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Seismic reflection profiling of thermohaline structure has the potential to transform our
understanding of oceanic mixing and circulation. This profiling, which is known as
seismic oceanography, yields acoustic images that extend from the sea surface to the
sea bed and which span horizontal distances of hundreds of kilometers. Changes in
temperature and salinity are detected in two, and sometimes three, dimensions at
spatial resolutions of ~O(10) m. Due to its unique combination of extensive coverage and
high spatial resolution, seismic oceanography is ideally placed to characterize the
processes that sustain oceanic circulation by transferring energy between basin-scale
currents and turbulent flow. To date, more than one hundred research papers have
exploited seismic oceanographic data to gain insight into phenomena as varied as eddy
formation, internal waves, and turbulent mixing. However, despite its promise, seismic
oceanography suffers from three practical disadvantages that have slowed its
development into a widely accepted tool. First, acquisition of high-quality data is
expensive and logistically challenging. Second, it has proven difficult to obtain
independent observational constraints that can be used to benchmark seismic
oceanographic results. Third, computational workflows have not been standardized
and made widely available. In addition to these practical challenges, the field has
struggled to identify pressing scientific questions that it can systematically address. It
thus remains a curiosity to many oceanographers. We suggest ways in which the
practical challenges can be addressed through development of shared resources, and
outline how these resources can be used to tackle important problems in physical
oceanography. With this collaborative approach, seismic oceanography can become a
key member of the next generation of methods for observing the ocean.

Keywords: seismic oceanography, acoustic imaging, observational oceanography, submesoscale, internal waves,
turbulent mixing, benchmarking, standardization
1 INTRODUCTION

During the twentieth century our knowledge of oceanic circulation was revolutionized by a host of
observational tools. Probes descended beneath the waves to measure the temperature, composition
and movement of seawater at great depths, whilst swarms of floating sensors drifted with the
currents (e.g., Jacobsen, 1948; Swallow, 1955; Gregg and Cox, 1971; Davis et al., 1992). Colorful dyes
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and inert chemicals illuminated the structure of internal waves
and the mixing of water masses, and satellite-borne instruments
mapped the shape and temperature of the sea surface from space
(e.g., Woods, 1968; Born et al., 1979; Ledwell et al., 1986).
Measurements made by these, and many other, tools showed
that oceanic flow is not governed solely by currents that span
thousands of kilometers and which vary on time scales of
decades. Instead, circulation is maintained by a constant
exchange of energy between global currents and turbulent
motions, which mix water over distances of millimeters on
time scales of seconds (e.g., Wunsch and Ferrari, 2004;
Moum, 2021).

Improved understanding of this exchange is vital tomodeling of
the ocean’s ability to store heat and carbon, and thus to efforts to
mitigate the effects of climate change (MacKinnon et al., 2017;
Whalen et al., 2020; Richards et al., 2021). However, characterizing
thedisparate, intermittent and continuously evolvingprocesses that
drive circulation has proven challenging. The majority of
observational systems are limited to providing time series at a
single location, to acquiring measurements in a single spatial
direction or along a single travel path, or to monitoring only the
surface of the ocean (e.g., moored arrays, probes dropped from a
ship, and satellite instruments, respectively; van Haren, 2018). Few
observations are available fromabyssal regions of the ocean that are
thought to play a critical role in controlling mixing of water masses
and in modulating climate change (e.g., de Lavergne et al., 2016;
Desbruyères et al., 2016; Desbruyères et al., 2017; Levin et al., 2019).
Key dynamical phenomena, such as submesoscale currents and lee
waves, occur on time and length scales that are not well sampled by
common observational tools (e.g., McWilliams, 2016; Legg, 2021).

Seismic reflection profiling1 of thermohaline structure offers a
solution to several of the challenges of ocean observation. This
profiling, known as seismic oceanography, is carried out by a
ship towing a source of acoustic energy and one or more cables of
hydrophones a few meters below the sea surface (Figure 1A;
Sheriff and Geldart, 1995). At periodic intervals the acoustic
source is fired, exciting water-column sound waves by release of
either compressed air or electrical charge. Reflection of these
waves from changes in temperature and salinity at depth is
recorded by the hydrophones. Using these reflections, the
properties of thermohaline structure can be investigated.

Use of underwater sound for remote sensing of internal
oceanic structure is, of course, not new. For decades, ocean-
bottom echosounders have monitored thermocline depths,
acoustic tomographic systems have detected basin-wide
temperature changes, and acoustic Doppler current profilers
(ADCPs) have measured current velocities (Rossby, 1969;
Munk and Wunsch, 1979; Pinkel, 1979). High-frequency (i.e.,
≳ 10 kHz) acoustic surveys provide spectacular images of near-
surface internal waves and capture the intensity of turbulent
mixing (Figures 2B, C; e.g., Proni and Apel, 1975; Geyer et al.,
2010; Lavery et al., 2013). Seismic oceanography is distinguished,
1In seismic acquisition, the term profile describes a two-dimensional map plotted
against range and depth. Here, we instead use the oceanographic term section. Our
use of the term profile is limited to description of a one-dimensional series of
measurements recorded as a function of depth (Krahmann et al. 2008).
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however, from other acoustic imaging methods in two ways (Fer
and Holbrook, 2009). First, it uses low-frequency (i.e., ≲ 100 Hz)
sound that does not attenuate rapidly with depth2. Second, each
imaged point is repeatedly sampled over a time interval of ≲ 30
minutes by different configurations of acoustic source and
hydrophones, increasing the signal-to-noise ratio (Figure 1B).
These distinctive features lend seismic oceanography a unique
combination of three key characteristics:

• Multi-dimensional observation of the ocean at high spatial
resolution. Seismic oceanography provides a two-dimensional,
and often three-dimensional, viewof the ocean at horizontal and
vertical resolutions on the order of 10 m. Other observational
tools may achieve higher spatial resolutions, but usually provide
measurements in only one dimension.

• Penetration to abyssal depths. Unlike higher-frequency
acoustic methods, seismic oceanography captures
thermohaline structure down to depths of several kilometers.
This capability allows observation of abyssal regions that are
otherwise undersampled.

• Horizontal coverage over hundreds of kilometers. Seismic
data are continuously recorded along ≲ 1,000-km-long
transects. This coverage provides a holistic view of structures
such as eddies that are otherwise only intermittently sampled
(e.g., by dropped probes).

Due to these characteristics, seismic oceanography has provided
uniquely detailed images of features such as fronts, tidal beams,
eddies, thermohaline staircases and turbid layers (e.g., Nakamura
et al., 2006; Holbrook et al., 2009; Pinheiro et al., 2010; Fer et al.,
2010; Vsemirnova et al., 2012; Figure 2D). Importantly, seismic
records provide not only spectacular images, but have yielded
quantitative insight into dynamical phenomena including
thermohaline interleaving, propagation of internal waves, and
turbulent mixing (e.g., Papenberg et al., 2010; Tang et al., 2014;
Falder et al., 2016; Figure 3). Reviews of topics as wide-ranging as
stratified turbulence, circumpolar currents and submesoscale flow
have cited results from seismic oceanography (e.g., Riley and
Lindborg, 2008; Thompson et al., 2018; McWilliams, 2019). In
total, more than one hundred peer-reviewed research papers have
now presented seismic oceanographic data (Appendix A; Table A;
see Supplementary Material for all appendices and tables).

Despite these successes, seismic oceanography has struggled to
establish itself as a standard observational tool. This slow
development has two causes. First, the field has been hindered by
practical challenges associated with acquiring data and with
analyzing records in a consistent and reliable way. Second, and
more fundamentally, many physical oceanographers regard the
field as a curiosity, with no clear vision or scientific application. To
progress further, the seismic oceanographic community needs to
identify key scientific questions that it can systematically address.

Here, we discuss the practical challenges that face seismic
oceanography and suggest ways in which they can be overcome
2A small number of seismic oceanographic surveys have used sound with
frequencies as high as ~ 500 Hz (see Section 2.1.1; Ker et al., 2015). However,
the great majority have used low-frequency sound.
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(Section 2). We then discuss how seismic oceanography can
address scientific questions that other tools cannot answer
(Section 3). Finally, we outline ways in which the seismic
oceanographic community can implement these solutions by
agreeing on priorities and by working together on collaborative
projects (Section 4).
2 HOW CAN SEISMIC OCEANOGRAPHY
OVERCOME ITS PRACTICAL
CHALLENGES?

Seismic oceanography is faced by three practical challenges.
Previous works have outlined possible solutions to one or
more of these challenges (e.g., Jones et al., 2008; Holbrook,
2009; Jones et al., 2010; Buffett and Carbonell, 2011; Ruddick,
2018). Here, we build on these works to develop a comprehensive
strategy for overcoming all three challenges.

2.1 How Can We Acquire Seismic
Oceanographic Data?
Perhaps the greatest practical obstacle to further development of
seismic oceanography is the logistical difficulty and high cost of
acquiring data. Conventional seismic reflection surveys require
specialized vessels that are capable of towing powerful acoustic
sources and long cables of hydrophones. A small number of
research bodies maintain such vessels (e.g., the Alfred Wegener
Institute, Germany; the Natural Environmental Research Council,
UK; the University-National Oceanographic Laboratory System,
USA). Access to ship time is limited and surveys are up to five
times more expensive than other ocean-going research cruises
(National Research Council, 2015; National Science Foundation,
2016). Chartering of independent seismic exploration companies
can cost up to three times as much again (National Science
Foundation, 2016). There are two possible solutions to the
challenge of high cost and logistical difficulty.

2.1.1 Development of New Seismic Systems
First, data could be acquired using systems that are specially
designed for seismic oceanography (e.g., Ruddick, 2018). These
Frontiers in Marine Science | www.frontiersin.org 3
systems could be optimized to reduce costs and to target specific
oceanographic phenomena. Ideally, they would be deployed
alongside other observational instruments and would not
require use of specialized vessels. The most obvious way to
lower costs and improve deployability is to use weaker acoustic
sources and shorter cables of hydrophones. Weaker acoustic
sources produce higher-frequency (i.e., ≳ 100 Hz) sound waves
that provide increased spatial resolution, but the signal-to-noise
ratio degrades more quickly with depth (Geli et al., 2009; Hobbs
et al., 2009). Although this degradation can be partially
compensated for by more frequent firing of the source and by a
denser spacing of hydrophones, it seems unlikely that higher-
frequency sources will be capable of clearly imaging the water
column to abyssal depths (Nakamura et al., 2006). Instead, higher-
frequency seismic systems could be optimized for imaging of
relatively shallow structures such as seasonal thermoclines (Piété
et al., 2013; Ker et al., 2015; Sallares et al., 2016; Mojica et al., 2018).
When combined with direct measurements of properties such as
temperature and salinity, they could form an excellent tool for
investigation of processes that are too coarse to be detected by
high-frequency echosounders and yet too fine to be detected by
conventional seismic systems.

2.1.2 Use of Existing Datasets
An alternative solution to the difficulty of acquiring new seismic
reflection data is to analyze existing records. An overwhelming
majority of these records have been acquired by seismic
exploration companies, which spend billions of dollars each
year on new datasets (McBarnet, 2013). As a consequence,
these companies can afford equipment and modes of operation
that are far beyond the budgets of research organisations.
Commercial seismic records are thus likely to have higher
signal-to-noise ratios and to be more accurately spatially
positioned than records acquired for scientific research. Dense
layouts of overlapping transects are often acquired in a small area
over a period of several weeks or months, allowing the temporal
evolution of oceanographic phenomena to be tracked (e.g.,
Dickinson et al., 2020; Gunn et al., 2020b; Zou et al., 2020;
Gunn et al., 2021). Many commercial exploration vessels carry
several parallel cables of hydrophones, enabling imaging of
thermohaline structure in three spatial dimensions (these
A B

FIGURE 1 | Principles of seismic oceanography. (A) Cartoon showing single release of energy by acoustic source. Black star = acoustic source; undulating gray
line = change in oceanic temperature and/or salinity; solid black lines with arrows = travel paths for three example sets of incident and reflected sound waves;
dashed black lines with arrows = transmitted sound waves. In reality, sound waves travel out from acoustic source in all directions and are recorded at every
hydrophone along cable. (B) Cartoon illustrating repeated sampling of same spatial point by multiple firings of acoustic source. Black dot = repeatedly sampled
point; black star = acoustic source at time t0; solid black lines with arrows = travel path for sound waves excited at time t0 and reflected from black dot; gray
stars = acoustic source at later times t1, t2, t3; dashed gray lines with arrows = travel paths for sound waves excited at times t1, t2, t3 and reflected from black
dot. Note that cable of hydrophones is not illustrated for times t1, t2, t3. For more complete introductions to acquisition of seismic oceanographic data, see Fer
and Holbrook (2009), Ruddick et al. (2009) and Holbrook (2009).
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surveys are known as three-dimensional; Blacic and Holbrook,
2010; Bakhtiari Rad and Macelloni, 2020; Zou et al., 2021).

Existing surveys are concentrated above continental shelves and
slopes, which exploration companies have targeted since theyhouse
economically valuable reserves of oil and gas (Figure 4A). Recent
observational, theoretical and computationalwork suggests that the
mixing that drives oceanic circulation is most intense above these
continental margins and above other topographically rough
features such as mid-ocean ridges and seamount flanks (e.g.,
Waterhouse et al., 2014; Ferrari et al., 2016; McDougall and
Ferrari, 2017; Drake et al., 2020). Continental margins also host
western boundary currents that transport significant quantities of
heat, salt andnutrients (e.g., Stommel, 1948;Huet al., 2015; Buckley
and Marshall, 2016). In a warming climate, the intensity and
position of these currents is likely to change markedly, yet there
are limited direct observations of their magnitude and variability
(e.g., Wu et al., 2012; Yang et al., 2016). Existing seismic records
span several decades and provide a dataset of unprecedented size
and coverage that can be used to investigate in detail these critically
important interactions above continental margins.

Thanks to burgeoning open-access initiatives, an increasing
number of both academic and commercial datasets are being
made publicly available (Figures 4B, C; Appendix B).
Researchers need only cover data-dearchiving and data-shipment
Frontiers in Marine Science | www.frontiersin.org 4
costs. Access to other, privately held, commercial datasets might be
most easily gained through formation of an international
collaboration for all seismic oceanography researchers (Jones
et al., 2010; Buffett and Carbonell, 2011). Many seismic
exploration companies are currently seeking ways to improve
their public image by promoting independent scientific research.
Supporting seismic oceanography is particularly attractive since
only commercially worthless water-column reflections, and not
commercially valuable subsurface reflections, need be supplied.

2.2 How Can We Benchmark Seismic
Oceanographic Data?
Estimation of accurate quantitative results from seismic
oceanographic datasets requires a reliable understanding of the
correspondence between seismic records and hydrographic
properties. However, it has remained difficult to gain such an
understanding since the strength and form of recorded seismic
amplitudes are functions of many variables, which depend both
on local thermohaline structure and on the seismic acquisition
system. Key questions fall into three areas:

• Hydrographic sensitivity: What are the smallest changes in
temperature and salinity which seismic reflection surveys can
detect? How well do these changes correspond to changes in
FIGURE 2 | Comparison of seismic oceanography to other observational techniques. (A) Temperature section interpolated from measurements made by glider in
Gulf of Mexico (after Figure 3D of Meunier et al., 2019). Red = warmer water; blue = cooler water; vertical resolution ≈ 2 m; horizontal resolution ≈ 2,000 m. (B) High-
frequency (∼ 120 kHz) echosounder image of Kelvin-Helmholtz instabilities within internal solitary wave above Oregon continental shelf (after Figure 14 of Moum et
al., 2003). Red = high acoustic intensity; blue = low acoustic intensity; vertical resolution ≈ 0.04 m; horizontal resolution ≈ 3 m at depth of 30 m. (C) High-frequency
(∼ 15–25 kHz) echosounder image of thermohaline staircase in Arctic Ocean (after Figure 5 of Stranne et al., 2017). Brighter colors indicate higher acoustic
amplitudes; vertical resolution ≈ 0.1 m; horizontal resolution ≈ 15 m at depth of 150 m. (D) Seismic oceanographic image of oceanic front at Brazil-Malvinas
Confluence (after Figure 3A of Gunn et al., 2020b). Red colors = positive acoustic amplitudes; blue colors = negative acoustic amplitudes; black region = seafloor;
vertical and horizontal resolutions ∼ O (10) m. Note different ranges and depths of four panels.
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density? On what spatial length scales can these changes be
detected?

• Temporal blurring: How does motion of thermohaline
structure, acoustic source and recording system affect
observation of features that are repeatedly sampled during
periods of ≲ 30 minutes?

• Seismic system: How do the answers to these questions
change with variations in acoustic frequency and in design
of the recording system?

Studies have addressed one or more of these questions in
isolated circumstances (Appendix C; Table C). To analyze
seismic data more widely, it would be helpful to systematically
Frontiers in Marine Science | www.frontiersin.org 5
investigate these questions across the full range of oceanographic
settings. This investigation can be carried out in two ways.

2.2.1 Field Datasets With Hydrographic Calibration
First, seismic records can be compared to coincident, direct
measurements of properties such as temperature, salinity and
current velocity. These comparisons aid interpretation of imaged
phenomena and guide estimation of quantities such as temperature,
salinity and diapycnal diffusivity from seismic images (e.g.,
Papenberg et al., 2010; Holbrook et al., 2013). Coupling seismic
records to more familiar oceanographic measurements is also likely
to encourage widespread acceptance of seismic oceanography
(Ruddick, 2018). Twenty-four existing datasets have such ancillary
FIGURE 3 | Initial successes of seismic oceanography. (A) Values of salinity inverted from seismic oceanographic image of eddy of Mediterranean Water in Gulf of
Cadiz (after Figure 6 of Dagnino et al., 2016). Note finely resolved layering along upper side of eddy. (B) Internal solitary waves captured in seismic oceanographic
image from South China Sea (after Figure 2 of Tang et al., 2016). Grayscale represents response of thermohaline structure to seismic waves; black region = seafloor.
Internal-wave velocities can be estimated from seismic records. (C) Spatial map of diapycnal diffusivity, K, estimated from seismic oceanographic image above
Falkland Plateau (after Figure 15b of Falder et al., 2016). Grayscale = seismic image; colored overlay = estimates of K; hashed pattern = areas where estimates are
less certain; black region = seafloor. Note depressed values of K above eddy imaged at range of ∼ 60–70 km.
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data and have been used for seismic oceanographic research
(Appendix C.1; Table C.1). Datasets with hydrographic
calibration could in future be acquired by combining specially
designed seismic systems of the kind discussed in Section 2.1.1
with instruments such as expendable bathythermographs (XBTs),
ADCPs, and microstructure profilers. However, seismic exploration
companies, which carry out themajority of surveys, do not routinely
acquire high-quality hydrographic data. More fundamentally, the
unique coverage and spatial resolution of seismic reflection data
means that coincident hydrographic measurements cannot capture
all relevant scales.

2.2.2 Numerical Modeling
Numerical modeling and synthetic datasets offer a way to
comprehensively explore scales that hydrographic calibration
cannot access. An ideal numerical model would include realistic
descriptions of two elements. First, thermohaline structure would
be described by a time-variant fluid-dynamical model that resolves
time scales of minutes to days and vertical and horizontal length
Frontiers in Marine Science | www.frontiersin.org 6
scales of ∼0(1) m (Ménesguen et al., 2018). Second, this simulated
structure would be acoustically probed by a modeled seismic
acquisition system travelling at finite speed. Models with these
two elements could faithfully replicate the characteristics of
seismic surveys in a range of oceanographic conditions.

Existing studies have built numerical models of varying
sophistication (Appendix C.2; Tables C.2.1, C.2.2). These
models have been used to investigate the effect of fluid flow on
wave propagation and on blurring of seismic reflections, to assess
correspondence between reflections and isopycnals, to quantify
errors in imaging of deep structure due to non-homogeneous
near-surface waters, and to simulate the characteristics of new
seismic oceanographic acquisition systems (e.g., Vsemirnova
et al., 2009; Ji and Lin, 2013; Holbrook et al., 2013; Ji et al.,
2013; Biescas et al., 2016). Previous work must now be built upon
to form a standardized toolkit for modeling of seismic reflection
profiling of thermohaline structure. Using this toolkit, the
accuracy of quantitative results derived from seismic images
can be assessed.
FIGURE 4 | Existing marine seismic reflection data. (A) Global distribution. Light red polygons = regions covered by two-dimensional (i.e., single-cable) surveys
acquired by seismic exploration companies; dark red polygons = regions covered by three-dimensional (i.e., multi-cable) surveys acquired by seismic exploration
companies; thin black lines = publicly available two-dimensional surveys acquired by seismic exploration companies in other regions; yellow lines = publicly available
two-dimensional surveys acquired by research institutions; light blue lines = hydrographic transects of World Ocean Circulation Experiment (WOCE; www.ewoce.
org). Red polygons were traced from the websites of the five largest exploration companies (CGG, ION, PGS, Schlumberger, TGS) and represent > 6.3 million km of
two-dimensional seismic data and > 5.5 million km2 of three-dimensional seismic data. Publicly available data were downloaded from a range of online repositories
(note that plotted transects represent only a small subset of all existing data). (B) Zoom of Australia’s Northwest Shelf showing only publicly available seismic data.
Blue polygons = three-dimensional commercial surveys made available through the National Offshore Petroleum Information Management System (NOPIMS; www.
ga.gov.au/nopims). (C) Zoom of the Gulf of Alaska and the Bering, Chukchi and Beaufort Seas showing only publicly available seismic data. Note that WOCE
transects are not plotted in panels (B) or (C). See Supplementary Material for further details of data provenance.
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2.3 How Can We Analyze Seismic
Oceanographic Data?
Development of seismic oceanography has to date been
advanced by disparate groups of researchers, each of which has
developed its own computer codes for signal processing and
interpretation. Many of these codes either rely on proprietary
software or have not been made publicly available (see Table D).
Lack of open-source code hampers replication of results and
discourages scientists who do not have a background in seismic
signal processing.

To realize the full potential of seismic oceanography, the
community must now develop standardized open-source codes
which can be used with a broad range of seismic datasets. Key to
standardization will be rigorous investigation of the effects of
different workflows on the accuracy of results (seeAppendix D for
a discussion of workflows for constructing seismic images). Here,
we focus on three fields that comprise the majority of existing
quantitative work and which are ripe for standardization:

• Hydrographic Inversion. Estimation of sound speed,
temperature, salinity and density.

• Propagation of Internal Waves. Characterization of the size,
velocity and decay of internal waves.

• Spectral Analysis. Analysis of internal waves and turbulence
using wavenumber spectra.

For each of these fields, we summarize previous work, suggest
potential future applications, and highlight selected
outstanding questions.

2.3.1 Hydrographic Inversion
Propagation of low-frequency acoustic waves within the oceanic
water column is governed by changes in sound speed and, to a
much smaller extent, in density (Ruddick et al., 2009; Sallares et al.,
2009). Sound speed can thus be directly estimated from seismic
data and mapped into values of temperature and salinity using an
assumed temperature-salinity relationship and the hydrographic
equation of state (seeAppendix D.1 and Table D.1 for a summary
of proposed methods). Hydrographic inversion has been used, for
example, to investigate stirring at baroclinic fronts, to describe
temperature variance in turbulent waters above a continental
slope, and to reassess heat transport onto the Antarctic shelf
(Biescas et al., 2014; Minakov et al., 2017; Gunn et al., 2018).
Inversion results can also act as constraints for other calculations
that are made using seismic records (e.g., estimation of diapycnal
heat flux, Gunn et al., 2021; see Sections 3.1 and 3.2). Key questions
for further development of hydrographic inversion include:

• How accurate can inversion results be in the absence of
nearby hydrographic data? See Bornstein et al. (2013),
Padhi et al. (2015) and Blacic et al. (2016).

• What are the smallest and greatest spatial scales that can be
recovered? See Blacic et al. (2016), Minakov et al. (2017) and
Gunn et al. (2018).

• Can useful inversion results be obtained from records in
which water-column reflections are very faint or absent?
Frontiers in Marine Science | www.frontiersin.org 7
2.3.2 Propagation of Internal Waves
Seismic oceanographic images often display prominent internal
waves, including tidal beams, lee waves and trains of solitary
waves (e.g., Holbrook et al., 2009; Eakin et al., 2011; Tang et al.,
2015). The velocities of these waves can be estimated by
analyzing changes in reflection amplitude during the interval
of ≲ 30 minutes within which a single point is sampled
(Appendix D.2; Table D.2). This approach has shed light on
stirring at oceanic fronts, on the evolution of solitary waves, and
on heat transport by intrathermocline eddies (Sheen et al., 2012;
Tang et al., 2014; Gunn et al., 2018). Blacic and Holbrook (2010)
and Zou et al. (2020) suggest how these analyses could be
extended to mapping internal waves in three dimensions. This
mapping could greatly improve our understanding of internal-
wave-driven mixing of energy and material, which plays a critical
role in global climate (e.g., Helfrich and Melville, 2006; Legg,
2021). Outstanding questions for seismic oceanographic
estimation of internal-wave velocities include:

• To what extent is it possible to decouple the velocities of
internal waves from the velocities of background currents?

• How does the accuracy of estimated velocities vary with
duration of observation?

• How sensitive are estimated internal-wave velocities to errors
in the profiles of sound speed that are used to spatially
reposition reflections? See Klaeschen et al. (2009).
2.3.3 Spectral Analysis
In addition to imaging clearly visible internal waves, seismic
oceanographic data capture the signals of the background
internal wave field and of turbulent motions. These signals
have most commonly been analyzed by computing horizontal-
wavenumber spectra from the vertical displacements of tracked
seismic reflections (e.g., Holbrook and Fer, 2005; Appendix D.3;
Table D.3). This approach has been exploited to investigate the
nature of the dynamical transition from internal waves to
turbulence, to link intensity of turbulent overturning to
submesoscale structure, and to estimate diapycnal mixing
above regions of rough bathymetry (e.g., Falder et al., 2016;
Tang et al., 2020; Tang et al., 2021). Fortin et al. (2016) suggest
how spectra can be estimated from regions of a seismic image in
which reflections cannot be tracked. To develop a consistent and
reliable method for spectrally analyzing seismic oceanographic
images, the following outstanding questions must be addressed:

• How closely must reflections track isopycnals for results to be
useful? What information can be extracted from the spectra of
reflections that do not track isopycnals? See Meunier et al.
(2019).

• How severely are spectra distorted by temporal blurring? See
Vsemirnova et al. (2009) and Falder et al. (2016).

• How are spectra affected by use of different methods for
mapping of recorded seismic amplitudes into spatial images?
Which method is most appropriate? See Fortin and Holbrook
(2009) and Holbrook et al. (2013).
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In future, spectra could potentially be computed directly from
seismically estimated sections of temperature and salinity,
avoiding the need to track reflections (see Section 3.2; Xiao
et al., 2021).
3The length scales of depicted descriptive terms and phenomena depend on
variables such as latitude, flow velocity, and density structure. For instance, the
term submesoscale was coined to describe flow on horizontal length scales shorter
than the first baroclinic radius of deformation (McWilliams, 1985). For further
discussion see Vallis (2017) and Meredith and Naveira Garabato (2022).
3 WHAT PROBLEMS CAN SEISMIC
OCEANOGRAPHY SOLVE?

To gain widespread acceptance, the seismic oceanographic
community must identify ways in which the datasets and tools
discussed in Section 2 can be used to rapidly improve our
understanding of oceanic circulation. This circulation
encompasses myriad processes that continuously interact on a
wide range of time and length scales. No single theory or set of
observations can hope to simultaneously capture all of these
interactions. Instead, oceanographers conceptualize circulation
as a collection of discrete phenomena (e.g., Ferrari and Wunsch,
2009). Transfer of energy between these phenomena is described
by parametrizations that are based on a combination of
theoretical and empirical evidence (e.g., Garrett, 2006; Polzin
et al., 2014; McWilliams, 2017; de Lavergne et al., 2020).

Seismic oceanography straddles a unique combination of
scales and is thus ideally placed to revolutionize our
understanding of several processes and parametrizations (see
Frontiers in Marine Science | www.frontiersin.org 8
Figure 5). Here, we outline three areas in which the seismic
method can provide key insights within the next decade.

3.1 Turbulent Mixing
It is widely accepted that mechanical mixing4 by turbulent
motions is key to maintaining global overturning circulation
(e.g., Munk, 1966; Wunsch and Ferrari, 2004). Observations
since the 1990s have shown that turbulent mixing is
concentrated above regions of rough bathymetry and at the
edges of ocean basins (e.g., Polzin et al., 1997; Mauritzen et al.,
2002; Naveira Garabato et al., 2019). These observations have
spurred theoretical advances which suggest that mixing in narrow
boundary layers forms a critical part of oceanic circulation (Levy
et al., 2012; Ferrari et al., 2016; McDougall and Ferrari, 2017;
Drake et al., 2020). Further measurements are now needed to
refine these theories and to tune climate models (e.g., Mashayek
et al., 2015; Mashayek et al., 2017; MacKinnon et al., 2017).

Unfortunately, oceanic turbulence is difficult to sample since it is
highly intermittent in both space and time (Ivey et al., 2008; Shroyer
et al., 2018; Cael and Mashayek, 2021). Fast-response thermistors
FIGURE 5 | Cartoon showing approximate length scales of processes that can be investigated using seismic oceanography. Red dashed bars show approximate
ranges3 of commonly used descriptive terms. (The term fine scale was coined to describe vertically varying structure, and its horizontal extent is not clearly defined.
Planetary scale, mesoscale and submesoscale are predominantly used to describe horizontal length scales.) Blue boxes show approximate extents of selected
phenomena. LAST = layered anisotropic stratified turbulence5. Green arrows show possible parametrizations describing transfer of energy. Solid arrow labeled A =
fine-scale parametrizations; solid arrow labeled B = assumption of continuity between LAST and inertial-convective regime of isotropic turbulence5 ; dashed green
arrows = other parametrizations that seismic oceanography could inform. Note that boundaries between phenomena are much more gradational than depicted. Only
phenomena referred to in this article are shown. Inspired by Figure 1 of McWilliams (2016) and Figure 1 of Ruddick (2018).
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and shear probes, which have most commonly been deployed as
vertically dropped microstructure profilers, resolve isotropic
turbulent5 fluctuations on length scales as small as ∼0(1) mm
(Figure 5; e.g., Schmitt et al., 1988; Lueck et al., 2002; Lozovatsky
et al., 2019). However, microstructure profiles are uncommon and
sparsely distributed. For instance, in compiling a global database of
turbulence measurements, Waterhouse et al. (2014) found only
∼5,200 profiles of vertical shear. Such small numbers of
measurements cannot constrain the global distribution
of turbulence.

To overcome this problem, many studies have sought to infer
the strength of turbulence using observations of internal waves
on vertical length scales of ∼0(1-10) m (Figure 5; Gregg, 1989;
Wijesekera et al., 1993; MacKinnon and Gregg, 2003; Polzin
et al., 2014; Ijichi and Hibiya, 2015). These inferences, which are
known as fine-scale parametrizations, have underpinned
attempts to map the global distribution of mixing using
measurements made by conductivity-temperature-depth (CTD)
profilers and Argo floats (Whalen et al., 2012; Waterhouse et al.,
2014; Whalen et al., 2015; Kunze, 2017). However, few studies
have benchmarked the results of fine-scale parametrizations
against direct measurements of turbulence (e.g., Liang et al.,
2018; Takahashi and Hibiya, 2019; Takahashi and Hibiya, 2021;
Fine et al., 2021).

Instruments that record structure on horizontal scales of
≳ O(10) m offer an alternative way to both directly measure
turbulence and benchmark fine-scale parametrizations (Moum,
2021). On horizontal length scales of ≲ 300 m, observations
reveal a regime of layered anisotropic stratified turbulence
(LAST)5 that can be straightforwardly related to the intensity
of isotropic turbulence (Figure 5; Brethouwer et al., 2007;
Klymak and Moum, 2007b; Maffioli and Davidson, 2016;
Kunze, 2019). Internal-wave signals on greater horizontal
length scales can be analyzed using modified fine-scale
parametrizations to yield indirect estimates of the strength of
turbulent mixing (e.g., Klymak and Moum, 2007a; Sheen et al.,
2009; Dickinson et al., 2017).

The horizontal signals of internal waves and LAST are
captured both by towed instruments and by seismic
oceanography (e.g., LaFond, 1963; McKean and Ewart, 1974;
Holbrook and Fer, 2005; Holbrook et al., 2013). However,
seismic oceanography is distinguished by its ability to record
unprecedentedly large volumes of data in short periods of time.
For instance, one 175-km-long seismic image acquired over a 20-
hour period shows reflective boundaries with a cumulative length
of more than 5,000 km (Dickinson et al., 2017). This length is
4The termmixing is inconsistently used in the literature (e.g., Eckart, 1948; Muller
and Garrett, 2002; Dimotakis, 2005; Naveira Garabato and Meredith, 2022). Here,
we follow common convention and use the term turbulent mixing to describe the
folding and stirring of fluid by eddying motions. By increasing the variance of
temperature, salinity and density on microscales, this folding and stirring creates
favorable conditions for the molecular diffusion that ultimately mixes different
water masses (Moum, 2021).
5On length scales of ≲ O(1) m, the effects of ocean stratification are insignificant
and turbulent motions have the same form in the horizontal and the vertical
(Ozmidov, 1965; Dillon, 1982). This isotropic turbulence maintains a downscale
transfer of energy that is exactly described by theory (Kolmogorov, 1941;
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over thirty times greater than the combined length of the datasets
on which Garrett and Munk (1972) based the horizontal-
wavenumber description of their original semi-empirical
internal-wave spectrum. Rapid acquisition also distinguishes
seismic oceanography from more recent campaigns that have
acquired horizontal measurements over periods of several weeks
(e.g., Ferrari and Rudnick, 2000).

Spectral analysis of extensive seismic oceanographic datasets
thus has the potential to provide a global catalogue of oceanic
horizontal-wavenumber spectra that is unrivalled in size (cf.
Polzin and Lvov, 2011). Statistical investigation of this catalogue
could address questions that include:

• How accurate is the Garrett-Munk spectrum for internal
waves? How do the spectral properties of internal waves
vary in different oceanic environments? See Levine (2002),
Polzin and Lvov (2011) and Pinkel (2020).

• What is the nature of the dynamical transition between internal
waves and LAST on horizontal length scales of ∼0(100) m?
See Falder et al. (2016), Sallares et al. (2016), Kunze (2019) and
Howland et al. (2020).

• How accurate are existing fine-scale parametrizations when
applied to horizontal-wavenumber spectra6? Do different
parametrizations work better in different oceanic
environments? Is it possible to formulate new parametrizations
that better apply to horizontal-wavenumber spectra? See
MacKinnon and Gregg (2003), Klymak and Moum (2007a),
Hibiya et al. (2012), Polzin et al. (2014), Waterman et al. (2014)
and Ijichi and Hibiya (2015).

Perhaps most importantly, seismic oceanography offers a way
to map the intensity of turbulent mixing in unprecedented two-
dimensional detail across sections that are hundreds of
kilometers in length (e.g., Tang et al., 2021; Wei et al., 2022).
Advances in oceanographic instrumentation are providing new
tools that can be integrated into future seismic surveys to
benchmark estimates of mixing (Frajka-Williams et al., 2022).
Shear probes will be mounted on Argo floats, whilst expendable
profilers will measure velocity fluctuations to depths of ~ 6,000 m
(e.g., Shroyer et al., 2016; Shang et al., 2017; Roemmich et al.,
2019). Seismometers will record turbulent flow in narrow
boundary layers above the ocean floor (Yang et al., 2021).
Once seismic methods for estimating mixing have been
accurately calibrated using these tools and using numerical
simulations, existing seismic datasets will provide a way to
investigate possible changes in oceanic mixing during the
previous four decades, when few other measurements
were available.
Sreenivasan, 1995). On greater length scales, the effects of stratification lead to
anisotropic turbulence with a much greater horizontal than vertical extent. We
follow Falder et al. (2016) in using the term layered anisotropic stratified turbulence
(LAST) to refer to this turbulence. For further discussion see Lindborg (2006),
Riley and Lindborg (2008), Riley and Lindborg (2012), Caulfield (2020) and
Caulfield (2021).
6The accuracy of horizontal fine-scale parametrizations can be assessed by
comparison to simultaneous observations of LAST in the same seismic image.
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3.2 Submesoscale Currents
The submesoscale range plays host not only to internal waves,
but to a menagerie of other phenomena that evolve on time
scales of hours to days (Figure 5; Thomas et al., 2008; Callies
et al., 2020). These non-internal-wave phenomena, which we
collectively refer to as submesoscale currents7 following
McWilliams (2019), are thought to be vital in sustaining
ecosystems and in modulating exchange of energy between
mesoscale motions and microscale turbulent flows (e.g., Levy
et al., 2018; Naveira Garabato et al., 2022). Unfortunately, they
are difficult to discern in observational time series and in
measurements made by vertically dropped instruments
(McWilliams, 2016). As a result, most in situ observations have
been obtained using platforms that sample the ocean
horizontally, such as towed thermistors or ADCPs (e.g.,
Samelson and Paulson, 1988; Klymak and Moum, 2007a;
Rocha et al., 2016; Qiu et al., 2017).

A more complete description of submesoscale currents
requires rapid two- or three-dimensional sampling
(McWilliams, 2019). Although gliders provide quasi-two-
dimensional observations, they travel at slow horizontal speeds
of ∼0.3 m s-1and probably only resolve features at horizontal
scales greater than ∼30 km (e.g., Figure 2A; Rudnick and Cole,
2011; Rudnick, 2016). A few field campaigns have sought three-
dimensional descriptions by tracking the spread of inert tracers,
by carrying out surveys with two closely spaced ships, and by
combining moored, towed and dropped instruments with
airborne sensors and with autonomous floats, drifters and
gliders (e.g., Allen and Naveira Garabato, 2012; Shcherbina
et al., 2013; Shcherbina et al., 2015; Pascual et al., 2017;
Marmorino et al., 2018). However, these campaigns have small
geographical extents and are limited to the upper ~ 500 m of the
ocean. Satellites and airborne instrumentation have revolutionized
our understanding of submesoscale activity at the sea surface
(e.g., Gower et al., 1980; Munk et al., 2000; Jolliff et al., 2019;
Klein et al., 2019; Martıńez-Moreno et al., 2021). However, it
is not well known how closely these surface motions
correspond to flow at depth (e.g., Wang et al., 2010; Callies
and Ferrari, 2013).

In addition to being difficult to observe, submesoscale
currents are difficult to theoretically describe (e.g., McWilliams,
2010; McWilliams, 2017). As a result, developments in our
understanding have been largely driven by numerical
simulations (McWilliams, 2019). At present, most simulations
are validated by comparison to satellite or radar observations of
sea-surface height and temperature (e.g., Delandmeter et al.,
2017; Schubert et al., 2019; Bashmachnikov et al., 2020; Chrysagi
et al., 2021). Few studies have compared simulations to
subsurface observations (e.g., Rocha et al., 2016; Liu et al.,
2017; Viglione et al., 2018). Improving our ability to observe
submesoscale currents and to benchmark simulations now
requires an efficient way to rapidly sample thermohaline
structure between the sea surface and the seafloor.
7Our use of the term submesocale currents includes submesoscale coherent
vortices, which are subsurface eddies with distinct hydrographic properties
(McWilliams, 1985). Once formed, they can exist for several years.
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Seismic oceanography offers an unrivalled means of achieving
this sampling. Unlike gliders, seismic vessels move at fast speeds of
∼ 2.5–3 m s-1, allowing surveys to capture submesoscale structures
that evolve on time scales of hours to days. This ability can be
exploited in three ways. First, seismic images can reveal the
geometries and distributions of subsurface submesoscale
structures in unprecedented detail. For instance, Song et al.
(2011) present a seismic image which shows how submesoscale
coherent vortices generate thermohaline intrusions with forms that
are unanticipated by theory. By combining seismic images with
inverted sections of temperature, salinity and density, Gunn et al.
(2020b) show how submesoscale lenses and filaments interact with
a deep-seated oceanic front. Seismic oceanography’s ability to
visualise submesoscale features can address questions such as:

• How abundant are submesoscale coherent vortices? How
quickly do they evolve? See Gunn et al. (2018), Gula et al.
(2019), Steinberg et al. (2019), Archer et al. (2020), McCoy
et al. (2020) and Tang et al. (2020).

• How widespread are submesoscale fronts? To what depth do
these fronts extend? How are they influenced by the presence of
permanent fronts between water masses? See Ramachandran
et al. (2014), Pascual et al. (2017), Siegelman et al. (2019), Gunn
et al. (2020b) and Giddy et al. (2021).

• How does the size and form of imaged submesoscale structures
vary with depth and with proximity to rough topography? See
de Lavergne et al. (2016), Dauhajre et al. (2017), Ruan et al.
(2017), Callies (2018) and Wenegrat et al. (2018).

Second, seismic oceanography can probe the statistical
signatures of submesoscale currents. To date, few observational
studies have resolved along-isobar and along-isopycnal
hydrographic variations on submesoscale length scales, and the
distribution of potential energy in the submesoscale range is
poorly known (e.g., Cole and Rudnick, 2012; Callies and Ferrari,
2013; Schönau and Rudnick, 2015; Itoh and Rudnick, 2017).
Improved observations will show which processes dominate
transfer of energy and how they contribute to lateral stirring of
water masses (e.g., Rudnick and Martin, 2002; Johnson et al.,
2012; Jaeger and Mahadevan, 2018). These observations can be
extracted from seismically derived sections of temperature,
salinity and density (Xiao et al., 2021). As with internal waves
and LAST, analysis of widespread seismic surveys can provide a
catalogue of submesoscale spectra8 that is unmatched in size.
This catalogue can address questions that include:

• What are the dominant spectral slopes for temperature,
salinity and spice? Are these slopes well described by
theory? See Ferrari and Rudnick (2000), Callies and Ferrari
(2013), Klymak et al. (2015), Kunze et al. (2015) and Erickson
et al. (2020).

• At what length scale do internal waves start to dominate the
spectral signal? See Bühler et al. (2014), Rocha et al. (2016),
Qiu et al. (2017), Qiu et al., (2018), Callies (2019) and Thomas
and Yamada (2019).

• How energetic are submesoscale currents beneath the surface
mixed layer? How do currents vary with the seasons? See Cole
et al. (2010), Callies et al. (2015), Buckingham et al. (2016), du
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Plessis et al. (2017), Siegelman et al. (2019), Yu et al. (2019),
Dong et al. (2020), Erickson et al. (2020) and Siegelman
(2020).

Finally, seismic oceanography can help calibrate satellite
observations of submesoscale flow. Satellite altimetric records
with near-global coverage are available for all years after 1992
(Fu et al., 1994; Callies and Wu, 2019). The resolution of these
records is highly variable, and it is unclear how well they capture
activity in the subsurface ocean (Wunsch, 1997). Comparison of
existing seismic oceanographic datasets to historical satellite
records will demonstrate the extent to which sea-surface
observations can predict motions at depth (e.g., Dickinson
et al., 2020; Gunn et al., 2020b; Gunn et al., 2021; Wei et al.,
2022). The next generation of satellite-borne altimeters and
current meters is expected to achieve resolutions as low as
∼1 km (e.g., Gommenginger et al., 2019; Klein et al., 2019;
Martıńez-Moreno et al., 2021). Future seismic surveys could be
towed along the groundtracks of these satellites, providing
spatially coincident and near-contemporaneous observations of
subsurface submesoscale motions. Comparison of both historical
and newly acquired seismic data to satellite records could
investigate questions such as:

• Can satellite observations predict the depths to which surface
oceanic fronts extend? What percentage of sub-mixed-layer
submesoscale eddies are observable in satellite records? See
Gunn et al. (2020b).

• Is there a relationship between spectral power laws computed
from satellite data and spectral power laws computed from
submesoscale structure at depth? See Wang et al. (2010) and
Callies and Ferrari (2013).

• Is there any correlation between submesoscale sea-surface
motions and periods of intense turbulence at depth?

To aid calibration of satellite records, and investigation of
submesocale currents more broadly, future seismic surveys could
integrate novel observational tools such as swarms of
autonomous robots (e.g., Jaffe et al., 2017). Autonomous tools
are ideally suited to integration with seismic oceanographic
surveys since they do not interfere with operation of the
seismic vessel.

3.3 Abyssal Water Mass Transformations
Approximately 50% of the ocean’s volume lies at depths of
2,000 m or greater (waters at these depths are referred to as
the deep ocean; Roemmich et al., 2019). Much of this volume is
filled by Antarctic Bottom Water (AABW) and North Atlantic
Deep Water (NADW), whose circulations play a key role in
8Most spectral analyses of seismic oceanographic images have depended on
tracking continuous seismic reflections, which usually extend along horizontal
distances of ≲ 10 km (Section 2.3.3; Appendix D.3). This approach is sufficient to
resolve the signals of LAST and of the high-wavenumber portion of the internal
wave field. However, it does not resolve the full signal of submesoscale currents.
Instead of tracking reflections, submesoscale signals could be analyzed by
computing horizontal-wavenumber spectra directly from seismically estimated
hydrographic sections. Aside from spectra, further statistical properties could be
calculated following Klymak et al. (2015).
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distributing heat and salt and thus in controlling global climate
(Johnson, 2008; Jayne et al., 2017). Despite its importance, fewer
than 10% of hydrographic measurements come from the deep
ocean (de Lavergne et al., 2016). Our ability to model abyssal
processes and their impacts on climate is severely constrained by
this lack of data (e.g., Wunsch and Heimbach, 2014; Forget et al.,
2015; Liang et al., 2015).

To date, most of our knowledge of the deep ocean has come
from repeated hydrographic measurements made by ships across
a globally distributed range of transects (Talley et al., 2016;
Sloyan et al., 2019). Occupation of 34 of these transects over a
35-year period has yielded approximately 150 hydrographic
sections that sample the deep ocean at a horizontal resolution
of ~ 55 km (Desbruyères et al., 2016). In contrast, our knowledge
of hydrography in the upper 2,000 m of the ocean depends on the
Argo program, which since 1999 has acquired over two million
hydrographic profiles using a global array that currently consists
of approximately 4,000 autonomous profiling floats (Roemmich
et al., 2009; Wong et al., 2020; Roemmich et al., 2022). The Deep
Argo program aims to build on this success by acquiring
measurements to depths of 6,000 m (e.g., Johnson and Lyman,
2014; Gasparin et al., 2020). However, it seems unlikely that a
global deep Argo array will be operational before 2026
(Zilberman et al., 2019).

Seismic oceanography provides a means of extending our
historical record of changes in the hydrography of the deep
ocean. Although the majority of seismic reflection datasets lie
above continental shelves and slopes, a significant number of
surveys extend into deep near-shelf regions that are key in
formation of abyssal water masses (Figure 4; e.g., Dickson and
Brown, 1994; Orsi et al., 1999; Morozov et al., 2021). For
instance, between the years 1976 and 2011 more than
360,000 km of seismic reflection transects were acquired
between the shoreline of Antarctica and regions with water
depths of ≳ 5,000 m (Breitzke, 2014; note that not all of these
transects are plotted in Figure 4A). For comparison, five repeat
hydrographic transects within the Southern Ocean were
occupied a cumulative total of 32 times during the same time
period (Desbruyères et al., 2016). Estimation of temperature,
salinity and density from seismic transects offers a way to
improve the historical record of hydrographic changes and to
address questions such as:

• To what extent does heaving of isopycnals in the deep ocean
reflect changes in total heat content? See Bindoff and
Mcdougall (1994), Hakkinen et al. (2016), Desbruyères et al.
(2017) and Gunn et al. (2020a).

• How do seismic estimates of temperature change correlate to
basin-wide changes estimated using acoustic thermometry?
How do seismic estimates correlate to changes estimated from
highly localised shipboard measurements? What do these
comparisons tell us about our ability to assess temperature
changes from existing datasets? SeeMunk (2006), Purkey and
Johnson (2010), Purkey and Johnson, (2012), Palmer et al.
(2019), Wu et al. (2020) and Wunsch (2020).

• How are changes in deep-ocean temperature associated with
changes in abyssal turbulence, internal waves, and
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submesoscale currents? See Sheen et al. (2014), Su et al.
(2018), Naveira Garabato et al. (2019) and Whalen et al.
(2020).
To answer these questions, and to investigate turbulent

mixing and submesoscale currents, use of seismic
oceanography must be guided by a clear and practicable plan
for its future development.
4 FUTURE DIRECTIONS

We believe that solutions to the challenges which face seismic
oceanography will be best realized through collaboration
amongst all researchers in the field. Key to this collaboration
will be three parts:

• Identification of priorities for the next decade of seismic
oceanography. Efficient progress will be made if researchers
come together to agree upon a small number of key scientific
questions that can be addressed using seismic oceanography.
Detailed plans for tackling these questions can be formed.
Discussion should include all researchers with an interest in
the field.

• Development of an online repository of publicly available
seismic reflection datasets. Deposited datasets should include
all ancillary hydrographic data where this exists. If original
seismic records cannot be shared, standardized details of
acquisition, processing and data provenance should be
published. Data-sharing can build on practices developed as
part of observational initiatives such as the Microstructure
Database, the Global Ocean Observing System, and Argo (e.g.,
MacKinnon et al., 2017; Tanhua et al., 2019; Roemmich et al.,
2019; see microstructure.ucsd.edu and www.goosocean.org).

• Development of an online repository of open-source
computer codes. Existing codes should be uploaded and
benchmarked against hydrographically calibrated field
datasets and numerical simulations. Codes that are shown
to be reliable can be developed into standardized tools which
will facilitate comparison of datasets. Wherever possible,
codes should be automated to minimize subjective
judgements. Sharing of code can build on examples such as
the repository developed by the turbulent mixing community
(github.com/OceanMixingCommunity).

To encourage collaboration, we have set up a Wikipedia page
and code repository (en.wikipedia.org/wiki/Seismic_Oceanography
and github.com/SeismicOceanographyCommunity). Anyone is
welcome to contribute. Session PS06 at the 2022 American
Geophysical Union Ocean Sciences meeting discussed priorities
for the field, and sparked conversations that can now be taken
further (see www.aslo.org/osm2022/scientificsessions/#ps).

As an example of a scientific priority, we suggest that large
volumes of existing seismic data should be analyzed using
automated methods for estimating the intensity of turbulent
mixing (Section 3.1). This analysis would require development of
three open-source tools:
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• Tool 1: A standardized method for estimating temperature,
salinity and density from seismic records in the absence of
coincident hydrographic measurements.

• Tool 2: A standardized method for computing horizontal-
wavenumber spectra from seismic images and for estimating
diapycnal diffusivity from identified internal-wave and LAST
spectral regimes.

• Tool 3: A standardized method for accurate numerical
modeling of seismic reflection profiling of time-variant
thermohaline structure.

Tools 1 and 2 would include rigorous assessment of
uncertainties in estimated quantities. Together, these two
components would form a toolkit for rapid, comparable
estimation of diapycnal diffusivity and of the form of the
internal wave field at disparate locations. Seismic-derived
estimates of temperature, salinity and density would free this
analysis from dependence upon independent hydrographic data.
Accuracy would be tested using the numerical modeling package
developed as Tool 3. The unprecedented number of observations
of turbulent mixing could be combined with machine-learning
techniques to inform improved climate models (Zanna and
Bolton, 2021).

Other researchers will no doubt disagree with our suggested
priority and have suggestions of their own. We hope that this
article will provoke discussion about the best way to proceed, and
will lead to development of shared resources and projects.
Similar collaborative development is fuelling formation of a
new generation of observational tools, including satellite-borne
wide-swath altimeters, moored temperature microstructure
recorders, autonomous floating seismometers, saildrones and
ultra-wideband underwater communication (Fu and Ferrari,
2008; Moum and Nash, 2009; Hello et al., 2011; Cross et al.,
2015; Ghaffarivardavagh et al., 2020). It is time for seismic
oceanography to join their ranks.
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Lévy, M., Ferrari, R., Franks, P. J. S., Martin, A. P., and Rivière, P. (2012). Bringing
Physics to Life at the Submesoscale. Geophys. Res. Lett. 39, L14602.
doi: 10.1029/2012GL052756
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