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Neuropeptides, as neurotransmitters and neuromodulators, have a variety of
physiological functions in the mollusk. Here, a PRQFVamide-related peptide gene
was cloned from cuttlefish Sepiella japonica (designated as SjPRQFVRP, GenBank
Accession No: OK999997). The full length of SjPRQFVRP is 1748 bp, including an
open reading frame (ORF) of 738 bp encoding 245 amino acids. The putative precursor
protein comprises one signal peptide and four different mature pentapeptides: fourteen
copies of PMEFLamide, three copies of RMEFLamide, one copy of AMEFLamide and
GMEFLamide. Multiple alignments showed SjPRQFVRP shared 71% identity with that
of Octopus vulgaris and supported the phylogenetic analysis. The spatio-temporal
expression pattern showed that SjPRQFVRP mRNA was widely expressed among
the 13 tissues and primarily abundantly expressed in the brain and optic lobe during
the whole development stage. In situ hybridization data indicated that SjPRQFVRP
was detected in the vertical lobe, subvertical lobe, anterior basal lobe, anterior pedal
lobe, and optic lobes of the brain. Subcellular localization analysis revealed that the
SjPRQFVRP protein was localized in the cytoplasm of HEK293 cells. Collectively, the
results will provide a foundation for further exploring the mechanism of SjPRQFVRP
function in cephalopods.

Keywords: neuropeptide, Sepiella japonica, cuttlefish, cephalopod, PRQFVamide-related peptide

INTRODUCTION

Neuropeptides are signaling molecular produced and released primarily by neurons and engaged
in diverse physiological processes (Wang et al., 2015). A large number of bioactive neuropeptides
have been found in vertebrates with multiple functions in the regulation of learning and
memory, reproduction, energy homeostasis, cardiovascular activity, and stress response (Corbière
et al., 2019). Since the first neuropeptide eledoisin was sequenced from octopus Eledone
moschata (Erspamer and Anastasi, 1962), neuropeptides have been extensively studied in multiple
invertebrates, including mollusks (Price and Greenberg, 1977; Pulst et al., 1988), nematodes
(Davenport et al., 1988; Keating et al., 1995), and arthropods (Marder et al., 1986; Nambu et al.,
1988). These neuropeptides have also been linked to various physiological and behavioral processes
such as learning and memory (Beets et al., 2012), metabolism (Kaufmann and Brown, 2008; Wang
et al., 2013), longevity (Waterson et al., 2014), and reproduction (Garrison et al., 2012).
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Diverse neuropeptides have been identified in cephalopods.
It was reported that they play a vital role in regulating feeding
(Zhang and Tublitz, 2013), reproduction (Di Cristo et al.,
2005), muscle contraction (Go et al., 2011), memory (Bardou
et al., 2010), chromatophore activity (Zhang et al., 2012), and
heart activities (Springer et al., 2004). FMRFamide (Phe-Met-
Arg-Phe-NH2) and FMRFamide-related peptides (FaRPs) were
identified in Loligo pealei (Burbach et al., 2013), Sepia officinalis
(Chrachri, 2020), and Sepia pharaonis (Zhu et al., 2020); GnRH
(Gonadotropin-releasing hormone) was reported in S. officinalis
(Di Cristo et al., 2009), Sepia lycidas (Murata et al., 2021) and
S. pharaonis (Song et al., 2021); APGWamide (Ala-Pro-Gly-
Trp-NH2) was reported in Octopus vulgaris (Di Cristo et al.,
2005), and Idiosepius pygmaeus (Sirinupong et al., 2011); Small
cardioactive peptide (sCAP) was identified in Octopus minor
(Iwakoshi et al., 2000), O. vulgaris (Kanda and Minakata, 2006),
and Sepiella japonica (Li et al., 2019).

The -FVamide neuropeptides are purified from Aplysia
with -FVamide in their C-terminus. These neuropeptides
contain AMRPs (Fujisawa et al., 1999), enterins (Furukawa
et al., 2001), and PRQFVamide (Furukawa et al., 2003).
PRQFVamide was firstly identified from the central nervous
system (CNS) and gut of Aplysia californica (Furukawa
et al., 2003). Through immunohistochemistry, the PRQFVamide
immunopositive signals were observed in the gut, especially
where related to the vasculature (Furukawa et al., 2003).
Moreover, synthetic PRQFVamide not only could inhibit
contractions of the gut and vasculature but also could reduce
the excitability of B4/5 and B31/32 neurons of the buccal
feeding circuit (Furukawa et al., 2003). Later, the same
research group discovered that activation of PRQFVamide-
containing neurons could lead to the organized rhythmic output
of the feeding central pattern generator (CPG) (Dembrow
et al., 2003). It is poorly studied when we search for
the PRQFVamide gene or protein from the National Center
for Biotechnology Information (NCBI). Only one or two
sequences from Deroceras reticulatum, A. californica, O. vulgaris,
Mizuhopecten yessoensis, and Lingula anatina can be found. And
another sequence from Charonia tritonis was only found in
Uniprot. PRQFVamide was only reported in two cephalopods,
S. officinalis and O. vulgaris. In S. officinalis, the incomplete
PRQFVamide preprohormones showed very large precursors
(Zatylny Gaudin et al., 2016). Moreover, researchers obtained
five mature products from the hemolymph of the cuttlefish,
and one of them was the pentapeptide PMEFLamide (Zatylny
Gaudin et al., 2016). A study on O. vulgaris indicated that
the PRQFVamide was expressed in the gastric ganglion. The
gene expression level was suppressed with the higher levels
of the octopuses with “high” Aggregata parasite load, while
those with “low” parasite load showed an increased expression
(Baldascino et al., 2017). However, the underlined function and
regulatory mechanisms of the PRQFVamide in cephalopod are
poorly understood.

The common Chinese cuttlefish S. japonica used to be one
of the four traditional major marine fishery species in the
East China Sea (Wu et al., 2010b). Because of great economic
importance and ecological value, S. japonica is a promising

aquaculture species. However, due to overexploitation and the
deterioration of environmental conditions, the resources of
S. japonica have been severely damaged since the mid-1970s.
Great efforts have been poured on it to recover its ecological
resources. Although artificial breeding and some achievements
have been made in China, precocious puberty and disease
arose in cuttlefish during artificial breeding (Wu et al., 2010a;
Lü et al., 2019). Thus, exploring the potential physiological
functions of PRQFVamide-related peptide in S. japonica (termed
as SjPRQFVRP) is urgently needed and our work has important
scientific and practical significance.

In this study, the main objectives aim to (1) clone
the full-length cDNA of SjPRQFVRP; (2) detect the spatio-
temporal expression during the whole developmental stages with
quantitative Real-time PCR (qRT-PCR); (3) investigate the tissues
distribution profiles by in situ hybridization (ISH); (4) observe
the subcellular localization in HEK293 cells. The results will
inform us the follow up studies based on different approaches that
the gene might be involved in various physiological functions in
S. japonica.

MATERIALS AND METHODS

Sample Collection
Healthy S. japonica was collected from a local aquaculture base
(29◦53′ N, 122◦18′ E, Xixuan Island, Zhejiang Province, China).
Cuttlefishes were cultured in aerated seawater at approximately
25◦C on a 14/10 h light/dark cycle and fed with shrimp twice
daily. On the basis of the growth time and gonad appearance,
cuttlefishes were divided into six different developmental stages
(stage I–VI) as previously reported (Jiang et al., 2007; Luo et al.,
2014). Three cuttlefishes were used for the tissue distribution
analysis at each developmental stage: stage I-II (17.3 ± 4.7 g),
stage III (52.7 ± 5.1 g), stage IV (60.8 ± 4.3 g), stage V
(70.0 ± 9.4 g), stage VI (99.1 ± 6.4 g). After anesthetized
on ice for 1 min, experimental cuttlefishes were dissected. The
brain, optic lobe, heart, liver, intestine, stomach, pancreas, gill,
muscle, skin, ovary, nidamental gland, and accessory nidamental
gland were removed separately and put in RNAstore (CoWin
Biosciences, Jiangsu, China) at −80◦C. The brain of stage I-II
was fixed in 4% paraformaldehyde (PFA) overnight at 4◦C. All
experiments were conducted according to the protocols and
guidelines approved by the Ethics Committee of Zhejiang Ocean
University and the Academy of Experimental Animal Center of
Zhejiang Ocean University.

RNA Extraction and cDNA Synthesis
To isolate total RNA from tissues, Trizol reagent (Takara, Kyodo,
Japan) was used as described in previous studies (Li et al., 2019).
Then the quality, purity, and integrity of RNAs were assessed
by UV spectroscopy (A260/A280) on Nanodrop 2000 (Thermo
Fisher Scientific, Waltham, MA, United states) and agarose gel
electrophoresis. The mRNA was reverse transcribed into first-
strand cDNA using PrimeScriptTM RT reagent Kit with gDNA
Eraser (Perfect Real Time) (Takara Bio Inc., Kyodo, Japan). The
first-strand cDNA was used as the template.
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Full-Length cDNA Amplification
To amplify the SjPRQFVRP sequence, PRQFVRP-F/R primers
(Table 1) were designed in accordance with the unigene
annotated in S. japonica transcription (Lü et al., 2016). The
PCR amplification reaction was conducted with 2 × Easy
Taq Mix (Sangon Biotech, Shanghai, China). The target
band was gel-purified and ligated to pMD19-T Vector
(Takara Bio Inc., Kyodo, Japan). The insert was sent to
the company for sequence determination (Sangon Biotech,
Shanghai, China).

According to the SjPRQFVRP sequence, specific primers
(Table 1) for 5′- and 3′-RACE were designed. RACE reactions
were conducted following the instructions of SMARTerTM

RACE cDNA Amplification Kit (Clontech, Fitchburg, MA,
United states) as a previous study (Zheng et al., 2016).
UPM (10 × Universal Primer A Mix, Table 1) and 5′-
PRQFVRP-RACE (Table 1) were used to perform the 5′-
RACE of the SjPRQFVRP. The final reaction volume of
50 µl contained 41.5 µl Master Mix, 2.5 µl cDNA of
the brain, 1.0 µl 5′-PRQFVRP-RACE, and 5 µl UPM.
The PCR reaction program was 25 cycles of 94◦C for
30 s, 68◦C for 30 s, and 72◦C for 2 min. The next
steps were the same as conventional PCR. The annealing
temperature was adjusted according to the primer temperature.
The 3′-RACE of the SjPRQFVRP used 3′-PRQFVRP-RACE
(Table 1) and UPM. The PCR reaction was similar to that
mentioned above for 5′-RACE. All the products were purified
using DNA gel extraction kit (Sangon Biotech, Shanghai,
China) and ligated into the pMD19-T vector for sequence
determination. All primers used in the present study are listed
in Table 1.

Bioinformatics Analysis of SjPRQFVRP
To get the target sequence, three conserved nucleotide
sequences (XM 029790420.1, NM 001204600.1, KY659273.1)
(Supplementary Table 1) were acquired from the NCBI
database1 and were aligned with the Blast (Blastx and Blastn).
Once gaining the full length of SjPRQFVRP, the open reading
frame (ORF) of the SjPRQFVRP gene was predicted in NCBI.
Online software NetPhos 3.1 Server2 was used to predict the
phosphorylation sites. The polyadenylation signal, cleavage sites,
amidation site, and mature peptides were marked as mentioned
in previous studies (Veenstra, 2000; Proudfoot, 2011; Zatylny
Gaudin et al., 2016). Online software Expasy-ProtParam3 was
used to translate it into amino acid sequence and predict the
molecular weight (MW) and theoretical isoelectric point (pI)
of the protein. The signal peptide was predicted by SignalP
5.0.4 Multiple alignments were performed through software
DNAMAN (Lynnon biosoft, San Ramon, CA, United states).
The phylogenic tree was established by the maximum likelihood
method (MEGA-X) and the bootstrap test was assessed from
1,000 replications to assure reliability.

Quantitative Expression Analysis of
SjPRQFVRP
qRT-PCR was performed with primers PRQFVRP-RT-F/R
(Table 1) as previously described (Li et al., 2018) on a
CFX Connect Real-time PCR amplifier (Bio-Rad, Richmond,

1https://www.ncbi.nlm.nih.gov/
2https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
3http://web.expasy.org/protparam/
4https://services.healthtech.dtu.dk/service.php?SignalP-5.0

TABLE 1 | Primers used in this study.

Primer Sequence (5′–3′) Position Application

PRQFVRP-F ATTCTGAAGTTTCCCATT 342–359 Core sequence cloning

PRQFVRP-R CGTTGTCTATTTGCTCCTA 1503–1521

10 × Universal Primer A Mix Long,CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT; / RACE

Short, CTAATACGACTCACTATAGGGC

5′-PRQFVRP-RACE CTGCGAGAGGTTTCAGGACTGTGTCTTTCA 549–578 5′-RACE

5′-PRQFVRP-N1 AGAAGTGCCACCACATACATTG 444–465

5′-PRQFVRP-N2 AAAGAAGAGAAAGTCGCCCGT 316–336

3′-PRQFVRP-RACE TCGCGCAACCCTTTACAACTCAACCTTCT 1332–1360 3′-RACE

3′-PRQFVRP-N1 AACAACCACTACCAAACACCA 1378–1398

3′-PRQFVRP-N2 ATTAGGAGCAAATAGACAAC 1501–1520

PRQFVRP-RT-F CTTTAATGCAGCAGAACCCG 511–530 qRT-PCR

PRQFVRP-RT-R GTCACCATCCTCAGTACCAGAC 644–661

β-actin-F GCCAGTTGCTCGTTACAG / qRT-PCR

β-actin-R GCCAACAATAGATGGGAAT /

GAPDH-F TGGTTCCTTGGCTTTTGCT / qRT-PCR

GAPDH-R GGTGGTGGTGCGGGTAGT /

PRQFVRP-ISH-F ACACAGTCCTGAAACCTCTCGC 555–566 ISH

PRQFVRP-ISH-R ATTCCATGGGTCTCTTCCCTAA 1010–1031

PRQFVRP-XhoI-F CCGCTCGAGATGAGGATCTATTGGCCAAT 428–447 Subcellular localization

PRQFVRP-HindIII-R CCCAAGCTTACCTAAAAATTCCATTGGGC 1164–1173

The underline indicates restriction endonuclease recognition sequence.
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FIGURE 1 | Nucleotide sequence and deduced amino acid sequence of SjPRQFVRP. The initiation codon (ATG), stop codon (TAA), and polyadenylation signal
(AATAAA) are boxed in black. The deduced signal peptide is underlined in black. The putative mature peptides are shaded in gray. The cleavage sites are identified in
green color, and glycine used for C-terminus amidation is marked in red. The predicted phosphorylation sites are shown in colorful frames (Tyr site in red, Thr site in
blue, and Ser site in green).

VA, United states) with TB Green
R©

Premix Ex TaqTM II
(Tli RNaseH Plus) (Takara, Kyodo, Japan). GAPDH (Huo
et al., 2018) and β-actin (JN564496.1) were taken as double
internal controls. The reactions were performed with three
individual repeats and three independent experiments in
each tissue. PCR specificity was assessed in the terms of
a melting curve.

The SjPRQFVRP mRNA levels were analyzed using the
threshold and Ct (threshold cycle) values. The mRNA expression
level detected in the muscle tissue was used as the reference
value according to the 2−11Ct method (Livak and Schmittgen,
2001). All data were normalized with the mRNA expression
level in the muscle and presented as mean ± standard deviation
(SD) (n = 3). The Least Significant Difference (LSD) multiple
comparison test was performed by SPSS 21. Differences were
considered significant at p < 0.05.

In situ Hybridization
The specific primers (PRQFVRP-ISH-F/R, Table 1) were
designed for ISH. The PCR was carried out with brain cDNA
as a template. The gel-purified PCR products were ligated
into the pGEM-T Easy vector (Promega, Madison, WI, United
states) and sequenced. The sense and anti-sense probes were
synthesized by in vitro transcription with the DIG RNA Labeling
kit (Roche Diagnostics, Mannheim, Germany) as previously
described (Li et al., 2019).

The fixed brain at stage I-II was washed with 1 × PBST (0.01
M PBS, 1% Tween-20) and dehydrated with gradient methanol
(25, 50, 75, and 100%). The dehydrated tissue was embedded
into the paraffin and sectioned with an ultra-microtome at a
thickness of 7 µm.

In situ hybridization procedure was described as a previous
study (Li et al., 2019). Briefly, on the first day, sections were
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FIGURE 2 | Multiple alignments of the SjPRQFVRP with PRQFVamide of other species. The SjPRQFVRP is noted by H. The GenBank accession numbers of the
sequences are as follows: Sepiella japonica (OK999997), Octopus vulgaris (XP 029646280.1), Mizuhopecten yessoensis (OWF49118.1), Aplysia californica (NP
001191529.1), and Deroceras reticulatum (ARS01374.1). Identical residues in all sequences are showed with black boxes. Conservative substitutions are showed
with gray boxes. The red boxes are used to indicate the conservative position in the predicted mature peptide (FX). The blue boxes are used to indicate the
conservative cleavage sites (KR/R).

dewaxed in xylene and rehydrated in gradient alcohol. Then,
the slices were digested with Proteinase K (1 µg/ml) for 8 min
at 37◦C. Later, the slices were transferred to Tris/Glycine buffer
to stop the reaction and fixed in 4% PFA. Pre-hybridization
was conducted to reduce non-specific hybridization for 2 h at
42◦C. Then slices were incubated at 55◦C for 14–16 h with sense
or anti-sense RNA probes (3 µg/ml). On the second day, the
slices were washed at 37◦C with gradient saline sodium citrate
(SSC). Following the wash, sections were blocked for 2 h at room
temperature (RT) with blocking buffer (2% goat serum, 2 mg/ml
BSA, 0.01 M PBS). Next, slides were incubated in anti-DIG-AP
Fab fragments (1:1000, Roche Diagnostics, Mannheim, Germany)
overnight at 4◦C. On the third day, sections were stained
with NBT/BCIP (Roche Diagnostics, Mannheim, Germany).
Signals were checked every 30 min. Then stained slides were
mounted in glycerol and observed with a microscope (Nikon,
Tokyo, Japan).

Subcellular Localization of SjPRQFVRP
Precursor Protein
To construct recombinant plasmids SjPRQFVRP-EGFP, PCR was
used to amplify the ORF of SjPRQFVRP with specific primers
(Table 1) containing restriction sites XhoI and HindIII. Then, the
PCR products were ligated into pEGFP-N1 and sequenced.

Human embryonic kidney 293 (HEK293) cells were cultured
at 37◦C with 5% CO2 for 24 h before transfection. The
medium was discarded and 2 ml Opti-MEM (Gibco, Waltham,

MA, United states) was added to the plate. The recombinant
plasmids SjPRQFVRP-EGFP and Lipo6000TM Transfection
Reagent (Beyotime Biotechnology, Shanghai, China) were diluted
with Opti-MEM for 5 min at RT, respectively. The mixture of
two diluents was transfected into HEK293 cells and the cells
were incubated for 6 h at 37◦C. Then, the medium was removed
and the cells were cultured with a fresh medium for 24 h.
After fixation with 4% PFA overnight, the cytomembrane and
nucleus were stained with DiI (7 µM) (Beyotime Biotechnology,
Shanghai, China) and DAPI (5 µg/ml) (Beyotime Biotechnology,
Shanghai, China), respectively. The stained cells were visualized
under TCS SP5II laser scanning confocal microscope (Leica,
Wetzlar, Germany).

RESULTS

Characteristics of Full-Length
SjPRQFVRP cDNA
The full-length cDNA of SjPRQFVRP is 1748 bp, including
428 bp untranslated region (UTR) in the 5′-terminus, 582 bp
of UTR in the 3′-terminus, and a 738 bp ORF encoding 245
amino acids (aa) (Figure 1). The putative precursor protein
had a signal peptide of 19 aa and four different pentapeptides:
14 copies of PMEFLamide, three copies of RMEFLamide,
one copy of AMEFLamide and GMEFLamide. The sequence
MEFL was followed by a glycine which is an amidation
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FIGURE 3 | Phylogenetic tree of SjPRQFVRP with five other PRQFVamide using the maximum likelihood method. The SjPRQFVRP is noted by H. All protein
sequences are obtained from GenBank of the NCBI, and the GenBank accession numbers are as follows: Sepiella japonica (OK999997), Octopus vulgaris (XP
029646280.1), Mizuhopecten yessoensis (OWF49118.1), Aplysia californica (NP 001191529.1), Deroceras reticulatum (ARS01374.1), and Lingula anatina (XP
013402951.1). The PRQFVamide of L. anatina serves as the outgroup. The topological stability of the tree is achieved by running 1,000 bootstrap replications.
Bootstrap values (%) are indicated by numbers at the nodes.

site. The predicted MW was 28.6 kDa and the theoretical
pI was 9.47.

Homology and Phylogenetic Analysis
The amino acid sequences of PRQFVamide downloaded from
the NCBI database from the other four representative species
and the SjPRQFVRP were used for alignment analysis. The
results indicated that SjPRQFVRP shared 71% identity to the
PRQFVamide-like of O. vulgaris (XP 029646280.1), and 47,
46, 45% identity to those of M. yessoensis (OWF49118.1),
A. californica (NP 001191529.1), and D. reticulatum
(ARS01374.1), respectively. The multiple alignments results
showed that SjPRQFVRP had some conserved amino acids with
other PRQFVamide, such as cleavage sites (KR/R) and partial
mature peptide amino acids (FL/FV) (Figure 2).

To determine the evolutionary status of the SjPRQFVRP,
a phylogenetic tree was generated from SjPRQFVRP and the
other five PRQFVamide sequences by the maximum likelihood
method (MEGA-X) (Figure 3). Phylogenetics reveals that the
PRQFVamide from five mollusks were clustered. Moreover,
a close relationship between SjPRQFVRP and PRQFVamide-
like of O. vulgaris was observed at a high confidence value
(99%), suggesting they were close relatives. The PRQFVamide of

brachiopod L. anatina (XP 013402951.1), as an outgroup, was
distantly related to those of the mollusks.

Quantitative Expression Analysis of
SjPRQFVRP
As shown in Figure 4, the mRNA expression level of SjPRQFVRP
at different development stages from females was detected.
The transcripts of the SjPRQFVRP in the muscle were taken
as the reference.

At stage I-II (Figure 4A), the expression of SjPRQFVRP in the
intestine was approximately 10 times that of the muscle, followed
in the liver, which was about 8 times higher (p < 0.05). At stage
III (Figure 4B), the expression level of SjPRQFVRP in the brain
and optic lobe was significantly higher than that of other tissues,
with the levels were approximately 125 times and 60 times that
of the muscle, respectively (p < 0.05). At stage IV (Figure 4C),
the expression pattern is very similar to that of stage III, with
the brain and optic lobe showing very high levels (p < 0.05).
The difference with a slightly increasing level in the nidamental
gland and accessory nidamental gland has been detected. At stage
V (Figure 4D), the optic lobe had higher expression level than
that of other tissues and was around 450 times that of the muscle
(p < 0.05), followed by the brain, liver, and nidamental gland.
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FIGURE 4 | Expression analysis of SjPRQFVRP from diverse tissues at different development stages of female cuttlefish. (A) Stage I-II; (B) stage III; (C) stage IV; (D)
stage V; (E) stage VI. In each case, the transcripts of the muscle were served as the reference value. Vertical bars represent the mean ± SD (n = 3). The analyses
were conducted in tissues including the brain (BR), optic lobe (OL), heart (HE), liver (LI), intestine (IN), stomach (ST), pancreas (PA), gill (GI), muscle (MU), skin (SK),
ovary (OV), nidamental gland (NG), and accessory nidamental gland (ANG). GAPDH and β-actin served as reference genes. Different letters on the bars indicate
statistically significant differences (p < 0.05).

At stage VI (Figure 4E), the relative expression in the brain was
significantly higher than other tissues and was around 120 times
that of the muscle (p < 0.05).

To better elucidate our data, the stage-point expression levels
of SjPRQFVRP in one single tissue were re-quantified in Figure 5.
As shown in Figure 5A, for the brain tissue, the expression
level of SjPRQFVRP showed a steady increase from stage I-II
to IV and reached the peak at stage IV (p < 0.05), then the
expression level decreased at stage V and recovered to the level
of stage III at stage VI. In the optic lobe (Figure 5B) and pancreas
(Figure 5E), the transcripts of SjPRQFVRP at stage V were
significantly higher than that of other stages (p < 0.05). In the
liver (Figure 5C), it showed an increasing trend, and the peak
was at stage V and VI (p < 0.05). In the ovary (Figure 5F), from
stage III to VI, the expression showed a continuous increase.
In the nidamental gland (Figure 5G), from stage III to stage
V, the expression increased until stage V reached the peak
(p < 0.05). In the accessory nidamental gland (Figure 5H),
the highest expression of SjPRQFVRP appeared at stage IV
(p < 0.05).

Distribution of SjPRQFVRP mRNA in the
Brain
The SjPRQFVRP mRNA distribution in the cuttlefish brain at
stage I-II was determined by ISH. As shown in Figure 6, no
signal was detected with the sense probe (Figures 6A,C). In
contrast, specific staining was detected in various regions of

the cuttlefish brain with the anti-sense probe (Figures 6B,D).
In the supraesophageal mass (Figure 6B), positive signals were
intensively appeared in cells of the anterior basal lobes (abl)
and followed in the vertical lobe (vl) and subvertical lobe
(svl). In the suboesophageal mass, the positive signals were
primarily observed in the anterior pedal lobe (apl) (Figure 6B).
In other words, the positive signals were mainly distributed in
the peripheral cells of the functional lobes of supraesophageal and
suboesophageal masses. In the optic lobe (ol) (Figure 6D), the
staining in the central medulla (med) was the most extensive and
intense. The edge of the medulla cells was stained as weakly as the
inner granulosa cells (inn. gr. cel) and outer granulosa cells (out.
gr. cel). Moreover, the esophagus (Figure 6B) was also observed
some weak signals at stage I-II.

Subcellular Localization of SjPRQFVRP
Figure 7 showed the localization of SjPRQFVRP protein in
the HEK293 cells. Strong and clear green signals were detected
in the cytoplasm of the transfected cells (Figure 7A) but
not in the membrane and nucleus (Figures 7B,C), indicating
that SjPRQFVRP was localized in the cytoplasm of the
cells (Figure 7D).

DISCUSSION

In this study, SjPRQFVRP contained four pentapeptides: 14
copies of PMEFLamide, three copies of RMEFLamide, one
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FIGURE 5 | The expression level of SjPRQFVRP of females in different tissues at different stages. Vertical bars represent the mean ± SD (n = 3). GAPDH and β-actin
served as reference genes. Different letters indicate statistically significant differences (p < 0.05). (A) Expression trend of SjPRQFVRP in the brain. (B) Expression
trend of SjPRQFVRP in the optic lobe. (C) Expression trend of SjPRQFVRP in the liver. (D) Expression trend of SjPRQFVRP in the intestine. (E) Expression trend of
SjPRQFVRP in the pancreas. (F) Expression trend of SjPRQFVRP in the ovary. (G) Expression trend of SjPRQFVRP in the nidamental gland. (H) Expression trend of
SjPRQFVRP in the accessory nidamental gland.

copy of AMEFLamide and GMEFLamide. In A. californica,
PRQFVamide precursor protein contained PRQFVamide and
other four kinds of pentapeptides: AREFVamide, VRDFVamide,
VREFVamide, and IREFVamide (Furukawa et al., 2003). These
five predicted pentapeptides were amidated and shared three
immobile amino acids: the second amino acid is an arginine,
the fourth is a phenylalanine, and the fifth is a valine
(Furukawa et al., 2003). Compared with the PRQFVamide of
A. californica, the predicted mature peptides of SjPRQFVRP did
not contain PRQFVamide or the other four peptides. But similar
to the PRQFVamide of A. californica, all four pentapeptides of
SjPRQFVRP were amidated and shared four invariant amino
acids (-MEFLamide). In addition, they had a similar structure
feature at C-terminus: FXamide (X = hydrophobic amino
acid). In S. officinalis, there were two sequences of incomplete
PRQFVamide precursor with two different signal peptides and
two termination codons at the C-terminus (Zatylny Gaudin et al.,
2016). Moreover, five mature products were recovered from
hemolymph in S. officinalis, including PMEFLamide (Zatylny
Gaudin et al., 2016). However, in the predicted peptides of
SjPRQFVRP, we did not find the other four mature peptides
like the ones recovered in the hemolymph of S. officinalis.
One possible explanation is that there are other transcripts of
PRQFVamide in the cuttlefish, and this probably result from
alternative splicing (Zatylny Gaudin et al., 2016).

Some interesting discoveries have been made by this study
through the qRT-PCR data. 1) The SjPRQFVRP expression level
was increased in the ovary from stage III to VI. 2) The expression
in the nidamental gland was also increased from stage III to V
but reduced at stage VI. 3) The expression in the liver increased
and reached the peak at stage V and stage VI. The synthesis
and release of neuropeptides were found to be a general feature
of most cells of the nervous system (Kiss, 2011). However,
researchers found that neuropeptides are also produced and
released by non-neuronal cells such as glands or endocrine cells
(Pirger et al., 2008; Kiss, 2011). Therefore, the expression of
SjPRQFVRP in liver and nidamental gland might be related to its
potential function. Nidamental gland is a typical secretory gland.
It is mainly used to form a third layer of egg membrane to protect
the fertilized eggs (Wang et al., 2021). Liver is an important organ
for metabolism and innervated by a large number of afferent and
efferent nerves (sympathetic and parasympathetic) in vertebrate
(Yi et al., 2010). Otherwise, liver is also one of the synthesis
organs of vitellogenin, which is transported to the ovary to be
accumulated and stored in the form of vitellin (Tian et al., 2014).
However, the function of the liver in cephalopods is still unclear.
Given these interesting discoveries, more efforts are needed to
further study in S. japonica.

A previous study reported that the cephalopod brain was
divided into the supraesophageal mass, suboesophageal mass,
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FIGURE 6 | Distribution of SjPRQFVRP mRNA in the brain. (A) The brain of stage I-II was stained with sense SjPRQFVRP probe; (B) The brain of stage I-II was
stained with anti-sense SjPRQFVRP probe; (C) The optic lobe was stained with the sense SjPRQFVRP probe; (D) The optic lobe was stained with the anti-sense
SjPRQFVRP probe. Vl, vertical lobe; svl, subvertical lobe; abl, anterior basal lobe; eso, esophagus; apl, anterior pedal lobe; ca, cartilage; ot, optic tract; ol, optic lobe;
med, medulla; out. gr. cel, outer granulosa cell; inn. gr. cel, inner granulosa cell.

and optic lobes (Yu et al., 2011). Various nerve lobes have been
found in cephalopod brain with different functions. The vertical
lobe stores memory information and accurately identifies the
opposite position (Young, 1960). The subvertical lobe receives
nerve impulses from the vertical lobe and transmits them
to the optic lobe (Hochner et al., 2006). The reproductive
nerve lobes are mainly the subpeduncle lobe and optic gland
(Messenger, 1967; Froesch, 1974). The anterior and posterior
basal lobes control the direction of steering movement and
tentacle movement and color change by chromatophores
(Shigeno and Yamamoto, 2002). The anterior and posterior
pedal lobes also regulate tentacle movements, while the brachial
lobe coordinates the movements of the arms (Shigeno and
Yamamoto, 2002). It is reported that various neuropeptides
distribute in different parts of the cephalopod brain, where is
likely to be related to their function. In S. japonica, SjLFRFamide
mRNA was highly expressed in the brain of both male and
female cuttlefish. It was detected in several different functional
lobes, mainly in the subpeduncle lobe, subvertical lobe, and
all regions of suboesophageal mass. These findings suggested
that SjLFRFamide might function in regulating reproduction
and feeding (Cao et al., 2016). The distribution pattern of
SjFMRFamide mRNA was similar to that of the SjLFRFamide
in the S. japonica brain (Li et al., 2018). In S. officinalis, the
SOFaRP2 gene was detected in the posterior chromatophore,

anterior chromatophore, lateral basal, and optic lobes (Zhang
et al., 2012; Zhang and Tublitz, 2013). These observations
supported the idea that SOFaRP2 might be related to regulate
chromatophore activity, feeding behavior, learning and memory.
FMRFamide transcripts were also detected in the brain and
expressed at the early life of S. pharaonis (Zhu et al., 2020).
Additionally, strongly positive signals of GnRH were observed
in the different lobes of the supraesophageal, suboesophageal
mass, and the medulla of the optic lobe in S. pharaonis,
suggesting that GnRH might have a role in regulating feeding
and reproduction (Song et al., 2021). In this manuscript,
the brain at stage I-II was selected to preliminarily explore
its potential functionally relevant localization in cuttlefish at
early developmental stages. The SjPRQFVRP was distributed
in several functional lobes of the brain at stage I-II, including
the vertical lobe, subvertical lobe, anterior basal lobe, anterior
pedal lobe, and optic lobes. The distribution of SjPRQFVRP
in the brain is similar to the distribution of neuropeptides
mentioned above. However, to further explore the role of
SjPRQFVRP during the growth and development of cuttlefish,
more experiments are needed.

Moreover, in Aplysia, researchers described the distribution
of PRQFVamide on the buccal and cerebral ganglion and
found that the gene might have effect on some systems as a
modulator, especially the feeding system (Dembrow et al., 2003;
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FIGURE 7 | The localization of SjPRQFVRP-EGFP fusion protein in HEK293 cells. (A) GFP: SjPRQFVRP-EGFP fusion protein was stained green; (B) DiI:
cytomembranes of cells were stained red with DiI; (C) DAPI: nucleus of cells was stained blue with DAPI; (D) Merge: SjPRQFVRP protein was mapped in the
cytoplasm of HEK293 cells. Scale bars = 20 µm.

Furukawa et al., 2003). Whether SjPRQFVRP plays a part in the
feeding system like that of Aplysia still needs to be confirmed by
further experiments.

The subcellular localization suggests that SjPRQFVRP was in
the cytoplasm of HEK293 cells. At present, the PRQFVamide
receptor has not been found yet. In a future experiment, we can
start with the PRQFVamide receptor and conduct a functional
exploration of SjPRQFVRP in S. japonica.

CONCLUSION

In conclusion, our study described the full-length sequence
of SjPRQFVRP cDNA in S. japonica. qRT-PCR analysis
and ISH of the brain indicated the dominant expression
of SjPRQFVRP throughout different developmental stages
in S. japonica. In brief, the results informed us the
follow up studies based on different approaches that
the gene might be involved in various physiological
functions in S. japonica. This study could also be of
the theoretical basis for the restoration of cuttlefish
germplasm resources.
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