AUTHOR=Frieder Christina A. , Yan Chao , Chamecki Marcelo , Dauhajre Daniel , McWilliams James C. , Infante Javier , McPherson Meredith L. , Kudela Raphael M. , Kessouri Fayçal , Sutula Martha , Arzeno-Soltero Isabella B. , Davis Kristen A. TITLE=A Macroalgal Cultivation Modeling System (MACMODS): Evaluating the Role of Physical-Biological Coupling on Nutrients and Farm Yield JOURNAL=Frontiers in Marine Science VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.752951 DOI=10.3389/fmars.2022.752951 ISSN=2296-7745 ABSTRACT=

Offshore aquaculture has the potential to expand the macroalgal industry. However, moving into deeper waters requires suspended structures that will present novel farm-environment interactions. Here, we present a computational modeling framework, the Macroalgal Cultivation Modeling System (MACMODS), to explore within-farm modifications to light, seawater flow, and nutrient fields across time and space scales relevant to macroalgae. A regional ocean model informs the site-specific setting, the Santa Barbara Channel in the Southern California Bight. A fine-scale hydrodynamic model predicts modified flows and turbulent mixing within the farm. A spatially resolved macroalgal growth model, parameterized for giant kelp, Macrocystis pyrifera, predicts kelp biomass. Key findings from model integration are that regional ocean conditions set overall farm performance, while fine-scale within-farm circulation and nutrient delivery are important to resolve variation in within-farm macroalgal performance. Therefore, we conclude that models resolving within-farm dynamics can provide benefit to farmers with insight on how farm design and regional ocean conditions interact to influence overall yield. Here, the presence of repeating longlines aligned with the mean current generate flow diversions around the farm as well as attached Langmuir circulations and increased turbulence intensity. These flow-induced phenomena lead to less biomass in the interior portion of the farm relative to the edges. We also find that there is an effluent “footprint” that extends as much as 20 km beyond the farm. In this regard, MACMODS can be used to not only evaluate farm design and cultivation practices that maximize yield but also explore interactions between the farm and ecosystem in order to minimize impacts.