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INTRODUCTION

Environmental distance is a measure of the similarity in environmental conditions between two
geographic locations. The measure is important when considering the chances of survival for a
species that has been transported from one location to the other, especially species that are not
indigenous to the destination location.

For marine environments, abiotic factors such as water temperature and salinity are the
dominant influences that define habitat suitability when considering a variety of different species
that are not individually assessed for their biological traits or environmental requirements (Barry
et al., 2008). In addition, for benthic marine species, water column depth likely affects the
availability of suitable substrates and light conditions for photosynthesis. Environmental distances
can be calculated using a generalized linear model from data for annual mean, minimum, and
maximum temperature and salinity (Keller et al., 2011), taking into account water column depth. A
low environmental distance value between two locations indicates high environmental similarity.

A common way for a marine species to travel to a new, non-adjacent geographic location is
by ship, such as attached to the hull as biofouling or by being collected into and later discharged
from ballast water tanks upon arrival at the destination (Molnar et al., 2008; Hewitt et al., 2009).
Therefore, environmental distances are often calculated between ports, for example as a component
of risk assessment for the introduction of non-indigenous marine species (e.g. Keller et al., 2011;
Seebens et al., 2013; Xu et al., 2014; Wang et al., 2018; Saebi et al., 2020).

The general convention in marine ecology is to describe study area locations by latitude
and longitude, and ports are single point latitude-longitude locations, which makes calculating
environmental distances between them relatively straightforward. However, in some cases it may
be more useful to compare environmental similarity between larger areas (Floerl et al., 2013),
especially for interdisciplinary research questions where data are not necessarily recorded by
port. For example, international trade databases, such as the United Nations Comtrade Database
(UN Comtrade, 2021), do not identify the specific ports of a nation involved in importing or
exporting trade goods, since that information is not important to international trade economists.
Nations have a range of sizes and shapes and lengths of coastlines, making it difficult to measure
environmental distances between them compared to single point locations.

The Marine Ecoregions Of the World (MEOW) biogeographic classification system divides the
coastal, nearshore, and shelf areas of the world into a nested hierarchy of 232 ecoregions, 62
ecoprovinces, and 12 ecorealms (Spalding et al., 2007). Each ecoregion is ecologically distinct from
the others, encompassing an area of a size typical to the geographic range of the life histories and
ecological processes of marine species with a sedentary adult phase. Similarly, each ecoprovince is
of a scale for more mobile or dispersive species. Ecorealms are large, broad areas of distinct biota at
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higher taxonomic classification levels. Detailed global maps of the
MEOW system are available in Spalding et al. (2007).

Environmental distances were calculated between each
pair of MEOW ecoregions and ecoprovinces. The primary
purpose was to enable measurement of environmental distances
between nations as part of a research project that uses
both ecological and economic data. However, the availability
of such pairwise environmental distance estimates has the
potential to facilitate fundamental and applied research in
many areas of marine ecology, conservation, and biosecurity,
especially when combined with knowledge of the distribution
and physiological requirements of potentially invasive non-
indigenous marine species.

METHODS

Temperature (Locarnini et al., 2019) and salinity (Zweng
et al., 2019) data were obtained from World Ocean Atlas
(WOA, Boyer et al., 2018) as monthly statistical means
for the period 2005–2017, at quarter-degree latitude-
longitude resolution and 5 to 50m depth intervals from
the surface down to 1,500m. The MEOW polygons were
obtained as a GIS shapefile from Data Basin, a science-based
mapping and analysis tool developed by the Conservation

FIGURE 1 | A diagram of the computational workflow to calculate environmental distance values between each pair of ecoregions or ecoprovinces. (A) Monthly data

were selected from within each polygon and averaged for three depth intervals. (B) Minimum, maximum, and mean annual values were calculated from the monthly

averaged data, resulting in nine variables each for temperature and salinity, and a total of 18 variables. (C) Calculations were carried out for each ecoregion and

ecoprovince. (D) A generalized linear model was applied to calculate environmental distance between each pair of ecoregions or ecoprovinces.

Biology Institute (Corvallis, Oregon). Data were adapted
from Spalding et al. (2007) by The Nature Conservancy
(2016).

Temperature and salinity data fromWOA were selected from
within MEOW ecoregions and ecoprovinces using an overlay
analysis (Intersect tool, ArcMap version 10.6) that joined the
WOA data to theMEOWpolygons, withMEOW identifier codes
assigned to each intersecting point. The resulting post-join data
are available as part of the final dataset (https://doi.org/10.17608/
k6.auckland.15184092).

Within each ecoregion or ecoprovince, data were averaged
at three depth intervals: surface (0-20m), shallow (25-200m),
and deep (205-1500m). Data were averaged for each month
separately (Figure 1A). Minimum, maximum, and mean annual
values were then calculated among the months for each depth
interval within each ecoregion or ecoprovince (Figure 1B),
resulting in nine variables each for temperature and salinity
(Figure 1C). A generalized linear model was applied to calculate
environmental distance between each pair of ecoregions or
ecoprovinces based on the 18 variables (Figure 1D). All
calculations were performed in the R statistical computing
environment (R Project, 2021), and the R script is available as
part of the final dataset (https://doi.org/10.17608/k6.auckland.
15184107).
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FIGURE 2 | Heat maps showing environmental distance relative to (A) The Arctic (Ecoprovince 1), (B) The Northern European Seas (Ecoprovince 2), (C) The

Caribbean (Ecoprovince 12), and (D) The Tropical East Pacific (Ecoprovince 43), ranging from yellow (low distance) to blue (high distance), with the origin ecoprovince

highlighted in orange.

The MEOW classification system mainly accounts for coastal
waters up to the shelf break which is approximately 200m in
most areas of the world, and very little data for depths over
200m have likely been included. However, any available deep
data within the bounding polygons were included in an attempt
to be comprehensive.

Environmental distances among ecoprovinces were
showcased by creating heat maps for Ecoprovinces 1, 2, 12,
and 43 (Figure 2). Data were joined to the MEOW polygons to
produce the maps using QGIS 3.22.

DATASET CHARACTERISTICS

The final dataset consists of two matrices, one for 232
ecoregions and one for 62 ecoprovinces (https://doi.org/10.
17608/k6.auckland.15184095). For each matrix, the ecoregions
or ecoprovinces are listed in the same order in both rows and
columns. Environmental distance values between each pair of
ecoregions or ecoprovinces can be found at the intersection of
row and column for each pairwise combination.

Environmental distance values have no intrinsic value in
and of themselves, but are mainly a comparative measure
to other values in the matrix. They range from 0 to 109.69
among ecoregions, and 0 to 73.02 among ecoprovinces, where
0 is the distance of an ecoregion or ecoprovince from
itself. For some ecoregions, no temperature and/or salinity
data were available in the World Ocean Atlas and it was
not possible to generate environmental distances. Data gaps

in the ecoregions matrix are indicated with NA (12% of
the dataset).

As might be expected, ecoregions and ecoprovinces at similar
latitudes tend to be least environmentally distant, most likely
due to similarity in temperature. For example, the Arctic
(Ecoprovince 1) is least environmentally distant from the
Magellanic, Subantarctic Islands, Scotia Sea, and Continental
High Antarctic (Ecoprovinces 48, 59, 60, 61) with values ranging
from 3.38 to 10.67, and most distant from areas along the
equator such as the Eastern and Western Coral Triangle and
Central Polynesia (Ecoprovinces 30, 31, 39), with values ranging
from 61.50 to 63.27 (Figure 2A). The Northern European Seas
(Ecoprovince 2) shows a similar pattern (Figure 2B). Both are
environmentally more similar to the Subantarctic Islands than to
coastal Antarctica.

Along the same latitude, salinity differences may play
a larger role than temperature, since geographically nearby
ecoprovinces are not necessarily the most similar to each other.
For example, looking at either side of Central America, the
Caribbean (Ecoprovince 12) is least distant from Somali/Arabian
(Ecoprovince 19) with a value of 2.56, while the Tropical East
Pacific (Ecoprovince 43) is least distant from the Gulf of Guinea
(Ecoprovince 17) with a value of 3.33 (Figures 2C,D). Indeed
the Caribbean is more distant from the Gulf of Guinea (value
of 12.75) than the Tropical East Pacific is, even though they are
on opposite sides of the Atlantic, and also more distant from the
Tropical East Pacific (13.77), which is geographically just on the
other side of an isthmus, than it is from the Gulf of Guinea.
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DATA AVAILABILITY STATEMENT

The dataset is available as a University of Auckland
Figshare collection (doi: 10.17608/k6.auckland.c.5564757).
In addition to the final matrices (ENVDIST_final-data.zip,
doi: 10.17608/k6.auckland.15184095), the collection includes
the monthly temperature and salinity data files with
MEOW identifier codes (ENVDIST_interim-data.zip,
doi: 10.17608/k6.auckland.15184092), the R script used to
calculate the environmental distances (ENVDIST_software.zip,
doi: 10.17608/k6.auckland.15184107), and the files related to
creating the heat maps in Figure 2 (ENVDIST_heatmaps.zip,
doi: 10.17608/k6.auckland.17304008). Following best practices
described by the Geoscience Papers of the Future initiative
(Gil et al., 2016a), the interim, final, and heat map data
are accompanied by ISO 19139 metadata (ISO, 2019), the
R script is accompanied by OntoSoft metadata (Gil et al.,
2016b), and the workflow is described in a ReadMe text file
(ENVDIST_README, doi: 10.17608/k6.auckland.15263556).
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