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The production of total phenolic content (TPC) and total flavonoid content (TFC),
antioxidant (AA), and copper chelating (CACu+) activities of Rhizophora mangle from
three coastal lagoons under different grades of anthropogenic pollution and pollutant
presence were analyzed. R. mangle is a mangrove plant that inhabits tropical coastal
lagoons and shows the ability to accumulate pollutants in their tissues and respond to
environmental stressors via the production of secondary metabolites AA and CACu+

activities. In total, 108 samples (June 2010 to August 2011) of leaves, barks, and
the roots of R. mangle from Magdalena Bay (MBAY), Navachiste Lagoon (NLAG),
and Terminos Lagoon (TLAG) (Mexico) were collected. Folin-Ciocalteu colorimetric,
aluminum chloride colorimetric, ABTS•+ discoloration, and pyrocatechol-violet methods
calculated TPC, TFC, AA, and, CACu+, respectively. Atomic absorption spectrometry,
gas chromatography, and Walkley–Black methods were used to calculate the metal
content, organochlorine pesticides (OCPs), and organic matter (OM) in sediments.
One-way ANOVA and post hoc Tukey’s, Scheffé’s, and Bonferroni and Holm multiple
comparisons were used to determine significance, and Pearson’s test was applied
to determine the coefficient of correlations. Significant differences among the lagoons
of TPC, TFC, AA, and Cu+CA activities of Rhizophora mangle are explained by their
different grades and type of anthropogenic pollution. A significant increase in the TPC
and TFC in bark implies a response to the metal and OCPs pollution in surrounding
sediments. Significant AA and Cu+CA activities responded to combat environmental
stress conditions caused by the OCP and trace metal concentrations in surrounding
sediments. Strong and positive correlations among OCP and trace metal were found
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and related to the constant pesticide residues input. However, OCP concentrations in
the surrounding sediments of R. mangle trees did not influence the phenolic production
of AA or the Cu+ CA. R. mangle is affected by the type of anthropogenic pollutants and
was reflected in the bio-compounds production, antioxidant, and chelating activities
related to the concentration of the metals in sediments.

Keywords: phenolic compound, antioxidant, chelating activity, Navachiste, Terminos Lagoon, Bahía Magdalena

INTRODUCTION

In the last decades, the pollution caused by anthropogenic sources
has been increasing. Most organic pollutants residues persist
in the environment and eventually are discharged, such as the
coastal lagoons. The constant input of anthropogenic pollutants,
such as oils, trace metals, and pesticides residues maintain
mangrove ecosystems constantly stressed (Lewis et al., 2011). In
these areas, the pollutant residues usually attach to the organic
matter (OM) found in the sediments and become bioavailable
to the marine biota that inhabits these coastal lagoons. The
mangrove ecosystems present in these zones are very important
because of their role in ecology services, such as primarily the
coastal line protection, breeding or reproduction areas, and
sediment retention.

Mangroves trees to deal with this pollution stress secrete
different molecules, such as catalase, peroxidases, polyphenol
oxidase, indoleacetic acid oxidase, carotenoids, and phenolic
compounds (Lattanzio et al., 2012). These compounds are
reactive oxygen scavenging species (ROS) that are produced to
avoid ROS undesirable potential adverse effects (Rico et al., 2015),
protection against ultraviolet radiation, herbivores, pathogens,
salinity, and show antioxidant and chelating properties (Bayen,
2012; Sivanadanam et al., 2012; Agati et al., 2013; Glasenapp
et al., 2019). The antioxidant activity prevents damage from ROS
through radical scavenging or as prevention by binding metal
ions (Brunetti et al., 2013), by scavenging of free radicals, or
chelating metal traces (Lattanzio et al., 2012).

The Rhizophora mangle is a mangrove species that is
distributed on the tropical coast of the world, and Mexico
occupies the first line of coastal lagoons in these zones, such
as the Navachiste, Terminos, and Bahia Magdalena lagoons.
This species is known to produce ROS. Among them are
the phenolic compounds, such as procyanidins, catechin,
epicatechin, epigallocatechin, epicatechin gallate, quercetin,
epicatechin, catechin, hydroxybenzoic acid, kaempferol–3–β–
glucopyranoside, quercetin 3–O–β–glucopyranoside, quercetin
3–O–6′′-trans-coumaroyl–β-glucoside, kaempferol 3–O–β–
rutinoside, and quercetin 3–O–β–rutinoside (Costa et al., 2014).
The chelating capacity of phenolic compounds gives R. mangle
trees the ability to accumulate metal concentrations of the iron
plaque deposits in their roots (MacFarlane et al., 2007). Due that
R. mangle seems to vary the production of secondary metabolites
according to the pollution conditions in the environment, such
as the phenolic compounds and their antioxidant or chelating
capabilities (Vasavilbazo-Saucedo et al., 2018; Martínez-Álvarez
et al., 2019; Diaz et al., 2021), it is essential to know if under
different pollutant or grade of pollution affect this production.

The hypothesis in this study was to determine that even
some environmental conditions affect the concentration of
polyphenols in mangroves. It is possible to evaluate how the
source and grade of trace metal and organochlorine pesticides
pollutants presented in the sediments in different coastal lagoons
influence the secretion of phenolic compounds and antioxidant
or chelating activities of R. mangle against these pollutants.

MATERIALS AND METHODS

Study Sites
The mangrove trees were identified by taxon keys (Rzedowski,
1981; Agraz-Hernández et al., 2006). All samples were
taxonomically identified by Prof. José Adrian Beltran Magallanes,
who is in charge of the Biology School Herbarium of the
University of Sinaloa, Mexico. No voucher code is given. Tissues
samples were collected from the three coastal lagoons: Terminos
Lagoon (TLAG) is located in the Gulf of Mexico (18◦ 35′ N
and 91◦ 32′ W) and is impacted by petroleum-related activities,
pesticides, and metals (Benítez et al., 2012); Navachiste Lagoon
Complex (NLAG) is located in the south-eastern part of the
Gulf of California (25◦ 28′ N and 108◦ 48′ W) and neighbored
by the most prominent agricultural area of Mexico (Reyes-
Montiel et al., 2013; Granados-Galván et al., 2015) that generates
pollution from the use of organochlorine pesticides (OCPs)
whose residues are disposed into this lagoon; and Magdalena
Bay (MBAY) is located in the western part (Pacific) of the Baja
California Peninsula (26◦ 44′ N and 113◦ 09′ W), and it is a low
anthropogenic-polluted lagoon free of small or large industries
or large-scale agriculture which most of its environmental
degradation is due to artisanal fisheries (Sujitha et al., 2019;
Figure 1).

Experimental Design
Mangrove Sample Collection
Three samples of leaves, bark, and roots of Rhizophora mangle
trees (between 1.5 and 4 m height) were sampled from four
sampling sites inside each lagoon during the period of June to
August 2011 (Figure 1). To avoid differences between sampled
trees, individuals within sampled regions, sites adjoined to
effluents drainages from aquaculture or agriculture, or without
the apparent influence of these effluents were selected. Tissue
samples were analyzed in triplicate. The selection criteria of
trees within the regions were focused on individuals above
5 m height, healthy, and close to each other in the same
sampling site. Bark and roots samples were collected by scraping
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FIGURE 1 | Geographical location of the study area and location of sampling sites in Magdalena Bay (MBAY) (A), Navachiste Lagoon complex (NLAG) (B), and
Terminos Lagoon (TLAG) (C).

the mangrove’s tissues with a jack-knife (Naranjo-Sánchez and
Troncoso-Olivo, 2008). Three leaves per tree were randomly
removed and were selected without yellowish coloration or
signals of broken edges and physical or parasitic damage. Each
leaf was cleaned with distilled water and packed in an aluminum
foil in a cold dark recipient and transported to be stored in
a freezer at the CICIMAR Environmental Laboratory (MBAY),
CIIDIR SINALOA Research Center (NLAG), or the University
of Campeche in Ciudad del Carmen (TLAG). All tissues samples
were individually wrapped with newspaper and were dehydrated
slowly at 40◦C in a botanical incubator for 7 days (Haq
et al., 2011). After dehydration, the samples were separated and
individually milled in a grain grinder (Krups R© GX 4100, Type
F408, Mexico). The powders were stored in black plastic bags
under darkness and dry room-temperature conditions.

Ethanolic Extracts
All samples were transported to the CIIDIR-IPN Research Center
in Durango City, Mexico. Three aliquots per sample were used.
Since phenolic compounds have many unsubstituted hydroxyl
or sugar groups, they are considered polar and soluble in polar
solvents, such as ethanol and water. Briefly, 10 ml of ethanol
at 5◦C (80%, v/v) was added to each milled dry aliquot (0.5 g)
and were shaken on a heating plate (Cimarec R©, United States)

in darkness and room temperature (30 min) and then filtered
(Whatman R© No. 1). Solutions were evaporated to dryness using a
water evaporator at 40◦C, and a second extraction was done with
10 ml of ethanol at 5◦C (80%, v/v). Then, 20 ml of petroleum
ether was added to each solution after extraction to remove
chlorophyll. All supernatant extracts were kept in darkness and
refrigerated until further analysis. The leaf (100 µl), bark (10 µl),
and root (20 µl) extracts were placed in a vial and diluted with
ethanol (800 g L−1) at 900, 990, and 980 µl, respectively, at room
temperature, to calculate TPC, TFC, ABTS• + radical scavenging
capacity, and Cu+ CA (Saiga et al., 2003).

Absorbance readings (ABS) of TPC (750 nm), TFC (510 nm),
and AC (695 nm) were compared with their standard
curves with Gallic acid (TPC (Equations 1 and 3), and
catechin (TFC) (Equation 2), AC (ABTS• +) (Equation
3), and Cu+ CA chelating rate (Equation 4) equivalent
concentrations, respectively.

Total Phenolic Content Evaluation
Each extract (100 µl) was mixed with Folin-Ciocalteu reagent
(750 µl) diluted ten times with distilled water, and kept in
darkness (5 min); then, a 60 g L−1 solution of Na2CO3 (750 µl)
was added to neutralize the reaction and incubated for 90 min
to read the absorbance (750 nm) to estimate the TPC expressed
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as Gallic acid equivalents (GAE) per 100 g dry basis (db) (mg
GAE 100 g−1 db). A standard curve of Gallic acid (SIGMA R©

Cat. G7384) was read at 750 nm in a Thermo Scientific R©

Spectrophotometer UV-VIS GENESYS R© 10 s (r2 = 0.9968)
(Adom and Liu, 2002) (Eq. 1).

Abs750 = 0.0472− 0.1167[Galli acid], r = 0.9945 (1)

Total Flavonoid Content Evaluation
Based on the aluminum chloride colorimetric method (Sultana
et al., 2009), 100 µl of each extract was mixed with 75 µl of
NaNO2 (50 g L−1). After 5 min, 75 µl of AlCl3 (100 g L−1)
was added, and 6 min later, 500 µl of NaOH (40 g L−1) and
600 µl of distilled water were added. The solution was mixed
and the absorbance (510 nm) was read within 30 min in the
Thermo Scientific R© and expressed in milligrams of catechin per
gram dry basis (mg CE 100 g−1 db). The standard curve was
performed with a standard solution (0.1 mg ml−1, catechin
hydrate, SIGMA R©, Cat. QO125) (Eq. 2).

Abs510 = 0.0414− 0.0119[Catechi], r = 0.9995 (2)

Antioxidant Activity Assay
ABTS• + Radical-Scavenging Capacity Evaluation
The discoloration method (Arnao et al., 2001) was carried
out with some modifications. ABTS•+ (0.0384 g) and K2S2O8
(0.0066 g) solutions were diluted with 10 ml of distilled water
and incubated for 12 h to obtain radical ABTS+ solution, which
was diluted in 550 µl (working solution) to 50 ml in ethanol.
The ABTS+ solution was diluted with distilled water to a 0.70
absorbance (SD = 0.02) at 734 nm at room temperature (Pawlak
et al., 2010) in the Thermo Scientific R© Spectrophotometer. An
aliquot (990 µl) of ABTS+ standard solution (SIGMA R©, Cat.
A1888) supplemented with ethanol (800 g L−1, 10 µl) and an
aliquot sample from the previously prepared dilutions (triplicate)
were read every minute for 7 min, calculating the scavenging
activity (Equation 3):

ABTS • +734 =

 Abs Sample 0 − Abs Sample T5

Abs Sample T0 −
(

Abs Control T0−Abs Control T5
Abs Control T0

)
× 100

(3)

Where: Abs sample = sample absorbance; Abs control = control
absorbance; T0 = minute zero; T5 = 5 min. The absorbance
decrease was expressed as the inhibition percentage of ABTS+
expressed as Trolox equivalent per gram of dry basis (20–
200 µmol L−1).

Determination of Cu+ CA
The method described by Saiga et al. (2003) was used. A mixed
solution of 290 µl of 50 mM acetate buffer (pH 6.0), 6 µl of 4 mM
pyrocatechol violet, copper (20 µl), and 1 µg (10 µl) (CuSO4
5H20) was added to each aliquot sample (by triplicate). The Abs
of change of color from blue to yellow was measured at 632 nm
in a Thermo Scientific R© Spectrophotometer. The standard was an
aliquot of Kupfer (II)—sulfate standard solution (Merck R©, Cat.
202790) (Eq. 4):

Chelating rate 732 =
A0 (control) − A1 (sample)

A0 (control)
(4)

Where: A0 = absorbance of the control (blank, without
extract); A1 = absorbance in the presence of the extract; and;
Cu = chelating activity assay.

Textural Class of Sediments
The particle size and clay type of all sediment samples were
analyzed in the Environmental Pollution Laboratory of the
CIIDIR-IPN Research Centre in Sinaloa (CIIDIR-SINALOA),
Mexico. Four sediments samples were collected from each
collecting point in the three lagoons. The textural class of the
soil was determined with the Bouyoucos method (Bouyoucos,
1962). Three replicas for a given sample (50 g) of soil (dry and
2-mm sieved) per sample were analyzed. Each replica was placed
in a cup filled with distilled water up to 5∼6 cm above the
sediment supplied with 35 ml of 1 N sodium hexametaphosphate.
Each replica was thoroughly mixed (for high clay soils: allow
to slake (soak) for 15 min; for sandy soils: mix for 5 min, and
for finely textured soils: mix for 15 min). The soil suspensions
were transferred to a sedimentation cylinder and diluted in 1 L of
water. A hydrometer was placed inside the cylinder, filling with
water to the 1,150 ml mark. The hydrometer was removed and
was sealed each time at the top of the cylinder with parafilm. The
cylinder was tilted back and forth for thorough mixing several
times and set on a stable surface. The hydrometer was placed
into it, and the 40 s timing was immediately recorded when
it was read. The hydrometer was removed from the cylinder.
The time and temperature were recorded and started a 2 h
setting period. A control blank cylinder (water; 5 ml of l N
sodium hexametaphosphate) was prepared, and both were read
as follows:

Temperature correction factor (T◦C) = (observed temperature
– 20◦C)× 0.03.

Corrected 40 s reading: 40 s (T◦C): 40 s reading – Blank
reading+ T◦C.

Corrected 2 h reading: 2 h (T◦C) = 2 h reading – blank
reading+ T◦C.

Particle percentages: Sand (%) = (2 - 0.05 mm): [Oven dry
soil weight – 40 s reading (c)] + [oven dry soil weight] × 100%;
Clay (%) = (< 0.002 mm): [2 h reading (c)] × [oven dry soil
weight]−1

× 100%; Silt (%) = (0.05 - 0.002 mm): 100 - (%
sand+ % clay).

We determined the textural classes of the soil sample using the
textural triangle.

Trace Metal Elements in Sediment
Eight sediment samples per coastal lagoon, two samples per
sampling point (n = 72), were collected with a Teflon spoon and
immediately placed into polyethylene bags, stored in an icebox,
and then kept in a freezer for preservation until analysis in the
Environmental Pollution Laboratory in the CIIDIR-SINALOA.

Acidic digestion was used to determine Fe, Cu, Pb, Ni,
Cd, and Mn contents (Breder, 1982). Each sediment sample
was dried (60◦C) for 48–96 h and homogenized by grinding.
Then, 0.5 g of each sample was placed on the heating plates
with 5 ml aqua regia (1:3 HCl: HNO3) and kept until dryness
was achieved again. After cooling, the solution was adjusted
to 50 ml with deionized water and stored in plastic vials until
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analysis. The total content of metals was determined by flame
atomic absorption spectroscopy (GBC R© Avanta) (air-acetylene
flame), recovering over 90%. Reference materials (PACS-2,
Marine Sediment Reference Materials for Trace Metals and other
Constituents, National Research Council, Canada) were used to
ensure standardization.

Organochlorine Pesticides
Eight sediment samples per coastal lagoon, two samples per
sampling point, were collected with a Teflon R© spoon, wrapped
carefully in aluminum foils, and stored in polyethylene bags.
Samples were kept in a cooler with ice for preservation
and transported to the Environmental Pollution Laboratory of
the CIIDIR-SINALOA.

The USEPA 8270, 508, 8081b, 3660, 3500, and 3600 extraction
technics were conducted (Usepa, 1995, 1996a,b, 1998, 2007a,b,c).
In general, 5 g of dried sediment was added to an Erlenmeyer
flask adding enough dichloromethane to cover the sediment
and immediately was sonicated for 15 min (repeated three
times). The dichloromethane was removed at∼150 ml each time
(method 3550). After that, a sodium sulfate tap was placed in
a fiberglass funnel, removing the rest of the dichloromethane
particles and placing the flask in a rotavapor until dryness to
recover 2 ml of hexane.

Gas chromatograph Perkin Elmer R© AutoSystem XL,
with an electron capture detector (ECD), coupled to the
Navigator software © V. 6.3.1., provided with a J&W R© DB
5–30 m (0.25 mm internal diameter capillary column, 5%
diphenyl-95% dimethylpolysiloxane), was used to determine
the OCPs. Briefly, 1 µl of the hexane-diluted OCP sample
was injected into the chromatograph. OCPs were identified
by their retention times, and quantitation was calculated
on peak height/area and by comparison with the results
of the reference standard (SUPELCO R© 48858-U Sigma-
Aldrich) that included the OCP analytes: α–BHC, β–BHC,
lindane, δ–BHC, aldrin, 6–hydroxy-2–naphthyl disulfide,
1,1–dichloro–2,2–bis (4–chlorophenyl) ethane, 4,4′–DDT,
dieldrin, α–endosulfan, β–endosulfan, endosulfan sulfate,
endrin, endrin aldehyde, heptachlor, heptachlor exo-epoxide,
and methoxychlor.

Organic Matter in Sediments
In the Environmental Pollution Laboratory of the CIIDIR-
SINALOA, the chromic and sulfuric acid methods (Walkley and
Black, 1934) were used. A 100 g sample of soil was weighed and
placed into a 500 ml Erlenmeyer flask containing 10 ml of 1 N
potassium dichromate solution. Then, 20 ml of sulfuric acid was
added and mixed by gently rotating for 1 min. Samples were left
for 30 min and then diluted with deionized water (200 ml). After
dilution, 10 ml of phosphoric acid, 0.2 g ammonium fluoride, and
10 drops of diphenylamine indicator were added. The mixture
(drop by drop) was titrated with 0.5 N ferrous ammonium sulfate
solution until the endpoint from dull green to a brilliant green.
Three replicas per sample and one quality control sample was
analyzed for each set of samples with the following equation:

% Organic Matter = 10[1(S÷B)]× 0.67
Where, S = sample titration; B = blank titration.

FIGURE 2 | Biocompounds concentrations (A–D) (average ± SD), AA (E,F),
and chelating activities (G,H) of leaves, bark, and roots of R. mangle among
and within MBAY, NLAG, and TLAG. Different letters show significant
statistical differences (p ≤ 0.05).

Statistical Analysis
One-way ANOVA to analyze the differences in TPC, TFC,
ABTS• +, and Cu+ CA, OCP, metal, OM, and phosphate
concentrations in sediments was applied, and if significant
differences were found (p < 0.05), a post hoc honestly
comparison tests (HSD) Tukey’s, Scheffé’s, and Bonferroni and
Holm multiple were used (Vasavada, 2014). Pearson’s analysis
was performed using SIGMA PLOT R© software to obtain the
coefficient of correlations (r) of TPC, TFC, AA, and Cu+
CA per tissue among sites and tissues within sites, among
bio compounds, and AA and Cu+ CA activities with trace
metal concentrations.

The mean concentration and standard deviation (SD) were
calculated for trace metals and OCPs and compared with the
average continental crust metal concentration (Taylor, 1964)
to determine the enrichment rate. A regression analysis was
carried out to determine the coefficient of determination (r2)
among trace metals.
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FIGURE 3 | Organic matter (OM) concentration (A,B), PO4 (C,D), and textural classes (E,F) (average ± SD) in sediments from MBAY, NLAG, and TLAG. Different
letters show significant statistical differences (p ≤ 0.05).

RESULTS

Total Phenolic Content
Among lagoons, ANOVA and Tukey’s HSD test showed higher
TPC in the leaves extracts from MBAY (p < 0.01) and bark
extracts in TLAG (p < 0.01) (Figure 2A), while within lagoons,
significant higher TFC in the bark was found in the three lagoons
(p ≤ 0.05) (Figure 2B).

Total Flavonoid Content
One-way ANOVA and Tukey’s HSD test among lagoons showed
the highest significant TFC (p = 0.002) in the bark extracts from
MBAY (p < 0.05) (Figure 2C). Within lagoons, higher significant
TFC was found in the bark extracts from TLAG and MBAY
(p ≤ 0.01) (Figure 2D).

Antioxidant
ABTS• + Radical-Scavenging Capacity
One-way ANOVA results showed significant differences
(p < 0.0005) in leaf extracts in MBAY (p < 0.0001), and bark and

root extracts (p < 0.05) from TLAG (Figure 2E). Within lagoons,
antioxidant activities were found in the bark extracts in MBAY,
NBay, and Tag (p ≤ 0.01) (Figure 2F).

Copper Chelating Activity
Among and within lagoons, one-way ANOVA and post hoc
HSD showed no significant differences in the Cu+ CA chelating
activity (Figures 2G,H).

Organic Matter in Sediments
One-way ANOVA and post hoc HSD showed no significant
differences within-sample collecting sites and among lagoons
(Figures 3A,B).

Organic matter correlation was strong and significant with
Cu (−0.79), Pb (−0.85), Ni (−0.87), Zi (0.82), and Cd (−0.15)
in NLAG. In TLAG, OM showed significant (p < 0.05) strong
positive linear correlations with Cu (0.87), Pb (0.79), and Cd
(0.78). In MBAY, OM showed no significant correlations with the
variables analyzed (Table 1).
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TABLE 1 | Coefficient of correlation among bioactive compounds (TPC, TFC), antioxidant and chelating activities, organic matter (OM), and PO4 of R. mangle and with
trace metals and OCPs in sediment.

MBAY TPC TFC AA Cu + CA OM PO4 γ -Chlordane δ –BHC β-BHC Endrin Methoxychlor

TPC 0.04 0.11 * * * * *

TFC 0.83 0.11 −0.26 * * * * *

AA 0.91 0.81 −0.14 0.14 * * * * *

Cu + CA 0.51 0.35 0.39 0.39 −0.16 * * * * *

Cu 0.12 −0.02 0.28 0.23 −0.42 0.26 * * * * *

Fe 0.14 −0.01 0.28 0.26 −0.38 0.22 * * * * *

Pb 0.13 −0.01 0.28 0.25 −0.39 0.23 * * * * *

Ni 0.14 0.00 0.28 0.26 −0.36 0.21 * * * * *

Zn 0.14 0.00 0.29 0.27 −0.35 0.22 * * * * *

Cd 0.14 0.02 0.30 0.30 −0.24 0.19 * * * * *

Mn 0.14 0.00 0.28 0.26 −0.37 0.20 * * * * *

OM 0.04 0.11 −0.14 0.39 -0.48 * * * * *

PO4 0.11 −0.26 0.14 −0.16 −0.48 * * * * *

NLAG TPC TFC AA Cu + CA OM PO4 γ -Chlordane δ -BHC β-BHC Endrin Methoxychlor

TPC −0.45 −0.08 -0.06 -0.05 -0.04 0.12 0.12

TFC 0.89 −0.32 −0.20 0.21 0.18 0.23 0.05 0.05

AA 0.88 0.95 −0.24 −0.03 0.11 0.10 0.12 -0.01 -0.01

Cu + CA 0.48 0.41 0.50 0.34 −0.21 0.25 0.45 0.13 -0.67 -0.67

Cu 0.18 0.21 0.04 −0.54 −0.79 −0.35 −0.11 -0.29 0.04 0.85 0.85

Fe 0.14 0.03 −0.03 0.33 −0.19 −0.56 −0.29 0.04 -0.38 -0.22 -0.22

Pb 0.12 0.02 −0.03 0.40 −0.08 −0.55 −0.22 0.12 -0.33 -0.33 -0.33

Ni 0.17 0.16 0.02 −0.59 −0.85 −0.20 −0.29 -0.47 -0.13 0.93 0.93

Zn 0.21 0.13 −0.01 −0.39 −0.87 −0.36 −0.47 -0.48 -0.38 0.76 0.76

Cd −0.12 −0.05 0.01 0.67 0.82 −0.17 0.50 0.72 0.33 -1.00 -1.00

Mn −0.06 0.04 0.04 -0.52 −0.15 0.41 0.17 -0.20 0.31 0.56 0.56

OM −0.45 −0.32 −0.24 0.34 0.07 0.52 0.60 0.41 -0.82 -0.82

PO4 −0.08 −0.20 −0.03 −0.21 0.07 −0.49 -0.62 -0.48 0.17 0.17

TLAG TPC TFC AA Cu + CA OM PO4 γ -Chlordane δ -BHC β-BHC Endrin Methoxychlor

TPC 0.07 0.04 −0.01 0.01 0.02 * *

TFC 0.11 0.02 −0.01 0.01 0.02 * *

AA 0.98 0.98 0.23 0.06 0.01 −0.04 −0.07 * *

Cu + CA 0.44 0.44 0.54 0.14 0.17 0.07 −0.34 −0.51 * *

Cu −0.02 −0.02 0.07 0.40 0.87 −0.25 0.26 0.20 −0.34 * *

Fe 0.03 0.03 −0.08 −0.59 −0.51 −0.69 0.63 0.92 0.95 * *

Pb −0.01 −0.01 0.04 0.17 0.79 −0.22 0.04 0.17 −0.35 * *

Ni 0.03 0.03 −0.07 −0.58 −0.50 −0.70 0.65 0.93 0.95 * *

Zn 0.02 0.02 −0.03 −0.35 0.32 −0.10 −0.35 0.10 −0.19 * *

Cd 0.00 0.00 0.04 0.15 0.78 0.01 −0.28 −0.10 −0.55 * *

Mn 0.04 0.04 −0.06 −0.55 0.03 −0.08 -0.42 0.11 −0.02 * *

OM 0.11 0.11 0.22 0.55 −0.05 −0.20 −0.65 * *

PO4 0.02 0.02 0.06 0.24 0.08 −0.69 −0.80 −0.63 * *

Gray areas indicate significant correlation (p < 0.05). * = Values below detection limits.

Textural Class in Sediments
The soil texture structure of sediments among lagoons was
similar in the sand, silt, and clay in TLAG (47, 24, and
29%, respectively) and MBAY (87, 11, and 2%, respectively).
NLAG was different in silt, clay, and sand (42, 37, and
21 silt%, respectively) (Figure 3C). Within the lagoons, the

textural NLAG was different compared with the other two
lagoons (Figure 3D).

Phosphates
Within lagoons, one-way ANOVA showed no significant
differences (p < 0.01) in the PO4 concentrations (Figure 3E)
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FIGURE 4 | Trace metal concentrations (average ± SD) in surrounding
sediments of R. mangle from MBAY, NLAG, and TLAG. Different letters show
significant statistical differences (p ≤ 0.05).

and showed significant higher PO4 concentrations (p < 0.05) in
MBAY (Figure 3F).

Metal Content in Sediments
The trace metals above continental crust average concentrations
were in MBAY, the Pb; in NLAG were Pb and Zn; and in TLAG
were Cu, Pb, Ni, and Cd (Table 2). One-way ANOVA showed
significantly higher concentrations (p < 0.05) of Mn and Fe in
NLAG among lagoons (Figure 4).

The trace metal concentrations (higher to lower) in MBAY
were Fe > Mn > Ni > Zn > Pb > Cu > Cd; in NLAG were
Fe > Mn > Zn > Cu > Ni > Pb > Cd; and in TLAG were
Fe > Mn > Zn > Ni > Pb > Cu > Cd.

In TLAG, strong and significant (p < 0.05) positive
correlations were found between OM and Cu, Pb, and Cd (0.87,
0.79, and 0.78, respectively), and significant (p < 0.05) and

negative correlations were found between PO4 with Fe and
Ni (−0.70). In NLAG, OM showed negative and significant
(p < 0.05) correlations with Cu, Ni, and Mn (−0.79, −0.85,
and −0.15, respectively), and a strong positive and significant
correlation (p < 0.05) with Cd (0.82). In MBAY, no significant
correlations (p > 0.05) were found (Table 1).

Organochlorine Pesticides in Sediments
Organochlorine pesticide concentrations were detected in TLAG
and NLAG. The highest OCPs proportions in TLAG were
methoxychlor, β–BHC, δ–BHC, and γ–chlordane. In NLAG,
the highest OCP proportions were β–BHC, δ–BHC, and
γ–chlordane. In TLAG, were β–BHC, δ–BHC, and δ–chlordane
(Figure 5). No significant correlations (p > 0.05) were
found among OCP concentrations with bio compounds, AA,
and Cu+ CA.

Bioactive Compounds, AA, Cu+ CA,
Trace Metal, and OCP Correlations
Among TFC, TPC, and AA within lagoons revealed significant
correlations (p < 0.05), but no significant correlations were
detected among trace metals with TFC, TPC, AA, and Cu+ CA.

In MBAY, TPC showed significant positive (p < 0.05)
and robust correlations with TFC and AA and weak positive
correlation with Cu+ CA, while TFC showed significant positive
(p < 0.05) and robust correlations with AA. In NLAG, Cu+
CA showed significant positive (p < 0.05), and weak correlation
with AA, a significant (p < 0.05) negative correlations with Cu
and Ni, a significant positive (p < 0.05), medium correlation
with Cd, moderate correlation with endrin but a significant
negative (p < 0.05) correlation with methoxychlor. The OM
showed a significant positive and weak correlation (p < 0.05)
with δ–BHC and significant negative and high correlations with
endrin and methoxychlor in this lagoon. The PO4 showed a
significant (p < 0.05) and moderate correlation with δ–BHC. In
TLAG, AA showed a significant positive and robust correlation
with TPC and TFC, and the Cu+ CA showed significant
negative and medium correlations with Cu, Zn, and Mn. The
OM in this lagoon showed significant positive and robust

FIGURE 5 | Organochlorine pesticides (OCP) concentrations (average ± SD)
in sediments from MBAY, NLAG, and TLAG. Different letters show significant
statistical differences (p ≤ 0.05).
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TABLE 2 | Concentrations of trace metals in sediments (mg•kg−1 db) except Fe (%).

Detected trace metal TLAG MBAY NLAG Average crust

Fe 0.4−2.6 0.4−1.8 3−3.2 5.6

(1.2 ± 1) (0.8 ± 0.7) (3 ± 0.2)

Cu 3.6−57.0 1.8−17.8 14.3−32.1 55

(30 ± 23.8) (6.7 ± 7.5) (22.7 ± 7.4)

Pb 15.3−60.2 ND−33.2 6.3−15.3 12.5

(40 ± 21.5) (12.3 ± 18.1) (8.6 ± 4.5)

Ni 18−123.1 ND−71.8 10.2−18 75

(60.7 ± 54.4) (71.8 ± 0) (13.5 ± 3.2)

Zn 11−173.4 3.3−35.6 48.3−75 70

(70.0 ± 71.2) (12.5 ± 15.5) (61.0 ± 12.0)

Cd (0.9−3.2 0.1−2.4 0.1−0.9 (0.7 ± 0.3) 0.2

(1.8 ± 1.1) (0.9 ± 1.1)

Mn 41.3−92.3 34.3−184.3 72.6−321.3 950

(60 ± 23.1) (76.7 ± 71.7) (230 ± 109.4)

Min−Max concentration (average ± SD) from MBAY, NBAY and TLAG lagoons and average crust values (Taylor, 1964). ND = Not Detected. Gray shadows show
concentrations above average crust values. MBAY = Magadalena Bay, NLAG = Navachiste Bay, TLAG = Terminos Lagoon.

correlations with Cu, Pb, and Cd and significant negative
and medium correlations with Fe and Ni. The PO4 showed
a significant negative and moderate correlation with Fe. In
TLAG, γ–chlordane, δ–BHC, and β–BHC showed significant
(p < 0.05) and positive correlations with Fe (0.63, 0.92, and
0.95, respectively). β–BHC had a significant (p ≤ 0.05) and
strong positive correlation with Ni (0.95) and PO4 (0.63);
negative correlation with Cd and OM (−0.56 and −0.65,
respectively) (Table 1).

DISCUSSION

The significant differences among lagoons of TPC, TFC, AA,
and Cu+ CA activities of R. mangle are explained by their
different grades and the type of anthropogenic pollution.
Specifically to TPC, in TLAG where the oil extraction of the
Campeche sound and the agriculture residues highly impact
this lagoon and the significant increase in the TPC in bark
extracts could be due to the stress response to the metal
and OCPs pollution, previously reported in mangrove species
(Jithesh et al., 2006; Krishnamoorthy et al., 2011). MBAY, less
anthropogenically impacted than the other two, presented a
significantly higher TFC in bark extracts. MBAY is constantly
affected by the enrichment of trace metals due to natural causes,
such as currents, upwelling, primary productivity, volcanism, and
tectonic activity (Shumilin et al., 2005; Rodríguez-Meza et al.,
2007). The TPC increase in the species R. mangle in MBAY
could be due to the high concentrations of Cu, Pb, Ni, Zn,
and Cd present in sediments as previously reported in other
mangrove zones (Souza et al., 2014). The significant higher
TFC in the bark of MBAY could be related to the vacuolar
flavonoids, which constitute a secondary antioxidant system
activated under severe stress conditions or to the regulation
of different protein kinases activities responsible for mediating
ROS-induced signaling cascades (Agati et al., 2012; Brunetti et al.,
2013). Even in this study, leaves without visible damages or

yellowish color or order to the apical bud were selected; no
significant TPC or TFC differences in leaf extracts were found
among and within lagoons. Nevertheless, since the composition
of phenolic compounds is influenced by the position in the tree
branches or on the shoot (Wongsen et al., 2013; Vagiri et al.,
2015), studies are recommended regarding the TPC and TFC and
leaf ’s position in this species.

The adaptation mechanisms to combat the environmental
stress conditions of mangroves increased the AA significantly
in the bark of R. mangle in TLAG. The positive and strong
correlation of AA with the concentrations of TPC (r2 = 0.88)
and TFC (r2 = 0.95) has been previously reported in Rhizophora
species (Asha et al., 2012) and is partly due to phenol
compounds (Zhang et al., 2010). In R. mangle, the significantly
higher AA in the bark from TLAG was correlated with the
higher flavonoids and its production has been related as a
defense mechanism to the abiotic stress (Brunetti et al., 2013;
Shivashankara et al., 2016), possibly due to the high trace metal
concentrations in sediments. Limiting nutrients in mangrove
plants is caused by the deficiencies of P, N2, Fe, or Mg
(Almahasheer et al., 2016; Alhassan and Aljahdali, 2021), and
significant higher phosphorus values (p < 0.005) were found
in MBAY, but no significant correlation with bio compounds,
antioxidant, or chelating activities was determined. It implies
that requirements in this nutrient in R. mangle were covered,
and the production of phenolic compounds was not stimulated.
The significant trace metal concentrations in the bark extract
from TLAG and NLAG highlight the importance of this tissue
against trace metals pollution in surrounding sediments, that
after specific concentrations, generate stress (Bayen, 2012). The
stored polyphenolic compounds in the bark of R mangle species
have shown chelating properties (Sanchez et al., 2006), and the
significant higher Cu+ CA (p < 0.05) could be related to the
higher concentrations of Cu, Pb, Zn, and Cd in TLAG, or
Mn in NLAG. In MBAY, the metal bioaccumulation has been
occurring due to lithological characteristics and the hydrothermal
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processes of the lagoon (Sujitha et al., 2019), for which the
concentrations of Cd, Cu, and Zn in R. mangle have been
previously described in root > bark > leaf (Naranjo-Sánchez and
Troncoso-Olivo, 2008). Nevertheless, it is necessary to analyze
whether the bio-disposition of metals in the sediments in both
lagoons was affected by the pH, salinity, or redox potential
(Parra and Espinosa, 2008).

A correlation between high organic carbon content with high
OCP concentrations in sediments has been reported (Eqani et al.,
2011). In contrast, previous reports in the area have not found
a correlation between OCPs concentration in edible tissues and
dry-rainy seasons (Reyes-Montiel et al., 2013; Granados-Galván
et al., 2015). Instead of the seasons or rain periods, Cl−1, total P,
and electrical conductivity (EC) have been reported to be essential
for causing the variations in OCP concentrations in sediments
(Eqani et al., 2011), even it is possible that OCP concentrations
in the surrounding sediments of R. mangle trees in the present
study could not influence the phenolic production, the AA, or
the Cu+ CA. Nevertheless, correlations among OCP and trace
metal in mangrove sediments have been reported to be related
to pesticide pollution (Chen et al., 2020; Ji et al., 2021), which
is corroborated in the present study, that in NLAG and TLAG
where strong positive correlations between OCPs and some trace
metal concentrations (Cd, Ni, Zn, Mn, and Fe) were found. These
lagoons are constantly being polluted by anthropogenic sources,
such as the oil extraction industry as in TLAG (Celis-Hernandez
et al., 2022) or intensive agriculture in NLAG (Ponce-Vélez and
Botello, 2018). In the present study, the detected POCs have been
banned internationally, according to the Stockholm Convention
(Templeton, 2020). However, it is remarkable that the recent
uses of OCPs are banned, such as γ –Chlordane, δ–BHC, β–
BHC, Endrin, and Methoxychlor, probably due to illegal buying
and selling through countries which production is still occurring
(Ortíz et al., 2014) and illegally introduced by Port or Border
Customs and clandestine applications.

The species R. mangle is well adapted to environmental stress
and is capable of responding to different pollution scenarios
(Souza et al., 2014). However, in the present study, it was
evident that metal concentrations influenced the production of

the phenolic compounds, AA, and chelating activities more than
PO4, Nitrogen, OCP, OM, or textural classes in surrounding
sediments. The three lagoons studied here are impacted under
the different grades of pollution and pollutants, but the
conspicuous production of TPC, TFC, and the AA and chelating
activities was higher in the NLAG y TLAG where higher
anthropogenic pollutants were determined. These lagoons are
constantly impacted by anthropogenic activities, especially the
intensive agriculture and oil extraction industry (Ramírez-Ayala
et al., 2020). Regarding the response to environmental stress, a
transcriptomic gene expression study in R. mangle will determine
which gene is turned on or off in R. mangle under the extreme
variable environment, such as the anthropogenic pollution grade
or pollutants to understand the mechanisms that are activated
during immune responses in plants. Finally, the present study
results showed that R. mangle could be modulating their phenolic
compounds production, antioxidant and chelating activities in
tissues according to the pollution grade and pollutants presence
in MBAY, TLAG, and NLAG lagoons.
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