; Sullivan et al., 2006;
Harford et al., 2018).

Fisheries Management in the Context of
Green Tides Bloom
Current management measures imposed on the fisheries in the
Southern Yellow Sea are considered in the simulation, including
summer moratorium, spatial closure, and mesh size limits. These
measures are not originally implemented to counter green tides,
and do not even constitute a robust management system against
other sources of uncertainties (Sun et al., 2021b). The summer
moratorium in China is the largest and most comprehensive
temporal fisheries closure in the world, lasting 4 months from
May 1st to August 31st in the Yellow Sea. This closure period
perfectly overlaps with the genesis, development, and flourishing
or the green tides (Zhang Y. et al., 2019), whose damage to
the fish populations as well as the marine ecosystem might
have been partially offset. If the fishing efforts in summer
are not constrained by the summer closure, fish populations

in the Yellow Sea could suffer higher mortality rates due to
the combinational effects from intensive fishing and green tide
blooms. It is also possible that fishing vessels would not be
able to operate in the region covered by algal mats, resulting
in reduction in catches. Either way, the temporal overlap of
fishing and green tides would result in substantial ecological
and socio-economic loss. Nevertheless, the summer closure in
China has rarely been systematically described or discussed for
its conservation contributions to fisheries (Xing et al., 2020).

Although the current management measures may alleviate the
adverse effects of green tides on fisheries to a certain extent,
specific management guidance still needs to be developed to
ensure sustainable fisheries management under the recurring
surge in natural mortality. Narratives provided by Harford et al.
(2018) depict an applicable roadmap to modify the setting of
catch limits for fisheries with extensive stock assessment and
database. To achieve similar tasks in the Yellow Sea, three issues
must be resolved. First, the current data condition of fisheries can
only support management modifications based on data-limited
methods and management procedures (Sun et al., 2018a), which
requires further modifications in methodologies to account for
surges in natural mortality at a finer temporal scale. Second,
modeling the linkage between green tides and fisheries also
requires more analysis on remote sensing and ecology data to
establish standardized indicators that can be used in fisheries
modeling and assessment (Anderson et al., 2001; Walter et al.,
2013). Besides inducing increasing mortality to fish populations,
green tides can also provide food source and spawning places
for many marine organisms, which complicates the interaction
between green tides and fish population dynamics (Liu et al.,
2020). Last but not the least, future dynamics of green tide blooms
in the Southern Yellow Sea may be unpredictable and hard to be
explicitly considered in fisheries management decision making.
Specifically, environmental factors such as water temperature,
nitrogen concentration (eutrophication), and thermal conditions
prove influential to the occurrence of green tides in a complex
manner (Cui et al., 2015; Gao et al., 2017). However, it has been
confirmed that these factors are subject to changes due to climate
changes and human activity in the coastal China region (Ma
et al., 2019). Future studies dedicated to achieving sustainable
fisheries management against green tides and HABs must address
these issues by incorporating related factors into not only stock
assessment but also monitoring design.
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