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Editorial on the Research Topic:

Live feed for early ontogenetic development in marine fish larvae
1 Preface

Live feeds hold the key to a stable and expanding marine aquaculture. In this

editorial, we briefly review the history of live feed production for marine larviculture and

summarize the latest contribution issued in the research topic – Live Feed for Early

Ontogenetic Development in Marine Fish Larvae. With the current research that were

submitted to this research topic, we see trends into many different aspects of live feed

production. We are ensured that some of the remaining bottlenecks will be solved in a

near future, providing a diverse and ecological sound marine aquaculture sector

to flourish.
2 Larviculture of marine fish species

The marine aquacultures are expanding with an increasing diversity of fish species

across different regions. Most commercial marine fish larvae require live feed as first

feeding diet, such as European seabass (Dicentrarchus labrax), gilthead sea bream (Sparus

aurata), turbot (Scophthalmus maximus), Atlantic halibut (Hippoglossus hippoglossus)

and cod (Gadus spp.) in Mediterranean and East Atlantic regions (Sweetman, 1992;

Reitan et al., 1993; Moksness and Støle, 1997; Shields, 2001; Evjemo et al., 2003; Oie et al.,

2017) milkfish (Chanos chanos), groupers (Epinephelus spp.), cobia (Rachycentron

canadum), snappers (Lutjanus spp.), sea bass (Lates calcarifer and Lateolabrax

japonicus), sea breams (Acanthopagrus spp. and Pagrus spp.) and pompano

(Trachinotus spp.) in Asian Pacific and Oceanian regions (Chen and Long, 1991;
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Fushimi, 2001; Liao et al., 2001; Marte, 2003; Le Moullac et al.,

2003; Palmer et al., 2007); grey mullet (Mugil cephalus), Pacific

threadfin (Polydactylus sexfilis), snook (Centropomus sp.) and

red drum (Sciaenops ocellatus) in American regions (Lee and

Ostrowski, 2001; Cerqueira and Tsuzuki, 2009). Besides the

edible fish species, the larviculture of many ornamental reef

fish are already or under commercialization stage, such as

clownfish (Amphiprion spp.), tang fish (Paracanthurus spp.

and Zebrasoma spp.) and angelfish (Centropyge spp. and

Pomacanthus spp.). Furthermore, several emerging species

with difficult early larval stages (i.e., very tiny mouth or

perception toward mobile pattern of specific live feed) are

targeted by specialised research institutions and conservation

programs developed by aquariums, such as Rising Tide

Conservation, Tropical Aquaculture Laboratory, University of

Florida; Oceanic Institute of Pacific University in Hawaii

(Degidio et al., 2017; Callan et al., 2018), James Cook

University in Australia (Chen et al., 2020), National Museum

of Marine Biology & Aquarium and National Dong Hwa

University in Taiwan (Chiu and Leu, 2021; Leu et al., 2022).

Private sectors, such as Bali Aquarich based in Indonesia, De

Jong Marinelife in the Netherlands and Biota in the USA have

also contributed extensively to the captive breeding of marine

ornamental fish for the demand of the aquarium market.

Techniques of live feed production is a subject that is

commonly interesting for larviculture industry worldwide, but

the selection of live feed is related to what fish species and

developmental stages they are targeted for. For warm water fish

species, such as groupers (Epinephelus spp.), duration of

larviculture (hatch to metamorphosis) is around 20-30 days.

Live feeds selected for the three-stage larviculture are categorized

as follows: (1) first feeding stage (3-10 day post hatch, dph):

fertilized oyster egg (<70 mm), nauplii of small copepod species

(<120 mm) and SS-type Brachionus rotifer (<150 mm); (2)

secondary feeding stage (8-20 dph): S-type Brachionus rotifer

(<200 mm), newly-hatched Artemia nauplii (<450 mm) and

copepodites (200-600 mm); (3) pre-weaning stage (18-30 dph):

Artemiametanauplii (<600 mm), adult copepods (800-1200 mm)

and micro pellet diets (Marte, 2003; Zhang et al., 2015). This

example indicates that the size and type of live feeds are

primarily critical, and highlights that the establishments of live

feed production should be diversified for various fish species.

Most of the marine fish larvae are born with a small mouth gape

and incomplete digestive system (Yúfera and Darias, 2007).

Those larvae need tiny live feed with great bioavailable

nutrients to sustain survival, growth and other metabolic

functions. Indeed, live feeds are essential for larval ontogeny

due to their superior nutritional value, palatability and mobility-

triggered predatory attraction. This research topic aims to

establish a collection of articles that tackles different issues

related to the recent progress of live feed production, and their

implications in marine larviculture.
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3 Live feed production for marine
larviculture

In general, marine fish have poor capability to synthesize

essential fatty acids, which indicates that a dietary supplement of

these nutrients is crucial (Coutteau et al., 1997; Rainuzzo et al.,

1997; Mejri et al.). The specific requirement on highly

unsaturated fatty acids (HUFAs) could be a consequence of

evolution in marine trophic relationships. In nature,

phytoplankton capture solar energy via photosynthesis, and

biosynthesize HUFAs and other organic nutrients. These

components are ingested, sometimes bio-transformed and

accumulated by zooplankton, and then by larvae of most

marine fish. Indeed, phytoplankton and zooplankton are

natural food items for marine larvae, thus they are also

produced as live feed for larval nourishment in marine

hatchery (Reitan et al., 1997). Based on the species availability

and climate condition, applications of live feeds (species

selection and production techniques) are diverse and region-

specific (Lee et al., 2008; Conceição et al., 2010; Nielsen et al.,

2017; Pan et al.).

Phytoplankton has been long used as live feed for

zooplankton and larvae of several marine organisms, and as

water conditioning element (i.e., green water technique) (De

Pauw et al., 1984; Borowitzka, 1997; Pan et al.). One of the

focuses in research and development (R&D) for microalgae is

the photobioreactor, which could facilitate an efficient and high-

density microalgae production. Many companies and

institutions have well demonstrated the industrial scale

photobioreactor system for marine hatcheries (Naumann et al.,

2013; Tibbetts et al., 2020). Several studies have showed that

manipulations in culture conditions and composition of fertilizer

could affect microalgal productivity and nutritional quality

(Harrison et al., 1990; Reitan et al., 1994; Reitan et al., 1997;

Cañavate, 2019; Han et al., 2019; Cañavate and Fernández‐Dıáz,

2022). In this research topic, Latsos et al. revealed a significant

increase of fatty acid levels in the microalga Rhodomonas sp.

inducing by nitrogen starvation. The authors proposed a two-

phase culture system, which firstly accelerates the cell growth

and subsequently induces PUFAs accumulation by nitrogen

starvation in commercial scale cultivation.

Ciliates are a group of micrometre-sized protists that show

great potential for feeding small-mouthed reeffish larvae, such as

cleaner goby (Gobiosoma evelynae) , purple fire-fish

(Nemate leotr i s decora) and blue-s tr iped ange lfish

(Chaetodontoplus septentrionalis) (Olivotto et al., 2005; Madhu

and Madhu, 2014; Leu et al., 2015). Ciliate production relies on

the suspending organic matters and bacteria as their dietary

resources, which makes their cultivation relatively easy. In

addition, the fact of ciliate’s bacterivorous feature has

facilitated their implication as bio-effector. In this research

topic, Lin et al. revealed an innovative method of using the
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ciliate Strombidium sp. to reduce pathogenic Vibrio sp., which

leads to a significant increase of the survival rate in juvenile

grouper Epinephelus coioides.

Rotifers in aquaculture largely belongs to the genus

Brachionus, and it has been extensively produced as live feed

for marine larviculture since the 1960-70s in Japan and Norway

(Watanabe et al., 1983; Pejler, 1998; Lubzens et al., 2001). Rotifer

cultures are well established, and intensive culture systems are

available in the industry worldwide (Lubzens et al., 1989; Fu

et al., 1997; Odo et al., 2015; Pan et al.). One of the advantages of

rotifer production is the feasibility of reaching ultra-high

densities. For instance, Yoshimura et al. (2003) reported a

rotifer density over 105 individuals ml−1 in a culture equipped

with a membrane filtration system. Research in rotifer

enrichment and its effect on marine fish larviculture are still

an area of interest. In this research topic Ghaderpour and

Estevez shows a close relationship between the composition of

the dominant phospholipids between Meager larvae

(Argyrosomus regius) and its live feed, rotifers respectively.

Another example from the research topic is the ongoing

research in effects of novel enrichment protocols for rotifers.

Safiin et al. showed promising results when incorporating palm

oil into enrichment diets of rotifers that were fed to L. calcarifer

larvae. Furthermore, Fu et al. also investigated the effects of

different commercially available enrichment products on rotifers

to reveal how the enrichment impact survival, growth, fatty acid

composition and jaw deformities of Golden Pompano larvae

(Trachinotus ovatus).

The harvest of brine shrimp Artemia dormant cysts or

biomass was first commercialized in San Francisco Bay,

California and the Great Salt Lake, Utah, USA during 1950s

for the aquarium market, and further exploited for the increased

demands from the marine larviculture industries in 1970s

(Lavens and Sorgeloos, 2000). Until now, Artemia cyst

production relies mainly on natural resources, thus new

harvest sites (e.g., southern Siberia and central Asia) have been

investigated and established for cyst production industry in the

recent decades (Litvinenko et al., 2015; Le et al., 2019; Camara,

2020; Pan et al.). Another manner of brine shrimp cyst

production is the cultivation in inland saltworks or hypersaline

ponds (e.g., China, Kenya and Vietnam), which facilitates a

better biological and environmental controls to achieve

sustainable cyst production (Baert et al., 1997; Van Stappen

et al., 2020). Owning the significant role of Artemia in the

industry, two UN-recognized Artemia Reference Centres has

been established at Ghent University, Belgium and Tianjin

University of Science and Technology, China, where scientists

are working on the pioneer aspects of genomic sequencing,

genetic and microbial regulations, nutrition and exploitation of

new cyst resources (Sorgeloos, 1980; FAO, 2017; Sorgeloos and

Roubach, 2021; Duan et al., 2022). Based on the great scientific

contributions, the supply chain of Artemia cysts and their

relevant products are successfully marketed by several
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companies, such as INVE Aquaculture Co. in Belgium and

Ocean Star International Co. in the USA. Research in Artemia

is still very relevant when used as starter diets for fish larvae of

some species. In this research topic, Planas et al. and Planas

et al.) studies different breeder and pre-breeding diets, with

Artemia, and their effect on new-born seahorses.

Copepods are natural food items for marine organisms, and

are either harvested from field or intentionally cultivated for

marine larviculture (Støttrup, 2000; Drillet et al., 2011; Hansen,

2017). The capacity of PUFA bioconversion or accumulation in

copepod determines their nutritional benefit for larval feeding

(Nielsen et al., 2019). Research protocols addressing nutritional

manipulations of copepods are issued in this research topic

(Camus et al.; Dayras et al.; Matsui et al.; Wang et al.). Focuses

on other cultivation parameters are also included in the research

topic, such as salinity, temperature, and photoperiod (Choi et al.;

Wang et al.; Yoshino et al.). On the other hand, the risk of

epibionts on copepods in the indoor intensive culture system

was reported by Pan et. al. This study revealed a significant

decline of egg production in diatom-infested Acartia tonsa,

suggesting the prevention of epibiosis should be carried out in

copepod cultures.

The intensive mono-species production of copepods is still

in its’ pre-industrial stage, but the commercial production is

estimated economically feasible (Abate et al., 2015; Abate et al.,

2016). Some temperate species, in particular the calanoid Acartia

tonsa (strain DFH.AT1) has been intensively studied for

aquaculture purposes (Støttrup et al., 1986; Drillet et al., 2006;

Jepsen et al., 2007; Hagemann et al., 2016; Pan et al., 2020). Its

capacity to easily produce resting eggs that can be stored at low

temperature encouraged the R&D projects (e.g., IMPAQ in

Denmark, COPREST and STARTRENS in Norway) and the

industrialisation initiatives. Since few years, the C-FEED

company based in Norway, produces resting eggs of A. tonsa

that are easily shipped for larviculture. On the other hand, many

local suppliers in Asia that provide live copepods (e.g.,

Apocyclops royi and Pseudodiaptomus annandalei) cultivated

in outdoor ponds for commercial fish hatcheries (Su et al.,

1997; Blanda et al., 2015; Grønning et al., 2019). The optimal

mass culture protocols of the listed copepod species have been

long developed and reviewed in several projects and publications

(Drillet et al., 2011; Rasdi and Qin, 2016; Hansen, 2022).

Although these millimetre-sized copepod species (adult size at

around 1-2 mm) are commercially used, the research and

development of novel and micrometre-sized copepod species

(adult size < 800 mm) are needed. Based on the articles collected

in our research topic, there are trends in that the search for the

desirable copepod candidates are micrometre-sized calanoid

(Camus et al.; Choi et al.; Yoshino et al.; Wang et al.) and

cyclopoid copepods (Dayras et al.). These successful

accomplishments, coupled with the previous contributions

from Australia, Hawaii and South Korea (McKinnon et al.,

2003; Kline and Laidley, 2015; Lee and Choi, 2016), have
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implicated the potential breakthrough of using micrometre-

sized copepods e.g. Bestiolina sp., Parvocalanus sp., and

Paracyclopina sp. as first feeding diets for the emerging marine

aquaculture fish species with particularly tiny mouth gapes.
4 Enrichment techniques in
rotifer and Artemia for marine
fish larviculture

One of the focuses addressed in this research topic is

nutritional enrichment protocols for fish larval feeding (Fu

et al.; Matsui et al.; Planas et al.; Planas et al.; Safiin et al.; Vo

et al.). This is especially relevant for live feed organisms with

poor capacity in bioconversion and accumulation of nutrients

e.g., Artemia and rotifers. High availability and easy

maintenance make these animals commercial live feeds, even

though none of them appear naturally in the marine food web.

As unnatural food items, Artemia and rotifer are often poor in

essential fatty acids. Fortunately, these organisms demonstrate

non-selective feeding behaviour which makes them excellent

vectors of nutritious elements for farmed larvae (Léger et al.,

1987; Fernández-Reiriz et al., 1993; Ghaderpour and Estevez). In

this research topic, processing of alternative ingredients and

enrichment protocols are reported for the larval feeding of many

emerging fish species, such as Asian Seabass (L. calcarifer),

Atlantic cod (Gadus morhua), Golden Pompano (T. ovatus),

Long-snouted seahorse (H. guttulatus), Slender seahorse

(Hippocampus reidi), Meager (A. regius), and Red Sea Bream

(Pagrus major) (Fu et al.; Matsui et al.; Planas et al.; Planas et al.;

Safiin et al.; Vo et al.). The choice of live feeds, enrichment

products and protocols differ among these studies, and the

suitability of various designs are highly correlated to the

nutritional requirement of the farmed species. Another

research focus is to replace fish oil in the enrichment emulsion

for sustainability and cost-down management. Indeed, the

alternative ingredients (e.g., palm oil) could reduce over-

reliance in fish oil and open a new avenue in regional-specific

industry of live feed enrichment products (Safiin et al.).
5 Perspectivation

Industrial production for micrometre-sized copepod is

particularly worth to be invested for the supplement or

replacement of the rotifer and the price-increasing Artemia.

Selective breeding on preferable aquaculture traits (e.g., high

productivity, nutritional value) could further improve the

economic feasibility of the available live feed strains (Souissi et al.,

2016; Pan et al., 2017). Genomic or genetic studies of live feed
Frontiers in Marine Science 04
organisms should be addressed to clarify the effects of culture

managements on their physiology (e.g., nutrient synthesis, stress

tolerance) (Nielsen et al., 2019; Lee et al., 2022). The production of

other live feed candidates, such as the recent successful larviculture

project of ballan wrasse (Labrus bergylta) using cryo-preserved

barnacle nauplii called “CryoPlankton” from Planktonic Co.,

Norway (Malzahn et al., 2022), and gelatinous zooplankton (e.g.,

flame jellyfishRhopilema esculentum for feeding larval silver pomfret

Pampus argenteus and larvacean for eel larvae) should be developed

to support the successful larvicultureof emerging aquaculture species

(MochiokaIwamizu, 1996; Liu et al., 2015). Overall, the optimization

of live feed production, conservation for shipment (e.g.,

cryopreservation or artificially-induced resting stages) and the

improvement of enrichment techniques are still hot topics.

Commercialization of the relevant research contributions are

encouraged to be accomplished under collaborations between

academia and industry (Hansen et al., 2017). Another important

step is continuous meetings between academia and industry at

international levels in relevant forums e.g., LARVI-conference and

the European Aquaculture Society to further support the

development of the marine aquaculture (Hansen andMøller, 2021).
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