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Creseis acicula is a swimming shelled pteropod species, widely distributed in the world’s
oceans. In 2020, an unprecedented bloom of C. acicula was observed in Daya Bay, and
lasted from June to July. To date, there is very limited information on the physiological
characteristics of this species, which is essential to understand bloom dynamics. In the
present study, the physiological performances of C. acicula in response to temperature
(17–35◦C) and salinity (18–38 ppt) were investigated. The oxygen consumption (OCR)
and calcification rates (CR) of C. acicula peaked at 32 and 26◦C, respectively, while
ammonia excretion rate (AER) significantly increased with increasing temperature. The
thermal coefficient Q10 (respiration) of C. acicula dropped to a minimum value between
32 and 35◦C, suggesting that they were in a stressful status. The O:N ratio ranged from
3.24 to 5.13, indicating that protein was the major catabolism substrate. Temperature
exerted a stronger effect on the OCR and AER of C. acicula. Salinity has a more influence
on CR. The preferable temperature for C. acicula ranges from 29 to 32◦C, and the
preferable salinity ranges from 28 to 33 ppt. Based on a comprehensive consideration,
we presumed that the warmer seawater temperature around the thermal discharge area
of Daya Bay nuclear power plant is a possible cause for the bloom of C. acicula.

Keywords: Creseis acicula, temperature, salinity, physiological performance, bloom

INTRODUCTION

Creseis acicula belongs to the Pteropoda order, Cavoliniidae family, and Creseis genus. This
pteropod is the largest in the Creseis genus. C. acicula lives in the upper portion of the water column
(less than 500 m), and is abundant in the Atlantic, Indian, and Pacific Oceans (Albergoni, 1975).
The temporal dynamics and spatial distribution patterns of pteropods are well studied. C. acicula
outbreaks have been reported in the coastal waters of India (Sakthivel and Haridas, 1974; Peter
and Paulinose, 1978; Pillai and Rodrigo, 1984; Naomi, 1988), Japan (Nishimura, 1965; Morioka,
1980), Gulf of Mexico (Hutton, 1960), and in the Mediterranean Sea (Burgi and Devos, 1962;
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Albergoni, 1975; Kokelj et al., 1994) between the 1960s and the
1990s, with the highest abundance recorded at about 500 inds
m−3. In Daya Bay, South China Sea, C. acicula generally appear
from March to November each year, with average abundances
ranging from 0.04 to 1.9 inds m−3 (Xu, 1989). Since the 1990s,
there was no report of C. acicula bloom in the world. However,
a massive aggregation occurred from June to July 2020 near
the thermal discharge area of Daya Bay Nuclear Power Plant
(DNPP), with the highest abundance reaching 4525–5595 inds
m−3 (Dai et al., 2020; Zhong et al., 2021). Large amount of
C. acicula gathered around the thermal discharge area of DNPP
and seriously affected the normal operation of the plant.

The outbreak mechanism of C. acicula is very complex, like
any other species (Wishner et al., 1995; Baliarsingh et al., 2020;
Maas et al., 2020). The distribution of C. acicula is restricted
by various physical and chemical environmental parameters,
such as temperature, salinity, food, oxygen, and water depth
(Herman, 1998; Dai et al., 2020; Zeng et al., 2021). The potential
mechanisms for the bloom of C. acicula include optimum
temperature and salinity (or the temperature and salinity are not
at the most optimal levels for C. acicula, but they might be worse
for the competitors or predators of C. acicula) and an adequate
food supply for C. acicula. As Dai et al. (2020) suggested that the
initiation of C. acicula bloom in Daya Bay well-matched a sharp
increase of temperature and chlorophyll a, as well as an abrupt
decrease of salinity attributed to a heavy rainfall happened before
the bloom which lasted for more than 20 days. However, till now,
there is very little information on the causes of C. acicula blooms
from a physiological point of view. A further understanding of the
physiological mechanisms regulating the blooms will contribute
to our knowledge of the survival tolerance of this species.

The objective of the present study was to investigate the effects
of temperature and salinity on the physiological responses of
C. acicula, and to provide the useful information on the outbreak
reasons of C. acicula around the thermal discharge area of DNPP.

MATERIALS AND METHODS

Study Area and Experimental Creseis
acicula Collection
Experimental C. acicula samples were collected on July 6, 2020,
in Daya Bay, which is located in the northern part of the South
China Sea in Guangdong Province, Southern China (Figure 1). It
is a semi-enclosed drowned valley bay with water depth ranging
from 5 to 20 m and a water area of about 600 km2. More
than 50 islands locate inside the bay area. The DNPP base was
built in 1994 on the southwestern shore of Daya Bay, which is
located on Dapeng Peninsula, Dapeng New District, Shenzhen
city, Guangdong Province (Figure 1). The bay is dominated by
an irregular semidiurnal tide with a narrow tidal range, which
affects the transport of thermal discharge (Jiang and Wang, 2020).
On June 12, 2020, a large amount of C. acicula was spotted in the
waters close to the southwestern shore of Daya Bay.

During sampling, the average seawater temperature was
30.92 ± 0.86◦C and the average salinity was 32.36 ± 0.38 ppt.
Experimental C. acicula were at their mature stage as ovulating

phenomenon was observed. They were collected using a bucket
with water to avoid possible stress of capture. Specimens were
placed in a 100-L container and were transported to the
laboratory at the Marine Biology Experimental Base, located
on the Daya Bay seafront, within 1 h of capture. Before the
start of experiments, C. acicula samples were acclimated to
laboratory conditions for 2 days. In Daya Bay, C. acicula mostly
appears from March to November each year (Xu, 1989), when the
average seawater temperature and salinity are 26.97± 2.85◦C and
33.14 ± 1.10 ppt, respectively (unpublished data). Thus, during
acclimation, pteropods were transferred into 40-L transparent
glass bottles filled with sand-filtered seawater (to a density of ca.
1000 pteropods per bottle), at a temperature of 26◦C and salinity
of 33 ppt, bubbled with ambient air. C. acicula were fed once
daily with a mixture of the chlorophyte Chlorella vulgaris and the
diatom Skeketonema costatum, with an equal algal cell density of
40,000 cells mL−1 at 08:00.

Experimental Design
Oxygen consumption rate (OCR), ammonia excretion rate
(AER), and calcification rate (CR) were measured using a
closed-chamber method, as described in Ikeda et al. (2000).
Brown respiration bottles (1-L vol.) were used for incubation
experiments. Seven graded temperatures (i.e., 17, 20, 23, 26,
29, 32, and 35◦C, respectively), and five graded salinities (i.e.,
18, 23, 28, 33, and 38 ppt, respectively) were set to determine
the effects of these two environmental factors on physiological
responses. The incubation water temperature was gradually
decreased or increased to each experimental value in a 5-h period
by an automatic temperature controller. Water salinity was also
gradually decreased or increased within a 5-h period to each
experimental value by adding freshwater or artificial sea salt to
natural seawater, respectively.

Pre-experiments were conducted to make sure that at the end
of incubation, the oxygen concentration must be kept at a high
level–at no less than 50% of the initial concentration–in order
to avoid any possible hypoxia stress on the normal physiological
activities of C. acicula. The incubation time and density of
C. acicula in each respiration bottle were determined accordingly.
The optimum number of C. acicula was determined as 100
individuals per bottle. The optimum incubation duration was 8 h.
Healthy (actively moving) individuals with similar size (8–9 mm
of shell length) were selected for the subsequent experiments.
Prior to the experiments, C. acicula were not fed for 24 h to
allow for gut clearance and avoid interference from post-prandial
metabolism and excretion of feces. The experimental C. acicula
were rinsed 3–4 times with filtered seawater (using Whatman
GF/F filters), and then were transferred into respiration bottles.
The respiration bottles were submerged and incubated in a water
bath to maintain an identical ambient temperature for all of them.

Measurement of Physiological
Parameters
Experimental C. acicula were incubated in respiration bottles
(100 individuals per bottle), and were further assigned to the
seven temperature treatments and the five salinity treatments.
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FIGURE 1 | Sampling sites of Creseis acicula nearby the Daya Bay nuclear power plant (DNPP).

For the temperature experiment, the bottles were filled with
filtered seawater (using Whatman GF/F filters) and were left open
for 24 h to obtain the air-sea equilibrium of the CO2-carbonate
system. Each temperature treatment has six bottles (three for
treatment group and three for control). Bottles were capped
and submerged in water with corresponding experimental water
temperature. In each temperature treatment, three bottles filled
with filtered seawater and without pteropods served as respective
controls. For the salinity experiment, all the bottles were
submerged in a water bath at a temperature of 26◦C.

At the end of the incubation period, dissolved oxygen
(DO) was measured with an optical DO meter (YSI Pro,
Yellow Springs Instrument Company, Yellow Springs, OH,
United States), and pH was measured using a pH meter
(Thermo Scientific Orion 320P-01, Thermo Fisher Scientific,
Waltham, MA, United States). Then, 100 mL of water samples
was siphoned out to measure ammonia (through the oxidizing
reaction of sodium hypobromite, GB/T 12763.4-2007, 2007), and
total alkalinity (TA) (Gran titration with 0.1 M HCl using an
alkalinity titrator, AS-ALK2 Total Alkalinity Titration System,
Apollo, United States). For each bottle, these parameters were
measured in triplicates. Calcium carbonate (CaCO3) saturation
for aragonite (�a) was obtained from water temperature, salinity,
pH, and TA using the CO2_SYS_XLS calculation program
(Pierrot et al., 2006). The wet weights of the pteropods were
estimated through weighting the 100 residual individuals, similar
with the experimental samples, after blotting dry, and this
weighting repeated 6 times to acquire the mean wet weight
of 100 pteropods.

The OCR (µmol O2 g−1 h−1), AER (µmol N g−1 h−1) and
CR (µmol g−1 h−1) of the C. acicula samples were calculated as
follows:

OCR = (DO0 − DOt)× V/W/t
AER = (At − A0)× V/W/t
CR = (TA0 − TAt)× V/2/W/t

where DO0, A0, and TA0 are the oxygen, ammonia, and total
alkalinity concentrations (µmol L−1) of the control bottle after
incubation, respectively; DOt, At, and TAt are the oxygen,
ammonia, and total alkalinity concentrations (µmol L−1) of the
treatment bottle after incubation, respectively; V is the bottle
volume (L); W is the total wet weight of the pteropods in each
bottle (g); and t is the duration of the experiment (h).

Thermal coefficients (Q10) were calculated using the following
the equation (Bayne and Newell, 1983):

Q10 = (R2/R1)
10/(t2−t1)

where R1 and R2 are the corresponding metabolic rates (OCR or
AER) at temperatures t1 and t2, respectively.

The O:N ratio indicated the ratio of proteins, lipids, and
carbohydrates that were used as energy substrates by the
organisms under different experimental conditions, and it was
estimated for the tested pteropods in each bottle based on the
OCR and AER, in atomic equivalents (Yu et al., 2018).

Statistical Analysis
Statistical analyses were conducted using SPSS 19.0 for Windows
(IBM Corp., Armonk, NY, United States). The values of OCR,
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AER, CR, Q10, and O:N ratio in all experimental groups were
analyzed using one-way ANOVA, followed by a comparison of
means through the Tukey test. Prior to conducting statistical
analyses, the normality and homogeneity of variance of all data
were examined using the Shapiro–Wilk test and Levene’s test,
respectively. The effects of temperature and salinity on OCR,
AER, CR, and O:N ratio were tested using stepwise multiple
regression analysis. Statistical significance was set at P < 0.05.

RESULTS

At the end of the incubation, the survival rates of C. acicula
were > 90% for the 17, 20, 23, 26, 29, and 32◦C treatments, and
the 28, 33, and 38 ppt treatments. The survival rate of C. acicula
was ∼50% for the 23 ppt treatment. Unfortunately, no C. acicula
survived in the 35◦C and 18 ppt treatments. The survival results
suggest that C. acicula can tolerate a temperature range between
17 and 32◦C and a salinity range between 23 and 38 ppt.

Oxygen Consumption
The OCR of C. acicula significantly increased with temperature
and salinity values of 32◦C and 28 ppt, respectively, and decreased
thereafter [one-way ANOVA, temperature: F(6,20) = 80.112,
P < 0.05; salinity: F(4,14) = 5.906, P < 0.05; Figure 2]. The
rate differed significantly among all temperatures (Tukey test,
P < 0.05), except between 29 and 35◦C. OCR significantly
increased at 28 ppt compared to the values observed at the lowest
(18 ppt) and highest (38 ppt) salinities tested, respectively (Tukey
test, P < 0.05). But there was no significant difference of OCR
within the 23–33 ppt range (Tukey test, P > 0.05).

Stepwise multiple regression analysis explained 86.6% of the
variation in the OCR of C. acicula [F(1,35) = 114.563, R2-
adjusted = 0.866]. This regression analysis also showed that
temperature was significantly correlated (P < 0.05) with the OCR,
but salinity was not (P > 0.05). The coefficients of temperature
and salinity were assumed as 0.980 and 0.051, respectively. The
overall regression analysis results illustrate that the OCR of
C. acicula was more influenced by temperature than by salinity.

Ammonia Excretion
AER increased significantly as temperature increased within the
17–35◦C range [one-way ANOVA, F(6,20) = 48.311, P < 0.05].
It increased by 70% at the highest temperature (35◦C) in
comparison with the value at the lowest temperature (17◦C)
(Figure 3A). Although AER decreased gradually with salinity up
to 33 ppt, and then increased slightly at 38 ppt [one-way ANOVA,
F(4,14) = 1.105, P < 0.05], there was no significant difference
among any of salinities (Tukey test, P > 0.05; Figure 3B).

Stepwise multiple regression analysis explained 85.9% of the
variation in the AER of C. acicula [F(1,35) = 107.682, R2-
adjusted = 0.859]. Both temperature and salinity were statistically
significant (P < 0.05). The coefficients of temperature and
salinity were assumed as 0.140 and −0.031, respectively, which
showed that AER was also more influenced by temperature
than by salinity.

Calcification
The CR of C. acicula firstly increased with increasing temperature
and salinity, with the highest values at 26◦C and 33 ppt,
respectively, and decreased thereafter [one-way ANOVA,
temperature: F(6,20) = 26.781, P < 0.05; salinity: F(4,14) = 36.229,
P < 0.05; Figure 4]. The CR values at 20–29◦C were significantly
higher than those at 32–35◦C (Tukey test, P < 0.05); at
28–38 ppt, CR values were significantly higher than those at
18–23 ppt (Tukey test, P < 0.05). Negative CR values were
detected at 35◦C, and 18 and 23 ppt. No significant difference in
CR was found within the 20–29◦C and 28–38 ppt ranges (Tukey
test, P > 0.05).

Stepwise multiple regression analysis explained 66.2% of
the variation in the CR of C. acicula [F(1,35) = 35.326, R2-
adjusted = 0.662]. The regression analysis showed that salinity
was significantly correlated with CR (P < 0.05), but temperature
was not (P > 0.05). The coefficients of temperature and salinity
were −0.150 and 0.563, respectively. In C. acicula, CR was more
influenced by salinity than by temperature.

O:N Ratio
The O:N ratio of C. acicula ranged from 3.24 to 5.13; it
increased significantly as temperature increased from 17 to 32◦C,
and then it significantly decreased at 35◦C [one-way ANOVA,
F(6,20) = 33.789, P < 0.05; Tukey test, P < 0.05; Figure 5A]. And
the ratio also showed a significant difference among the salinities
[one-way ANOVA, F(4,14) = 5.947, P < 0.05; Figure 5B]. It
initially increased with increasing salinity, with the highest values
detected at 28 and 33 ppt, and it decreased at 38 ppt. There was
no significant difference within the 23–38 ppt range (Tukey test,
P > 0.05), but the ratio at 18 ppt was significantly lower than that
at 28 and 33 ppt (Tukey test, P < 0.05).

Stepwise multiple regression analysis explained 53.7% of the
variation in the O:N ratio of C. acicula [F(1,35) = 21.336, R2-
adjusted = 0.537]. The regression analysis showed that both
temperature and salinity were significantly correlated with the
O:N ratio (P < 0.05). The temperature and salinity coefficients
were 0.083 and 0.028, respectively, indicating that temperature
had a greater effect on O:N ratio than salinity.

Q10
The Q10 values calculated for the different tested temperatures
are shown in Table 1. Both the Q10 for respiration and excretion
decreased with increasing temperature, except for the Q10 values
for excretion within 32 and 35◦C. The highest Q10 values for
respiration and excretion were observed within 17 and 20◦C,
followed by that within 20 and 23◦C. The lowest Q10 value for
respiration was 0.79 within 32 and 35◦C, and the lowest Q10 value
for excretion value was 1.23 within 29 and 32◦C. A narrow range
of Q10 for excretion was observed for C. acicula when exposed to
the different temperatures.

DISCUSSION

The results of the present study suggest that C. acicula has the
ability to regulate its metabolisms, e.g., respiration, ammonia
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FIGURE 2 | Effects of temperature (A) and salinity (B) on the oxygen consumption rate of Creseis acicula. Bars denote standard deviation. Different superscripts
indicate significance (P < 0.05) among the different temperature and salinity treatments, respectively.

FIGURE 3 | Effects of temperature (A) and salinity (B) on the ammonia excretion rate of Creseis acicula. Bars denote standard deviation. Different superscripts
indicate significance (P < 0.05) among the different temperature and salinity treatments, respectively.

FIGURE 4 | Effects of temperature (A) and salinity (B) on the calcification rate of Creseis acicula. Bars denote standard deviation. Different superscripts indicate
significance (P < 0.05) among the different temperature and salinity treatments, respectively.
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FIGURE 5 | Effects of temperature (A) and salinity (B) on the O:N ratio of Creseis acicula. Bars denote standard deviation. Different superscripts indicate significance
(P < 0.05) among the different temperature and salinity treatments, respectively.

excretion, and calcification rates, within a relatively broad range
of water temperature and salinity. This could be an advantage
for its worldwide distribution. The results showed that the
OCR of C. acicula increased by 145%, as the experimental
temperature increased from 17 to 32◦C, and its value decreased
at 35◦C. The respiration rates of pteropod species increased
with increasing temperature (Seibel et al., 2007; Comeau et al.,
2010; Maas et al., 2012; Bednaršek et al., 2016). However, the
correlation between respiration and temperature was not linear
in C. acicula. This is consistent with previous findings reported
for copepod species, usually rising more steeply at the upper end
and falling when the lethal temperature is approached (Krause
et al., 2003). This indicated that C. acicula has a metabolic
regulation ability. The decrease in OCR here reported suggests
that when the water temperature reached 35◦C, C. acicula
entered a state of physiological stress and paid relatively higher
energy cost. On the other hand, AER in C. acicula increased
with increasing temperature, with the highest value observed
at 35◦C. It is well-known that ammonia is the major form of
nitrogen waste–derived from protein metabolism–excreted by
marine zooplankton (Butler et al., 1970; Corner and Davies,
1971). Therefore, the high ammonia production at 35◦C indicates
that C. acicula uses more protein as its energy source in higher
water temperature than in lower water temperature conditions.

Q10 has been recognized as a common parameter that reflects
the adjustments related to the enzymatic and physiological

TABLE 1 | Q10 values for respiration and excretion in Creseis acicula exposed to
different temperatures.

Temperature range ◦C Q10 (respiration) Q10 (excretion)

17–20 2.23 1.50

20–23 2.12 1.44

23–26 1.88 1.40

26–29 1.83 1.28

29–32 1.61 1.23

32–35 0.79 1.36

requirements for energy when temperature increases within
natural range (Kita et al., 1996; Manush et al., 2004; Kim et al.,
2005). As for most animals, the normal Q10 value for pteropods
is approximately 2–3 (Fry, 1971). In the present study, the
Q10 for excretion did not clearly change with the increase in
temperature. Whereas, the increase in oxygen consumption with
rising temperature is fully accounted for by the basal metabolism
(Hirche, 1987). Thus, in C. acicula the Q10 for respiration ranged
from 2.23 to 1.61 at the 17–32◦C range, which indicated that this
pteropod is well adapted to these temperatures. However, when
the temperature increased to 32–35◦C, the Q10 for respiration
was lowered to 0.79, indicating that C. acicula is no longer
sensitive to temperature variation when temperature exceeded
the optimum value.

The principle of osmotic adjustment holds that when osmotic
pressure is at a minimum, the metabolic level is the lowest;
when salinity is higher or lower than the isotonic point, more
energy is consumed to maintain homeostasis, and the metabolic
level increases (Cao and Wang, 2015). In this study, the OCR of
C. acicula increased as the salinity increased from 18 to 28 ppt.
A turning point was observed at 28 ppt, beyond which the OCR
decreased as salinity increased from 28 to 38 ppt. Although
AER in C. acicula did not significantly vary with salinity, it
firstly decreased to the lowest level at 33 ppt, and then increased
at 38 ppt, showing an opposite pattern to that observed for
OCR. This supports the theory that the energetic cost associated
with ionic and osmotic regulation is minimal within the normal
salinity range tolerated by a species at species life stages (Morgan
and Iwama, 1991). And at the same time, neither OCR nor AER at
28 ppt significantly differed from the corresponding values both
at 23 and 33 ppt, indicating that C. acicula could well adapt to
salinity range from 23 to 33 ppt. The decrease in OCR at salinities
of 18 and 38 ppt is also reflected in the observed retraction of the
pteropod body inside its shell–which is similar to valve closure
in bivalves–that occurs when salinity either drops or increases
excessively (Berger and Kharazova, 1997).

The O:N ratio can be considered as representative of the
overall metabolic balance of an organism. It is usually used
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as an index of lipid versus protein catabolism that reflects the
effects of environmental stressors on zooplankton energy reserves
(Mayzaud and Conover, 1988). Typically, an O:N ratio lower
than 7 indicates a protein-only catabolism; values between 7
and 17, indicating a protein-oriented catabolism; and values
>17, indicating a lipid/carbohydrate catabolism (Mayzaud and
Conover, 1988; Ikeda et al., 2000). In the present study, the O:N
ratio values calculated for C. acicula fall into a narrow range (from
3.24 to 5.13). Previous studies also reported a low O:N ratio for
some adult pteropod species, such as Clio pyramidata (4.4) and
Limacina helicina antarctica (2–9) (Thibodeau et al., 2020). Thus,
pteropod species, including C. acicula in this study, use protein as
the major metabolism substrate.

CaCO3 occurs in several solid forms, including aragonite and
calcite, and between these two, the former is less stable than the
latter (Fransson et al., 2016). C. acicula is sensitive to chemical
changes in seawater due to its highly soluble aragonite shells
(Tunçer et al., 2021). The CaCO3 saturation (�) is used as a
chemical indicator for the dissolution potential of this compound
(Fransson et al., 2016). Increasing temperature leads to increased
� (Chierici et al., 2011), while freshwater supply causes a decrease
in this parameter (Sejr et al., 2011; Fransson et al., 2015). Severe
shell dissolution of aragonite-forming organisms takes place
when �a < 1.4 (Bednaršek and Ohman, 2015). In this study, the
CR of C. acicula firstly increased to the highest level at 26◦C and
33 ppt, but then decreased at 29–35◦C and 38 ppt; CR values
were negative at high temperature (35◦C) and at low salinities
(18–23 ppt). The �a increased from 17 to 35◦C and from 18
to 38 ppt, with all �a values being > 1.4, except at 26 ppt after
incubation (Table 2). Thus, it is easy to understand that the CR
was negative at low salinities (18 and 23 ppt) and the salinity
had a stronger effect on the CR than temperature. While, the
negative CR values observed at 35◦C may have been caused by the
presence of physiological stress due to higher temperature–which
increases the risk of dissolution and thinning of the aragonitic
shells in C. acicula (Fransson et al., 2016)–rather than by the
variation of �a. For example, higher energetic costs may derive

TABLE 2 | Saturation states of the water related to aragonite minerals (�a) before
and after the physiological experiment with different temperatures (T)
and salinities (S).

T (◦C) S (ppt) �a

Before After

17 33 3.27 3.04

20 33 3.38 2.83

23 33 3.53 2.68

26 33 3.75 2.56

29 33 3.91 2.59

32 33 4.07 2.46

35 33 4.21 3.08

26 18 1.87 1.29

26 23 2.38 1.61

26 28 3.02 2.03

26 33 3.71 2.40

26 38 3.82 2.72

from necessary repair calcification processes in response to shell
dissolution (Lischka and Riebesell, 2012; Blachowiak-Samołyk
et al., 2015; Vader et al., 2015). In this study, for the negative
CR, C. acicula could not meet the needs for increased energetic
costs, and responded with metabolic depression to save energy
and increase its chance of survival. This is consistent with the
findings of previous studies (Bibby et al., 2007; Rosa and Seibel,
2008; Navarro et al., 2013).

Studies of various marine species suggest that a number of
large swarms or aggregations are due to biological forces (i.e.,
development time, bloom timing, species interactions) (Wishner
et al., 1995; Ji et al., 2009; Baliarsingh et al., 2020). In this study,
the experimental C. acicula were at mature stage with ovulating.
After this study, we also observed the reproductive development
of C. acicula. But the metamorphosis to juveniles with shells was
absent after 20 days of veliger stage. Most studies confirm that
the early stages of pteropod development are the most vulnerable
(Kurihara, 2008; Comeau et al., 2010; Lischka et al., 2011), as
the organisms do not have fully formed shells (Kobayashi, 1974;
Fabry et al., 2008; Howes et al., 2014; Thabet et al., 2015).
Meanwhile this study showed that the protein was the major
catabolism substrate of C. acicula. Due to a strong depletion of
lipids suffered during the spawning phase in the summer, active
lipid storage in eggs may occur in pteropods (Gannefors et al.,
2005). And female pteropods generally die shortly after spawning
(Gannefors et al., 2005), which may explain the extinction of
C. acicula after 1 month of the bloom. Thus, this massive
aggregation of C. acicula may explain to be a reproductive bloom.

CONCLUSION

Our results indicate that seawater temperature has a stronger
influence on OCR and AER of C. acicula, compared to salinity.
On the other hand, CR was more affected by salinity than by
temperature. The preferable temperature for C. acicula ranged
from 29 to 32◦C and the preferable salinity ranged from 28
to 33 ppt. The warmer water (30.92 ± 0.86◦C) around the
thermal discharge area of DNPP may favor the physiological
performances for reproduction. In addition, it is well-known that
water temperature shows a regular seasonal cycle in Daya Bay
(Wu et al., 2016). The C. acicula bloom occurred only in 2020.
This impenetrable phenomenon may be mainly related to the
tidal current which drives the horizontal migration of C. acicula
from the inside to the outside of the bay during the ebb tide
period (Zeng et al., 2021). Thus, it is contingency for this bloom
(Zhong et al., 2021). However, it must be pointed out that the
bloom formatting mechanism of C. acicula is very complex and
almost be combination of many factors. Further studies are in
need for a fully understanding on the bloom forming mechanism
of C. acicula.
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