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The recently discovered Onnuri hydrothermal vent field (OVF) is a typical off-axis
ultramafic-hosted vent system, located on the summit of the dome-like ocean core
complex (OCC) at a distance of ∼12 km from the ridge axis along the middle region
of the Central Indian Ridge (CIR). The plume chemistry with high methane anomaly
was consistent with the precursor of hydrothermal activity; however, the fundamental
characteristic of the OVF system, such as the hydrothermal circulation process and
source of heat, remains poorly understood. Here, we focus on the geochemical features
of surface sediments and minerals collected at and around the OVF region in order
to better understand this venting system. The results reveal that the OVF sediments
are typified by remarkably high concentrations of Fe, Si, Ba, Cu, and Zn, derived from
hydrothermal fluid and S and Mg from seawater; depleted C-S isotope compositions;
and abundant hydrothermally precipitated minerals (i.e., Fe–Mn hydroxides, sulfide
and sulfate minerals, and opal silica). Notably, the occurrence of pure talc and barite
bears witness to strong hydrothermal activity in the OVF, and their sulfur and strontium
isotope geochemistry agree with extensive mixing of the unmodified seawater with high-
temperature fluid derived from the gabbroic rock within the ultramafic-dominated ridge
segment. The findings reveal that the OVF is a representative example of an off-axis,
high-temperature hydrothermal circulation system, possibly driven by the exothermic
serpentinization of exposed peridotites. Given the widespread distribution of OCC with
detachment faults, furthermore, the OVF may be the most common type of hydrothermal
activity in the CIR, although the paucity of data precludes generalizing this result.
This study provides important information contributing to our understanding of the
ultramafic-hosted hydrothermal vent system with a non-magmatic heat source along
mid-ocean ridges.
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INTRODUCTION

Because of the importance of the hydrothermal vent system in
ocean chemistry, earth dynamics, and biological communities,
as well as the increasing interest in massive metal deposits,
the exploration of mid-ocean ridges has recently increased
dramatically, revealing considerable diversity in hydrothermal
systems. Hundreds of hydrothermal vents (more than 500 sites),
including hydrothermal sulfide deposits, have been discovered
and investigated, mainly in the Pacific and Atlantic Oceans
(Hannington et al., 2011; Beaulieu et al., 2013, 2015; German
and Seyfried, 2014). In the Indian Ocean ridges that are up to
approximately 18,000 km in length (28% of the global total),
however, only a few hydrothermal vent sites (i.e., the Dodo,
Solitaire, Edmond, Kairei, and Longqi vent fields) have been
visually confirmed (e.g., Nakamura et al., 2012 and reference
therein; Tao et al., 2012). In the Indian Ocean ridges with
various speeding rates (<12–60 mm/yr in full spreading rate),
the hydrothermal vent systems are expected to vary in accordance
with diverse geological and tectonic features (German et al., 1998;
Wang et al., 2011; Beaulieu et al., 2015); however, these ridges
remain underexplored relative to the Pacific and Atlantic ridges,
and thus available data regarding their hydrothermal vents is still
very limited. In this respect, recent systematic ridge expeditions
at the Central and Southwest Indian regions and their results have
been receiving scientific attention (e.g., Son et al., 2014; Park et al.,
2017; Suo et al., 2017; Liao et al., 2018a,b, 2019; Zhou et al., 2018;
Choi et al., 2021).

Systematic deep-sea exploration recently uncovered four new
active hydrothermal vent fields in the middle region of the
Central Indian Ridge (CIR) between 8 and 14◦S, where ridge
morphology and tectonic structure (e.g., detachment faults
and ocean core complexes, OCCs) control increased plume
incidence at ridge flank and rift wall locations (Kim et al.,
2020). These hydrothermal vent fields, located more than 800 km
north of previously known vent fields (i.e., the Dodo and
Solitaire fields, Nakamura and Takai, 2015) are characterized
by particle-poor, diffuse venting with abundant vent fauna
and sulfide deposition. Notably, these new hydrothermal vents
show diverse venting styles and plume compositions, attributed
to distinctive hydrothermal fluid formation conditions and
transport pathways in the slow- to ultraslow-rate spreading
ridge setting (Son et al., 2014; Kim et al., 2020). In particular,
the Onnuri hydrothermal vent field (OVF) site, located on
the summit of OCC at a water depth of ∼2,000 m in
Segment 3 (Figures 1A–C), is attracting considerable scientific
attention because of its isolated location, diffuse venting style,
methane-rich plume composition, ultramafic-hosted system, and
community of hydrothermal vent fauna. Specifically, water
column plumes from this vent site are characterized by negative
oxidation-reduction potential anomalies, high dissolved methane
(CH4) concentrations, and low dissolved metal concentrations
(Kim et al., 2020). Interestingly, the preliminary observation and
plume chemistry suggest that the OVF may be a low-temperature
hydrothermal vent, probably supported by the exothermic
serpentinization process (Kim et al., 2020). This venting system is
thus quite different from the well-known basaltic-hosted venting

systems of high-temperature and metal-rich black smoker, driven
by magmatic activity in the CIR (e.g., Dodo and Edmond sites,
Tivey, 2007; Nakamura and Takai, 2015). However, solid evidence
for the serpentinization reaction (e.g., heat source) and the fluid
temperature of the OVF is still lacking.

Recently, hydrothermal sediments and minerals have received
increasing attention because their geochemical signatures can
provide useful information for grasping the character of the
associated hydrothermal system, such as the composition, source,
and temperature of the fluid, the source of heat, and the process of
seawater/fluid interaction (e.g., Cave et al., 2002; D’Orazio et al.,
2004; Dias and Barriga, 2006; Dekov et al., 2011; Eickmann et al.,
2014; Liao et al., 2019; Zhang et al., 2020). In particular, sulfur
and strontium isotopic compositions of hydrothermal minerals –
barite and talc – strongly depend on the fluid from which they
precipitate and are therefore ideal for tracing the nature of
fluid/rock interaction and estimating the formation temperatures
of the minerals (e.g., Paytan et al., 1993; Melekestseva et al.,
2014; Zhang et al., 2020). In the ultramafic-hosted OVF with
a low magma supply, the hydrothermal process and fluid
composition are expected to result in different geochemical
compositions of sediments compared to those of magma-driven,
basalt-hosted hydrothermal vent fields. However, geochemical
and mineralogical investigations of the ultramafic-hosted vent
sediments are relatively poor.

In this study, we present geochemical (elemental and isotopic
compositions) and mineralogical features of hydrothermal
sediments (conceivably containing distinct hydrothermal
components), collected in and around the OVF in the middle
region of the CIR. Of particular interest in this study is the
occurrence of peculiar hydrothermal minerals (i.e., hydrothermal
talc and barite) and their geochemical and isotopic compositions,
providing deeper insights into nature of this hydrothermal
vent system. The implications of this study, including new
geochemical-mineralogical data regarding the hydrothermal
deposits in the CIR, include the ability of the OVF to contribute
valuable information for better understanding of hydrothermal
vent systems in the Indian Ocean.

STUDY AREA

The middle region of CIR (8–18◦S; approximately 700 km of
ridge length) is typical of slow-spreading ridges (34–45 mm/yr
in full spreading rate, Park et al., 2017), with axial valleys of 500–
1000 m relief and spreading segments connected by transform
faults and non-transform offsets (Son et al., 2014). OCCs exposed
by detachment faults are common features in this area and
may lead to extensive hydrothermal circulation at off-axis sites;
notably, these faults may be the primary path for hydrothermal
fluids that ascend in off-axis regions (Boschi et al., 2008; Park
et al., 2017). The OVF with abundant vent fauna located on the
summit of dome-like OCC (11◦24.9′S, 66◦25.4′E; a water depth
of∼2,000 m) at a distance of approximately 12 km from the axial
neo-volcanic zone.

The OVF’s general characteristics (e.g., bathymetry, geological
settings, basement rock compositions, plume chemistry, and
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FIGURE 1 | (A) Map showing the Indian Ocean ridges and (B) the location of the Onnuri hydrothermal vent field (red square) and (C) sampling sites. (D) Photographs
showing zonation of the active OVF (Widths of photographs are ∼6 m, Kim et al., 2020). Note the fissures filled with vent fauna indicating possible diffuse flow and
the clusters of various living vent fauna. CIR, Central Indian ridge, SWIR and SEIR, Southwestern and Southeastern Indian ridge; OVF, Onnuri hydrothermal vent field.

fauna diversity) were outlined by Kim et al. (2020). In brief,
hydrothermal fluid in the OVF typically effuses from the fissures
of basement rock, and no typical chimney structure is observed
(Figure 1D). Around the OVF, small chimney fragments,
altered rocks, and Fe-oxide crust are widely distributed in
an area approximately 100–150 m in diameter. Numerous
hydrothermal animals (21 macrofaunal taxa) have been observed
on and around the diffuse vent, with a distribution range of

approximately 100 m in diameter from the vent; these animals
include mussels, gastropods, crabs, shrimps, barnacles, and
anemones. Rock samples dredged at the OVF have indicated
that the basement rock of the vent field consists primarily of
altered gabbroic and ultramafic (i.e., serpentinized-peridotite)
sequences. Furthermore, breccia-type sulfides collected by rock
dredges have displayed thin greenish layers of copper (Cu)-
bearing secondary minerals. The plume over the OVF site is

Frontiers in Marine Science | www.frontiersin.org 3 February 2022 | Volume 9 | Article 810949

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-810949 February 7, 2022 Time: 16:13 # 4

Lim et al. Geochemistry in Hydrothermal Sediments

particle-poor (e.g., max. 1NTU = 0.002 in particle anomaly),
although it is characterized by a substantial oxidation-reduction
potential anomaly (1E =−20 mV at approximately 100 m above
the bottom), with a corresponding increase in the total dissolved
iron (Fe, 191 nM in maximum value), manganese (Mn, 1.5 nM
in maximum value) and methane (CH4, 52.5 nM in maximum
value). The average dissolved Fe/Mn and CH4/Mn ratios were
5.6 and 36.2, respectively, which are within the typical range of
the mid-ocean ridge hydrothermal system (Kim et al., 2020 and
reference therein).

MATERIALS AND METHODS

A total of 18 surface sediments were collected in and around
the OVF using TV-grab and multiple box-core samplers on the
cruises of R/V ISABU between 2017 and 2019 (Figure 1C).
Angular, dark glossy volcaniclastic particles (pyroclastic shards,
Lim et al., 2020, 2021) abundantly observed in some surface
sediments were also collected for geochemical compositions. For
geochemical compositions, sediment and volcaniclastic particle
samples were freeze-dried and then ground using an agate
mortar. The total nitrogen (TN), carbon (TC), and sulfur (TS)
contents of these sediments were measured using an elemental
analyzer (FLASH 2000, Thermo Fisher Scientific, Waltham, MA,
United States), and the total inorganic carbon (TIC) content was
measured using a CO2 coulometer (model CM5014: UIC, Joliet,
IL, United States) in the geochemistry laboratory of Library for
Marine Samples (LIMS), Korea Institute of Ocean Science &
Technology (KIOST). The analytical accuracy and precision of
these elements were within 5%, based on an analysis of standard
reference materials [L-cysteine for TN and TC analysis, BBOT
for TS analysis, and pure calcium carbonate (CaCO3) with 12.00
C% for TIC analysis] and replicated samples. TIC content was
converted to CaCO3 content as a weight percentage using a
multiplication factor of 8.333, and total organic carbon (TOC)
content was calculated from the difference between the TC and
TIC contents.

For the concentration of 17 elements (SiO2, Al2O3, Fe2O3,
MgO, CaO, Na2O, K2O, TiO2, MnO, Ba, Co, Cr, Cu, Ni, Pb,
Sn, and Zn), each powered sediment sample was fused with
lithium metaborate (LiBO2) flux and the molten beads were
then poured into a volume of dilute nitric acid and stirred
until dissolved (Lim et al., 2015). The resultant solutions were
then analyzed using a combination of a Thermo ICAP 6500
radial inductively coupled plasma optical emission spectroscopy
(ICP-OES) and Thermo Elemental X Series II ICP mass
spectrometry (ICP-MS). Calibration for both instruments was
achieved via matrix matched calibration standards produced
from combinations of ICP-grade single element standards. The
accuracy of the analytical method was monitored by repeated
analysis of standard reference materials (ACE, OU6 and SBC-1,
n = 5, respectively), together with a batch of sediment samples.
The results showed that relative deviations between measured
and certificated values were less than 5–10% in most elements
(Supplementary Table 1). To gain detailed information about the
origin and mode of occurrence of the elements in these surface

sediments, we analyzed the concentrations of the acid leachable
fraction (hereafter the labile phase) of each sample, including
the water-soluble, exchangeable, and acid-soluble phases (Cronan
and Hodkinson, 1997; Song and Choi, 2009; Mascarenhas-Pereira
and Nath, 2010). For element composition of the labile fraction,
bulk sediment samples were leached with 1N hydrochloric
acid (HCl) for 24 h at room temperature (Yang et al., 2004;
Song and Choi, 2009), and then the supernatant (solution) was
analyzed for the leached concentrations of 17 elements using
ICP-OES and ICP-MS at Korea Basic Science Institute, Korea.
Here, the elemental concentration of the residual fraction was
defined as the difference between the total and labile fractions
of bulk sediments.

The stable carbon isotope (δ13C) of organic matter and sulfur
isotope (δ34S) of bulk sediments and hydrothermal minerals
were measured using an Elemental Analyzer-Isotope Ratio Mass
Spectrometer (EA-IRMS, Elementar GmbH, Langenselbold,
Hesse, Germany), hosted at the LIMS, KIOST. Isotopic
compositions were reported relative to conventional reference
materials; Vienna Peedee Belemnite (VPDB) for carbon and
Vienna Canyon Diablo Troilite (VCDT) for sulfur. The measured
δ13C for the carbonate-removed sediments were calibrated using
international reference materials; IAEA-600, USGS40, USGS43,
and IAEA-CH-6. For δ34S composition, untreated samples were
combusted with vanadium pentoxide (V2O5) and the measured
δ34S was calculated using international reference materials;
IAEA-S1, IAEA-S2, and IAEA-SO6. All sediment samples,
together with standard materials, were analyzed in duplicate
or triplicate. Measurement reproducibility as determined from
replicate analysis was less than approximately ± 0.04h for δ13C
and± 0.3h for δ34S (Supplementary Table 1).

For identifying hydrothermal minerals (i.e., barite and talc)
found in surface sediments, the X-ray diffraction (XRD) data
were collected with a Bruker D8 Advance A25 diffractometer
using graphite-monochromatised CuKα radiation at Gyungsang
National University, Korea; the mineral grains were collected
from some surface sediments under the microscope and were
then powdered for subsequent analysis. The samples were
measured from 4◦ to 70◦ (2θ) at an interval of 0.02◦ step size
with 0.2 s of time scan under the conditions of 40 kV/40 mA
of accelerating voltage and CuKα (1.5418 Å) radiation. Their
morphologies and chemical compositions were taken using a
JEOL JSM 7600F field emission scanning electron microscope
(SEM) equipped with an energy dispersive x-ray spectrometer
(EDS) at the LIMS, KIOST. The analyses were performed under
the conditions of an acceleration voltage of 10–20 kV and a beam
diameter of 3 µm.

Strontium (86Sr/87Sr) isotope compositions of the barite
grain samples (n = 12) were analyzed using a Neptune Plus
multi-collector ICP-MS (MC-ICP-MS, Thermo Fisher Scientific,
Waltham, MA, United States), coupled with a RESOlution M-
50 193 nm laser ablation system (Resonetics, Nashua, NH,
United States), hosted at the State Key Laboratory of Isotope
Geochemistry, Guangzhou Institute of Geochemistry, Chinese
Academy of Sciences (GIG, CAS). The interferences of 84Kr
and 86Kr on 84Sr and 86Sr were corrected by subtracting
gas blank from the raw time-resolved signal intensities. 85Rb
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was used to correct the interference of 87Rb on 87Sr with a
natural 85Rb/87Rb = 2.593 (Catanzaro et al., 1969). The mass
bias of 87Sr/86Sr was normalized to 86Sr/88Sr = 0.1194 with
an exponential law. The detailed data reduction procedure is
reported in Zhang et al. (2018). Ten analyses of NKT-1G (a
basaltic glass) during the course of this measurement yielded a
weighted mean of 87Sr/86Sr = 0.70355 ± 0.00009 (2SD), which
is consistent within error of the value reported in Elburg et al.
(2005). Fifteen analyses of an in-house plagioclase glass (PZHPL)
yielded a weighted mean of 87Sr/86Sr = 0.70435 ± 0.00010
(2 SD), agreeing within error with the result measured by solution
method (Zhang et al., 2019).

In this study, multivariate statistical approaches were
applied to clarify the distribution of geochemical components
and to better define the significant relationships between
them. Statistical analyses were performed using Excel-XLSTAT
(Version 2009.1.01).

RESULTS

Most surface sediments are composed of yellowish, foraminiferal
nanofossiliferous ooze, frequently including angular, dark glossy
volcaniclastic particles, except for the sediment samples proximal
to the hydrothermal edifices of the OVF with low CaCO3
contents. The analytical results for the geochemical compositions

of all sediments samples and their statistic summary are given
in Table 1 and Supplementary Table 2, respectively. The
geochemical compositions of the sediments vary considerably
depending on the sample site. TN, TOC, and TS contents
range from 236 to 735 µg/g (average: 433 µg/g), 1,947–
5,941 µg/g (average: 3,967 µg/g), and 1,110–19,177 µg/g
(average: 3,652 µg/g), respectively. The CaCO3 contents are
generally between 50 and 84%, excluding some samples with low
contents (<10%) and agree with the total concentration of CaO,
suggesting that the calcium in the sediments is derived largely
from biogenic components (i.e., foraminiferal tests). Carbon
and sulfur isotope compositions also exhibit a wide range; δ13C
of organic matter and δ34S of bulk sediments ranged from –
25.20 to –19.77h (average –21.35h) and +13.57 to +22.27h
(average:+19.52h), respectively.

In total concentration, CaO (average: 30.65%, range: 0.25–
48.16%) and SiO2 (average: 23.33%, range: 4.84–68.81%) are
the most abundant elements, followed by MgO, Fe2O3, Na2O,
and Al2O3 with average values of 6.76% (range: 0.55–25.45%),
3.28% (range: 0.73–13.50%), 2.87% (range: 0.90–4.27%), and
2.22% (range: 0.65–7.50%), respectively. The concentrations of
MnO, K2O, and TiO2 are generally low, ranging from 0.03 to
2.77% (average: 0.26%), 0.09 to 0.40% (average: 0.23%), and 0.00
to 0.36% (average: 0.10%), respectively. Of the trace elements,
the concentrations of Ba (average: 6,026 µg/g, range: 466–
41,101 µg/g) and Cu (average: 437 µg/g, range: 37–3,545 µg/g)

TABLE 1 | Descriptive statistics of elemental compositions for surface sediments of the study area.

OVF sediments (n = 18) OVF volcaniclastic grains
(n = 6)

*MORB *Basalt
(n = 26)

Total fraction 1 N leachable fraction

Elements Average SD Min Max Average SD Min Max Average SD Min Max Average Average

TN (µg/g) 433 146 236 735 – – – – – – – – – –

TOC (µg/g) 3967 1020 1947 5941 – – – – – – – – – –

TS (µg/g) 3652 4675 1110 19177 – – – – – – – – – –

CaCO3 (%) 51.1 29.4 0.1 83.6 – – – – – – – – – –

Al2O3 (%) 2.22 2.27 0.65 7.50 0.81 0.72 0.15 2.37 15.91 0.55 15.39 16.62 14.95 16.16

CaO (%) 30.65 16.63 0.25 48.16 29.94 16.74 0.22 47.97 11.41 0.15 11.24 11.67 11.39 –

Fe2O3 (%) 3.28 2.94 0.73 13.50 1.82 2.37 0.36 10.92 9.80 0.36 9.35 10.16 11.30 11.10

K2O (%) 0.23 0.09 0.09 0.40 0.18 0.07 0.05 0.30 0.16 0.02 0.13 0.17 0.14 0.14

MgO (%) 6.76 8.18 0.55 25.45 1.47 0.87 0.47 2.79 7.64 0.14 7.53 7.86 7.69 8.38

MnO (%) 0.26 0.63 0.03 2.77 0.13 0.21 0.01 0.97 0.17 0.02 0.16 0.21 0.18 0.16

Na2O (%) 2.87 0.89 0.90 4.27 2.71 0.83 0.81 4.23 2.60 0.04 2.57 2.66 2.76 2.39

SiO2 (%) 23.33 19.20 4.84 68.81 1.69 1.00 0.72 5.07 49.39 0.37 48.93 49.92 50.41 48.95

TiO2 (%) 0.10 0.11 0.00 0.36 0.02 0.03 0.00 0.09 1.39 0.03 1.35 1.43 1.68 1.10

Ba (µg/g) 6206 11577 466 41101 614 1288 21 5408 17 3 12 20 23 –

Co (µg/g) 15 11 4 44 9 8 1 29 43 3 41 49 43 49

Cr (µg/g) 81 118 2 444 17 21 0 78 409 121 300 627 251 230

Cu (µg/g) 437 879 37 3545 278 591 4 2292 67 4 61 72 75 93

Ni (µg/g) 60 71 7 225 26 28 0 95 124 17 115 158 97 143

Pb (µg/g) 42.5 87.8 1.7 334.2 31.9 65.6 1.5 230.7 2.8 2.1 1.0 6.9 0.5 2.0

Sn (µg/g) 4.09 8.80 0.16 34.91 2.20 4.88 0.00 19.48 1.07 0.15 0.89 1.30 0.79 –

Zn (µg/g) 74 109 16 478 43 68 12 311 84 6 77 91 87 95

*Data from MORB and basalt are from Gale et al. (2013) and Liao et al. (2019) respectively.
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are highest, followed by Cr, Zn, Ni, and Pb, with averages of
81 µg/g (range: 2–444 µg/g), 74 µg/g (range: 16–478 µg/g),
60 µg/g (range: 7–225 µg/g), and 43 µg/g (range: 2–334 µg/g),
respectively. Co and Sn are less than 45 and 35 µg/g in maximum
concentrations, respectively (Table 1). The relative proportion of
the labile phase (1M HCl leachable fraction) compared with the
total concentration was as high as 70% in average values for Ca,
K, Mn, Na, and Pb, followed by Co, Cu, Fe, Mg, and Zn; the
average ranges were 50–70%. In contrast, Ba, Cr, Si, and Ti were
lower than 30% on average, suggesting that they mainly exist in
acid-insoluble fractions (e.g., silicate and/or sulfate minerals).

Pure sand-sized volcaniclastic particles from some sediments
are clearly distinguished from bulk sediments with respect
to their elemental composition (Table 1). SiO2, Al2O3, and
CaO are the most abundant elements, with averages of 49.39%
(range: 48.93–49.92%), 15.91% (range: 15.39–16.62%), and
11.41% (range: 11.24–11.67%), respectively, followed by Fe2O3
(average: 9.80%, range: 9.35–10.16%), MgO (average: 7.64%,
range: 7.53–7.86%), Na2O (average: 2.60%, range: 2.57–2.66%),
TiO2 (average: 1.39%, range: 1.35–1.43%), MnO (average: 0.17%,
range: 0.16–0.21%), and K2O (average: 0.16%, range: 0.13–
0.17%). Among the trace elements, the average concentrations of
Cr, Ni, and Zn reached 409 µg/g (range: 300–627 µg/g), 124 µg/g
(range: 115–158 µg/g), and 84 µg/g (range: 77–91 µg/g),

FIGURE 2 | Dendrograms showing the results of agglomerative hierarchical
clustering for (A) the sediment sampling stations and (B) the sediment groups
of the study area and end-members (volcaniclastic particles, basalt, and
MORB) using the Pearson’s correlation coefficient method. MORB, mid-ocean
ridge basalt.

respectively. Other elements, including Co and Cu, were as
low as 40–70 µg/g; Ba, Pb, and Sn were less than 20 µg/g.
Characteristically, Al, Co, Cr, Fe, and Ti concentrations were
much higher than those of the surface sediments of the OVF;
however, Ba, Cu, K, Mn, Pb, and Sn concentrations were
lower (Table 1).

DISCUSSION

Geochemical Characteristics of
Mid-Ocean Ridge Sediments
The agglomerative hierarchical clustering (AHC) analysis
grouped the surface sediments into three clusters (A, B1, and
B2) on the basis of compositional similarity between the samples
(Figure 2A). The sediments of group A, corresponding to the
hydrothermal edifice of the OVF, were characterized by the
highest concentrations of Fe, Mg, Mn, Si, Ba, Cu, Sn, Pb, and Zn
(Table 2). Group B1, comprising of sediment samples around
and distant from the OVF, had significantly higher in Al, K,
Na, Ti, Cr, Co, and Ni concentrations. Another distal sediment
group located far from the OVF (group B2) had the highest
concentrations of Ca but the lowest concentrations of most other
elements, possibly due to the carbonate dilution effect.

Identification of the hydrothermal components and their
quantitative contributions in mid-ocean ridge sediments can
be estimated using various elemental discrimination diagrams.
For example, element ratios such as Al/(Al + Fe + Mn)
and (Fe + Mn)/Ti have been successfully used as indicators

TABLE 2 | Average concentrations of elements for each sediment group of the
study area, MORB, and basalt.

Elements This study *MORB *Basalt

Group A Group B1 Group B2 Volcaniclastic
particles

Al2O3 (%) 1.19 2.80 0.78 15.91 14.95 16.16

CaO (%) 3.70 36.92 46.86 11.41 11.35 –

Fe2O3 (%) 5.63 2.89 0.97 9.80 11.30 11.10

K2O (%) 0.14 0.26 0.22 0.16 0.14 0.14

MgO (%) 20.37 3.24 0.65 7.64 7.69 8.38

MnO (%) 0.72 0.13 0.13 0.17 0.17 0.16

Na2O (%) 1.65 3.33 2.52 2.60 2.76 2.39

SiO2 (%) 54.36 15.85 6.19 49.39 50.41 48.95

TiO2 (%) 0.02 0.13 0.03 1.39 1.54 1.10

Ba (µg/g) 24590 947 987 17 23 –

Co (µg/g) 11 17 8 43 43 49

Cr (µg/g) 28 111 4 409 251 230

Cu (µg/g) 1566 124 57 67 75 93

Ni (µg/g) 25 79 15 124 97 143

Pb (µg/g) 170.4 5.8 6.5 2.8 0.5 2.0

Sn (µg/g) 17.06 0.41 0.21 1.07 0.79 –

Zn (µg/g) 212 38 19 84 87 95

*Data from MORB and basalt are from Gale et al. (2013) and Liao et al.
(2019), respectively.
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of hydrothermal sedimentation (e.g., Marchig et al., 1982;
Boström, 1983; Chen et al., 2004; Dias and Barriga, 2006;
Slack et al., 2009; He et al., 2016; Liao et al., 2018b). The
metalliferous index, calculated as Al/(Al + Fe + Mn), is
helpful for distinguishing hydrothermal components in various
sediments; for instance, the ratio decreases with increasing
hydrothermal input. Generally, pelagic deep-sea sediments have
a metalliferous index of >0.4, but metal-enriched sediments are
less than 0.4 in this index (Boström, 1973, 1983). As shown in
Figure 3A, all studied sediment samples plotted on the mixing
line of the hydrothermal sediments (e.g., modern metalliferous
sediments) and non-hydrothermal components (e.g., modern
pelagic sediment, MORB, and upper continental crust)—the
decreasing Fe/Ti ratio and increasing Al/(Al + Fe + Mn) ratio
indicate that most sediments of the study area are mixtures
of hydrothermal-pelagic-volcanic components (e.g., Dias and
Barriga, 2006; Liao et al., 2018b). The sediments of group
A are within a typical metalliferous hydrothermal domain
[Al/(Al + Fe + Mn) ratio of <0.2] (Figure 3A); the high
hydrothermal affinity in these OVF sediments is also evident in
the Al–Fe–Mn ternary plot (Figure 3B). In addition, the Si/Al
ratio is much higher in the sediments of group A (Si/Al of 27–70),
compared with other groups that exhibited Si/Al ratios of 4–10,
further supporting that these sediments are products of intense
hydrothermal sedimentation from the OVF (Dias and Barriga,
2006). Meanwhile, the sediments of group B have a wide range
of Al/(Al + Fe + Mn) ratios from ∼0.2 to 0.6, depending on
the relative influence of the hydrothermal plume components.
Hydrothermal sediments from the Rodrigues Triple Junction of
CIR with the ratio of ∼0.25 are geochemically most similar to
some sediments of group B with relatively strong hydrothermal
influence (Figures 3A,B). In group B1, characteristically, some
sediments (samples MC1706, MC1809, MC1705, and MC1914,

Figure 1C) have much higher ratios of Al/(Al + Fe + Mn)
(>0.4), which are close to the values of MORB as well as
volcaniclastic particles. This result is also supported by the Al–
Fe–Mn ternary plot (Figure 3B), suggesting that these sediments
are predominantly composed of non-hydrothermal components
(especially volcanic debris). Subsequently, the sediments of
group A represent pronounced hydrothermal components of
the OVF, while the group B1 sediments are mixtures of
hydrothermal sediments and volcanic materials. Considering
the low TOC, TS, and high CaCO3 contents, the sediments
of group B2 are primarily composed of typical calcareous
pelagic sediments, including some hydrothermal components
(Liao et al., 2019). The AHC analysis for average elemental
concentrations of each sediment group and non-hydrothermal
end-members (i.e., volcaniclastic particles, MORB, and upper
continental crust) also supports this conclusion (Figure 2B).
Besides, the overall elemental compositions of these volcaniclastic
particles are similar to those of MORB and basalts. Therefore, the
elemental composition of volcaniclastic particles collected from
the studied samples is considered as end-member component
of the ridge volcanism, which is representative of the MORB
composition in the CIR. Here, we have established a set of
element indicators for hydrothermal or volcanic sedimentation,
including discrimination diagrams, which can be employed to
more accurately estimate the source of elements, and thus to
better understand the characteristic of hydrothermal vent fluid,
especially in the ancient deep-sea ridge deposits.

Controlling Factors of Elemental
Compositions
Principal component analysis in this study revealed three key
components that explained 87% of the total variance (Table 3).

FIGURE 3 | (A) Al/(Al + Fe + Mn) vs. Fe/Ti discrimination diagram of mixing hydrothermal metalliferous sediments with deep-sea sediments (after Marchig et al.,
1982; Boström, 1983). Curved line represents ideal mixing between Al-free hydrothermal sediment (MFS) and modern pelagic or terrigenous sediments (MPTS).
(B) Ternary Fe–Mn–Al diagram indicating the hydrothermal affinity of the OVF sediments (after Adachi et al., 1986). RTJ, Average value of core top sediments from
the Rodrigues Triple Junction (RTJ), Central Indian Ocean (Kuhn et al., 2000); UCC, upper continental crust (Taylor and McLennan, 1985); MORB, mid-ocean ridge
basalt (Gale et al., 2013); VCP, volcaniclastic particles (this study).
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TABLE 3 | Results of principal component analysis for the sediment dataset and
percentage of variance explained for the individual factor loadings (>0.5 value).

Factor 1 Factor 2 Factor 3

Eigenvalue 9.8 5.4 3.2

Variability (%) 35 25 28

TN (µg/g) 0.65 –0.06 0.61

TOC (µg/g) 0.05 0.12 0.71

TS (µg/g) 0.96 –0.20 –0.04

CaCO3 (%) –0.82 –0.29 –0.46

Al2O3 (%) –0.01 0.95 –0.05

CaO (%) –0.84 –0.22 –0.47

Fe2O3 (%) 0.14 0.35 0.90

K2O (%) –0.52 0.54 –0.03

MgO (%) 0.91 0.05 0.39

MnO (%) –0.03 –0.03 0.94

Na2O (%) –0.73 0.45 –0.13

SiO2 (%) 0.85 0.16 0.32

TiO2 (%) –0.09 0.90 –0.15

Ba (µg/g) 0.96 –0.22 0.09

Cr (µg/g) 0.04 0.92 –0.06

Cu (µg/g) 0.29 –0.13 0.93

Ni (µg/g) –0.04 0.88 0.04

Zn (µg/g) 0.32 –0.02 0.94

Co (µg/g) –0.08 0.94 0.25

Pb (µg/g) 0.43 –0.19 0.87

Sn (µg/g) 0.94 –0.16 0.07

Factor 1 (35% of the total variance) was highlighted by high
positive loadings for TS, Si, Mg, Ba, and Sn, which are largely
enriched in the sediments of group A (i.e., the OVF hydrothermal
sediments). The high concentrations of SiO2 (45–68%) and MgO
(14–25%), as well as the good affinity (r2 = 0.80) between
these elements, imply the presence of hydrothermal phyllosilicate
minerals (e.g., talc and serpentine). Indeed, the presence of
talc {[Mg3Si4O10(OH)2], 63.5% SiO2, 31.7% MgO, and 4.8%
H2O} in the OVF deposits was confirmed by XRD and SEM
analyses (Figures 4A–F, 5A). Bulk XRD analyses of the massive,
globular, and white-colored aggregates (up to 5 mm in size,
Figures 4A–C) separated from the group A sediments showed
peaks at approximately 9.6 Å (for the 001 plane) and 4.7 Å,
confirming talc as the dominant phase (Figure 5A). SEM
observations also revealed that these minerals are characterized
by predominant platy and flaky texture, resulting in the formation
of boxwork- or honeycomb-like structures (Figures 4D,E). SEM-
EDS microanalysis of two talc granules (n = 33 points) yielded the
following average composition results (Figure 4F): 53.6 ± 4.4%
(39.0–58.6%) of Si, 33.2 ± 3.7% (24.9–38.2%) of Mg, 9.7 ± 6.7%
(3.3–34.2%) of Fe, 2.3± 0.5% (1.1– 3.4%) of Al, 0.7± 1.4% (0.0–
3.9%) of Cu, and 0.5± 0.4% (0.2–2.2%) of Ca. Si and Mg contents
at >85% and the high Si/Mg molar ratio (average: 1.41, range:
1.24–1.72)—which is close to or slightly higher than that of pure
magnesian talc (1.33)—demonstrated that the talc invariably has
an almost pure end-member composition. The slightly higher
Si/Mg ratios may be associated with the amorphous silica (>95%
in SiO2, opal-A) frequently observed inside talc (Supplementary

Figures 1A–C). Accordingly, the abundant occurrence of talc
is reflected in the whole sediment geochemistry by the high
concentrations of Si and Mg.

Another remarkable feature of Factor 1 is the presence of
significant correlations among TS, Ba, and Sn, suggesting that
they are mainly derived from hydrothermal barites (BaSO4,
Figures 4G–L, 5B); the importance of this mineral is discussed
in section “Hydrothermal Barite.” This preliminary result
demonstrated that hydrothermal minerals have a substantial
effect on these elemental concentrations and spatial distributions.
Notably, CaCO3, Ca, K, and Na with high negative loadings may
be highly dependent on the amounts of the biogenic components
and/or seawaters included in the sediments (Table 3). The labile
phase of these elements comprises more than 90% of the total
concentration and is uniform across all sediments without spatial
distribution trend.

Factor 2 (25% of the total variance) exhibited significant
positive component loadings for Al, Co, Cr, K, Ni, and
Ti (Table 3), as well as good correlations among them
(Supplementary Figure 2). Their concentrations were
significantly higher in the sediments of group B1 (Table 2),
including volcaniclastic particles commonly dispersed in mid-
ocean ridge sediments. As discussed above, these particles from
the study area are characterized by significantly higher Al, Cr,
Ni, and Ti concentrations, as well as lower K concentrations,
compared with the surrounding sediments. On the basis of
K2O/TiO2 ratio (average: 0.11), the volcaniclastic particles from
the study area may correspond to the transitional MORB (Marty
and Zimmermann, 1999). Therefore, the elemental components
of Factor 2 may result from a contribution of volcanic materials
(e.g., pyroclastic shard particles) from the ridge volcanism
around the OVF (Kuhn et al., 2000; Lim et al., 2020, 2021; Chen
et al., 2021).

Factor 3 (28% of the total variance) showed positive loadings
for TN, TOC, Fe, Mn, Cu, Pb, and Zn; their concentrations
are highest in group A (Tables 2, 3). Considering the excellent
covariation among them (Supplementary Figure 2) and the
increased enrichment of the elements in the sediments of group
A proximal to the vent field, hydrothermal-derived materials
(e.g., Fe–Mn oxyhydroxides and/or sulfides associated with
organic matter) may be the primary controlling factor in the
concentrations of these elements and their spatial distributions
(Chen et al., 2021). However, biogenic and volcanic influences
on these elements are generally minor. In conclusion, the OVF
hydrothermal sediments (group A) are characterized by high
concentrations of TS, Si, Mg, and Ba derived from talc and barite
minerals, as well as Fe, Mn, and some trace elements from the Fe–
Mn oxides and/or sulfides; but, Al, K, Na, Ti, Co, Ni, and Cr are
likely from ridge volcanisms.

Stable Carbon and Sulfur Isotopes
The δ13C and δ34S values of the surface sediments in the study
area show a distinct difference between the sediment groups
(Figure 6). The δ13C in the hydrothermal sediments of group
A (–25.20 to –22.47h) exhibit lighter isotope values, compared
with the sediments of group B (–21.29 to –19.77h), within the
range of marine plankton (–22 to –20h, Imbus et al., 1992;
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FIGURE 4 | (A) Microscopic photograph and (B–E) SEM-BSI images of talc samples from the OVF surface sediments (BC1903 and GTV1904). (G,H) Microscopic
photographs and (I–K) SEM-BSI images of barite samples from the OVF surface sediment (GTV1904). (F,L) EDS analysis of talc and barite sample, respectively.

Walinsky et al., 2009). The δ13C values of hydrothermal vent fluid
for CH4 at the East Pacific Rise and the southern Juan de Fuca
ridge ranged from –20.8 to –15.0h and –50.8 to –43.2h at the
Guaymas Basin (Shanks et al., 1995 and reference therein). In
contrast, the δ13C values of the hydrothermal vent fluid for CO2
are mostly higher than approximately –10h (Shanks et al., 1995
and references therein; Shanks, 2001). Thus, the lower δ13C value
in the hydrothermal sediments—particularly compared with
the value in marine plankton—suggests some contributions of
organic carbon from the benthic fauna that depend on methane-
oxidizing (methanotrophic) metabolism (Kennicutt et al., 1992).
This interpretation is also confirmed by the sulfur isotopic

composition and a close linkage (r2 = 0.78) between the δ13C and
δ34S values (Figure 6).

In the sediments of group B with a comparatively low S/C
ratio (<0.5), the δ34S value ranged from +19 to +23h (average:
+21.03h), corresponding to the values of present-day seawater
(+21.0 ± 0.2h, Rees et al., 1978) and marine phytoplankton
(+ 15 to +20h, Shanks et al., 1995), which assimilate sulfate;
however, the δ34S value of the group B sediments is much
higher than that of bacteriogenic pyrite (approximately –15h,
Krouse, 1980; Kaplan, 1983). Assimilatory reduction occurs in
autotrophic organisms where sulfur is incorporated in proteins,
particularly as S2− in amino-acids, the bonding of the produced
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FIGURE 5 | X-ray diffraction spectra of (A) talc and (B) barite grain samples from the OVF surface sediments. t, talc peaks; c, chlorite peaks; b, barite peaks.

sulfur is similar to the dissolved sulfate ion, and fractionations
are small (+0.5 to –4.5h, Kaplan, 1983). Considering that
the δ34S value of organic sulfur in extant marine organisms
incorporated by assimilatory processes is generally depleted by
0–5h relative to the ocean (Paytan and Gray, 2012), most sulfur
in the sediments of group B appears to exist as organosulfur
compounds by the biological assimilation of seawater sulfate
(Oduro et al., 2012).

Importantly, the δ34S values (+13 to +15h) of the
hydrothermal sediments (group A) of the OVF are significantly

FIGURE 6 | Stable carbon (δ13C) and sulfur (δ34S) isotopic compositions of
the bulk surface sediment samples from the OVF.

depleted, compared with the group B sediments. The δ34S values
of group A are much higher than those of basaltic oceanic
crust (–1 to +1h, Shanks et al., 1995), but are similar to or
slightly higher than the upper limit value of the compositional
range (−7.0 to +13.8h, mostly −0.8 to +10.2h) of primary
sulfides from modern mid-ocean ridge hydrothermal fields
(Melekestseva et al., 2014 and references therein; Fan et al., 2021
and references therein). In the study area, moreover, δ34S values
decrease as TS contents increase (r2 = 0.5). In hydrothermal vent
areas of mid-ocean ridges, most sulfur occurs predominantly as
sulfide minerals, which often formed as the result of biogenic
processes, and to a lesser extent, as organically bound sulfur.
The biogenic processes are dominated by reduction during early
diagenesis of seawater sulfate to form sulfides (e.g., pyrite)
by sulfur-reducing bacteria, resulting in substantial isotopic
fractionation, which ranges from 15 to 60h (average: 40h,
Shanks et al., 1995; Peters et al., 2011), leading to negative
δ34S values (e.g., Alt and Shanks, 2011). In most sediment-
starved mid-ocean ridges, moreover, hydrothermal sulfides with
basaltic sulfur as the principal source have δ34S values from
0 to +7h (Herzig et al., 1998; Shanks, 2001). Thus, the
lighter sulfur isotopic composition in the sediments of group
A with high TS contents indicates a sulfur contribution from
hydrothermal sulfides with the relatively low δ34S value that is
closely linked to bacterial sulfate reduction of seawater and/or
thermochemical sulfate reduction. A comparatively very high
sulfur/carbon ratio (1–6) in this group further supports the
contribution of hydrothermal sulfide (Imbus et al., 1992). The
relatively low δ34S value in the sediments of group A, accordingly,
reflects the mixed contribution of isotopically depleted sulfides
(e.g., bacteriogenic pyrite) and enriched marine biomass (e.g.,
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organosulfur compounds). Considering the abundant occurrence
of barite with δ34S similar to seawater (details provided in
section “Hydrothermal Barite”), the sulfate mineral may act
in the direction of increasing δ34S value. Our finding reveals
that paired carbon-sulfur isotopic compositions along with the
elemental signature are useful precursors for better recognition
of hydrothermal input in deep-sea sediments; the hydrothermal
sediments are characterized by much lighter values in all stable
isotopes, compared with the surrounding deep-sea sediments and
seawater.

Hydrothermal Barite
Barite with a transparent, tubular form and a high degree
of crystallinity was abundantly present in some hydrothermal
sediments of group A (Figures 4G,H, 5B). In hydrothermal
environments, in general, pure barite is formed by the mixture
of vent fluid and seawater (Paytan et al., 2002; Eickmann et al.,
2014; Jamieson et al., 2016; Zhang et al., 2020), and its isotope
compositions cannot fractionate during and after crystallization
(Paytan et al., 1993). Thus, the occurrence of barite in the surface
sediments represents direct evidence of the OVF hydrothermal
activity; furthermore, its chemical-isotopic compositions provide
insights for better characterizing this hydrothermal system. To
our knowledge, there have been no reports of barite in the
Indian ridge hydrothermal fields. SEM observation has shown
that barites occur in a typical rosette morphology consisting
of tabular or plate crystals with mainly hexagonal forms, with
sizes varying from approximately 100–500 µm (Figures 4I–K).
EDS microanalysis to achieve chemical characterization of barite
(n = 22 points in two representative barite grains) has shown
average contents of 76.5± 3.0% (72.6–80.8%) for Ba, 19.0± 2.8%
(15.0–22.3%) for S, and 4.1± 1.0% (2.3–5.2%) for Sr (Figure 4L).
More than 90% of barite consists of Ba and S, and the Ba/S molar
ratio of the samples (average: 1.07, range: 0.83–1.30) is close to
that of pure barite.

Eickmann et al. (2014) proposed a scheme for differentiating
the various mechanisms of barite precipitation based on sulfur
and strontium isotope compositions, and we added our results
to their dataset (Figure 7). The δ34S values of the OVF barite
samples ranged from+21.2 to+23.0h (average+ 22.3± 0.5h,
n = 20 barite samples), which are comparable with, but slightly
higher than, δ34S value of present-day seawater (+21.0 ± 0.2h,
Rees et al., 1978). However, these values are much lower than
those of diagenetic barites (+24 to +59h, Paytan et al., 2002),
although they are more radiogenic than hydrothermal fluid
(approximately 0h) (Figure 7). In principle, the δ34S value (e.g.,
+16.1 to +16.7h, Herzig et al., 1998) of barite associated with
the sulfides should be significantly lighter than that of seawater.
As presented above, the δ34S values of barite are higher than those
of group A hydrothermal sediments containing some sulfide
minerals, but are similar to those of the group B sediments
(average: +21.0 ± 0.9h) that are related with the organosulfur
compounds by the biological assimilation of seawater sulfate.
There is increasing evidence that barite precipitation induced by
hydrothermal activity yields δ34S values that are similar to or
slightly lower than the value of seawater sulfate (Paytan et al.,
2002; De Ronde et al., 2003; Eickmann et al., 2014); however,

barite that precipitates from fluids modified by microbial sulfate
reduction exhibits higher δ34S values than the value of seawater
sulfate (Wortmann et al., 2007; Feng and Roberts, 2011; Griffith
and Paytan, 2012). Therefore, the results indicate that barite
precipitation in the OVF may result from the hydrothermal
reduction of seawater sulfate accompanied by the isotopic
enrichment of the residual sulfate (Shanks et al., 1995) and/or
involvement of weak biogenic processes in barite formation
(Paytan et al., 2002).

To identify the origin of Ba in barite and to further
confirm a hydrothermal contribution, the Sr isotopic (87Sr/86Sr)
composition in barite grains was examined. The 87Sr/86Sr
values of barites ranged from 0.70569 to 0.70753 (average:
0.70641 ± 0.00067), although most barite samples were within
the range of 0.70606–0.70753. This range is slightly lower than
the value of seawater (0.70917, Butterfield et al., 2001) and surface
sediments from the CIR (average: 0.70944, range: 0.70810–
0.71027, Anand et al., 2019), but is considerably higher than
the ranges of CIR and Southwest Indian Ridge basalts (average:
0.70285± 0.00029 and 0.70494± 0.00037, respectively, Michard
and Albarède, 1986) and volcanic glass samples (0.70297, Price
et al., 1986). As presented in Figure 7, the 87Sr/86Sr values of the
OVF barites overlap with those of other hydrothermal barites that
have distinctive Sr isotope values that are much less radiogenic
than seawater (Eickmann et al., 2014). In general, the Sr
isotope compositions of barites from sediment-free hydrothermal
fields are between those of basement rocks and seawater. In
contrast, barites from the thick sediment-covered hydrothermal
field have an unusually higher 87Sr/86Sr value (0.71284–0.71749,
Zhang et al., 2020) than seawater and associated basement
rock, indicating interactions between hydrothermal fluid and
local sediments. Therefore, the strontium isotope composition
of barites from the sediment-free OVF hydrothermal field,
which lies between the compositions of seawater and MORB
or peridotite (Figure 7), reflects the sufficient fluid/seawater
interaction in this region.

Based on simple mixing calculation using the Sr contents
and isotopic values of end-members (seawater, gabbro, and
barite), the relative contributions of hydrothermal fluid and
seawater in the mixing fluid were estimated by applying a simple
two-component mixing model as follows (Kuhn et al., 2003;
Zhang et al., 2020):

HF(%) = 100 × SrSW((86Sr/87Sr)SW − (86Sr/87Sr)BA)/

(SrSW((86Sr/87Sr)SW − (86Sr/87Sr)BA) +

SrHF((
86Sr/87Sr)BA − (86Sr/87Sr)HF))

where HF (%) is the proportion of hydrothermal fluid, and
SrSW and SrHF are Sr concentrations of seawater (89.9 µmol
kg−1; Gallant and Von Damm, 2006) and hydrothermal fluid,
respectively. The (86Sr/87Sr)SW , (86Sr/87Sr)BA, and (86Sr/87Sr)HF
are Sr isotope ratios for seawater (0.70917), barite, and
hydrothermal fluid, respectively. For Sr concentration and
isotopic ratio of hydrothermal fluid, values of the ultramafic-
hosted Kairei hydrothermal fluid (75.3 µmol kg−1, Gallant and
Von Damm, 2006) and the gabbro from the CIR (0.70287,
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FIGURE 7 | (A) Strontium (87Sr/86Sr) and sulfur (δ34S) isotopic compositions of the OVF barite samples. (B) Plot of Sr and S isotope values for discriminating the
origin of barite (after Eickmann et al., 2014). Note that the OVF barite samples plotted in the field of known hydrothermal barite and were clearly distinctive from the
diagenetic barite.

Ray et al., 2011) near the study area, respectively, were
used. The results showed that the average contribution of
hydrothermal fluid is estimated to be approximately 50%
(range: 30–60%), even though there are uncertainties in values
of hydrothermal fluid, implying that the physiochemical
condition of mixing fluid changes considerably during the
mineralization process. From such isotopic signatures, we
concluded that the OVF hydrothermal barite was a primary
precipitate from Ba-rich hydrothermal fluid mixed with
seawater, which contrasts to marine barite precipitated in
the water column and diagenetic barite precipitated at the
oxic-anoxic boundary within sediments in association with
sulfate-reducing conditions.

Characteristics of Onnuri Vent Field
Hydrothermal System
The off-axis, ultramafic-hosted OVF has been primarily
considered to be a low-temperature diffuse venting system
(Kim et al., 2020). However, our results, together with plume
chemistry data, suggest that the OVF has the characteristic
of a high-temperature venting system with a weak or no
magmatic heat source. Hydrothermal vent fluids associated
with serpentinization of upper mantle peridotite are typically
characterized by unusually high concentrations of abiogenic H2
and CH4, a high CH4/Mn ratio, and much lower dissolved silicate
concentrations, compare with basalt-hosted hydrothermal
system (Donval et al., 1997; Kelley et al., 2001; Charlou et al.,

2002 and references therein). In particular, the serpentinization
reaction, especially at OCCs distant from the ridge axis, is
capable of driving non-volcanic hydrothermal circulation (e.g.,
Rona et al., 1987; Grácia et al., 2000; Lowell and Rona, 2002;
Kelley et al., 2005; Dias and Barriga, 2006; Hodgkinson et al.,
2015). It is likely to occur in the OVF hydrothermal system
hosted by serpentinized-peridotites and gabbros exposed by
detachment faults; manifestation of such extensive reaction in
this vent field can be inferred from the high CH4 enrichment,
high CH4/Mn ratio, and negligible dissolved metal concentration
in the vent plume (Kim et al., 2020). This nature of OVF
system is better characterized by the massive occurrence
and geochemistry of typical talc and barite minerals from
hydrothermal sediments.

Considering the predominant occurrence of fragile talc
granules with pure end-composition and boxwork-like
microstructure, as well as other results (i.e., minor occurrence
of sulfide minerals, absence of magnesite, and absence of
sediment cover), the talc presumably precipitates directly from
Si-rich hydrothermal fluids that seep out directly from the
serpentinized-peridotites/gabbro reaction zone, rather than
originating from the hydrothermal alteration of ultramafic
rocks including the serpentinite (D’Orazio et al., 2004; Dias
and Barriga, 2006; Hodgkinson et al., 2015). This prediction is
further supported by the 87Sr/86Sr ratios (0.706156–0.707549,
n = 6, Lim et al. unpublished data) for the talc samples form
the OVF, which are similar to (but slightly less than) the
ratio of present-day seawater (0.70917) and the Von Damm
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Vent Field talc samples (0.706313–0.709168, Hodgkinson
et al., 2015) that precipitated directly as a result of mixing
between vent fluid and seawater. This implies that a substantial
component of seawater was mixed with the vent fluids during
the talc precipitation. Moreover, a manifestation of such direct
precipitation of talc from the fluids mixed with seawater at the
vent may be inferred from the presence of amorphous silica
(Supplementary Figures 1C,D); for instance, Hodgkinson et al.
(2015) proposed the possibility of instantaneous precipitation
of talc and silica as the primary phases in mixing the hot
(∼215◦C) vent fluid with cold seawater in the Von Damm Vent
Field. At the OVF, the low metal content of the fluid may only
result in accessory amounts of metal sulfides, possibly allowing
talc to become the dominant phase. In many respects (e.g.,
geological conditions conducive to serpentinization, CH4-rich
fluid composition, and talc-dominated mineral deposits),
the OVF system is comparable with the Von Damm, Lost
City, St. Paul F.Z., and Saldanha hydrothermal vent fields,
which are representative hydrothermal systems driven by the
serpentinization reaction (Kelley et al., 2001, 2005; D’Orazio
et al., 2004; Dias and Barriga, 2006; Hodgkinson et al., 2015).
Accordingly, the precipitation of talc mineral is linked to
the activity of the serpentinite/gabbro-hosted hydrothermal
system, indicating that talc-dominated vent deposits may
be considered an indicator of active off-axis hydrothermal
fields, possibly sustained by serpentinization in the slow- and
ultra-slow spreading CIR ridges where the basaltic magma
flux is weakest.

Although the high CH4 concentration suggests that
serpentinization of the ultramafic rocks comprising the OVF
basement has influenced fluid composition, the precipitation
of barite indicates that the OVF hydrothermal fluids were
likely influenced by interaction with mafic rocks (e.g., gabbro).
Overall the ultramafic-hosted hydrothermal systems appear to
be generally poor in Ba and barite because the Ba released from
the hydrothermal leaching of ultramafic rocks is considerably
limited, thereby resulting in precipitation of barite-free
mineral assemblages (Noguchi et al., 2011; Melekestseva et al.,
2014). This was also corroborated in seawater/peridotite
thermodynamic reaction model and experimental studies,
demonstrating that the ultramafic-hosted hydrothermal system
cannot produce significant barite precipitates (Melekestseva
et al., 2014 and references therein). Therefore, a mafic origin
for the OVF barite appears most likely and is consistent with
the presence of gabbroic rocks that were commonly dredged
in and around the vent site. As discussed above, such evidence
also exists for the talc formation, which is closely linked to
interactions with Si-rich hydrothermal fluids, representing mafic
components derived from interactions with gabbroic rocks
within a peridotite-dominated ridge segment.

Accumulated evidence from several hydrothermal deposits,
including the Grimsey and Guaymas Vent Fields, has revealed
that the estimated temperature of talc formation in the
hydrothermal environments is typically within the range of
250–370◦C (Koski et al., 1985; D’Orazio et al., 2004 and
references therein; Boschi et al., 2008; Dekov et al., 2008
and references therein). Considering these previous results, the

talc-dominated OVF may be a comparatively high-temperature
hydrothermal system; this is also roughly consistent with
the barite precipitation condition (approximately 240◦C at
maximum temperature, Melekestseva et al., 2014). This is
supported, to some extent, by the abundant occurrence of
breccia-type sulfides with Cu-bearing secondary minerals in the
OVF, indicative of episodically higher vent temperatures (e.g.,
>200◦C, Kim et al., 2020). In fact, this speculation is confirmed
by the temperature (160–250◦C, Lim et al. unpublished data)
measured in the subsurface sediment layer (5 cm in sediment
depth) of the OVF region using ROV. This high temperature of
the OVF vent fluid is approximately equal to the temperature
of heat released from the exothermic serpentinization reaction
(150–250 ◦C, Batch et al., 2002; Alt et al., 2007; Boschi
et al., 2008). However, the low fluid temperature at the escape
orifices (∼4–12◦C, Lim et al., unpublished data) is probably
a consequence of cooling effects during conductive circulation
and seawater interactions in the diffuse vent system; in general,
many hydrothermal fields include both high-temperature vents
in the center and low-temperature vents near the perimeter
(e.g., Dias and Barriga, 2006; Chen et al., 2018 and reference
therein). Subsequently, the occurrence of barite and talc minerals
in the hydrothermal sediments support that the OVF is a
high temperature hydrothermal circulation system driven by
serpentinization. Furthermore, this conclusion suggests that
the serpentinization process can heat up circulating water to
>200◦C, even though some authors argued that this process
does not produce enough heat to explain peridotite-hosted
hydrothermal systems (e.g., Batch et al., 2002; Lowell and Rona,
2002; Allen and Seyfried, 2003).

CONCLUSION

Considering the presence of serpentinized-peridotite, a strong
methane anomaly, an apparent lack of a magmatic heat source,
and the predominant occurrence of talc and barite, we conclude
that the serpentinization of exposed mantle rocks along the
detachment faults likely plays a key role in the OVF hydrothermal
circulation. Unlike the early study that described the OVF as a
low-temperature hydrothermal venting system, our results reveal
that the studied diffuse vent is the high-temperature system of
>200◦C. Considering the widespread occurrence of OCCs in the
CIR, the OVF may be a representative off-axis peridotite-hosted
hydrothermal system in the CIR, characterized by talc-dominated
mineralization. Our study yields important geochemical data
regarding hydrothermal sediments and minerals that provide
a unique perspective on the ultramafic-hosted hydrothermal
system in an off-axis OCC setting with a non-magmatic heat
source, which was previously poorly investigated in the CIR.
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