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Significant wave height
prediction based on deep
learning in the South China Sea

Peng Hao, Shuang Li* and Yu Gao

Institute of Physical Oceanography and Remote Sensing, Ocean College, Zhejiang University,
Zhoushan, China
Significant wave height (SWH) prediction can effectively improve the safety of

marine activities and reduce the occurrence of maritime accidents, which is of

great significance to national security and the development of the marine

economy. In this study, we comprehensively analyzed the SWH prediction

performance of the recurrent neural network (RNN), long short-term memory

network (LSTM), and gated recurrent unit network (GRU) by considering

different input lengths, prediction lengths, and model complexity. The

experimental results show that (1) the input length impacts the prediction

results of SWH, but it does not mean that the longer the input length, the better

the prediction performance. When the input length is 24h, the prediction

performance of RNN, LSTM, and GRU models is better. (2) The prediction

length influences the SWH prediction results. As the prediction length

increases, the prediction performance gradually decreases. Among them,

RNN is not suitable for 48h long-term SWH prediction. (3) The more layers

of the model, the better the SWH prediction performance is not necessarily.

When the number of layers is set to 3 or 4, the model’s prediction performance

is better.
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1 Introduction

Wave disaster is the most common marine disaster in the world, and the possible

disasters mainly include the following: (1) Billow can cause ships at sea to capsize, destroy

offshore platforms, and bring great disasters to marine transportation and construction,

fishing, and marine military activities. (2) Billow can destroy coastal embankments,

seawalls, docks, marine aquaculture facilities, and other marine structures. (3) Billow

sometimes carries a large amount of sediment into the harbor and waterway, causing

disasters such as silt up. In recent years, due to abnormal climate change, sea wave

disasters have occurred frequently in coastal cities in the South China Sea, seriously

threatening the safety of life and property of people in coastal cities. Therefore, accurate
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SWH prediction can effectively improve the safety of marine

activities and reduce the occurrence of marine accidents, which

is of great significance to the development of national security

and the marine economy (Wang and Oey, 2008; Young and

Ribal, 2019; Fan et al., 2020; Gao et al., 2021b; Li et al., 2021).

Because of the importance of accurately predicting SWH,

researchers have conducted extensive research on SWH

prediction methods. Traditional methods mainly include

statistical methods and numerical simulation methods and

have been widely used in global sea state prediction (Group,

1988; Vanem, 2016; Kazeminezhad and Siadatmousavi, 2017;

Umesh and Swain, 2018; Liang et al., 2019; Liu et al., 2019; Swain

et al., 2019; Emmanouil et al., 2020; Gao et al., 2020; Li et al.,

2020; Gao et al., 2021a). Both statistical methods and numerical

simulation methods attempt to predict SWH through

approximate mathematical relational models. Due to the

strong nonlinearity of ocean waves’ physical processes and

mechanisms, especially in extreme cases (such as typhoons),

this method may largely fail to achieve SWH prediction. In

addition, such methods usually require high-performance

equipment for real-time computing, which is computationally

expensive (Huang and Dong, 2021; Zhou et al., 2021).

With the development of artificial intelligence, machine

learning methods such as Artificial Neural Networks, Random

Forests, and Support Vector Machine are gradually applied to

SWH prediction work (Peres et al., 2015; Deshmukh et al., 2016;

Gopinath and Dwarakish, 2016; Berbić et al., 2017; Gao et al.,

2018; Callens et al., 2020). Compared with traditional methods,

this kind of method has the advantages of generality and fast

calculation speed. However, it also has its own shortcomings.

The machine learning method is only suitable for short-term

prediction under good sea conditions, and the prediction under

extreme conditions is not ideal. Furthermore, as the size of the

input data increases, the model cannot extract enough features,

and the accuracy of machine learning methods in predicting

SWH may drop sharply (Ni and Ma, 2020).

Deep learning is a new research direction in the field of

machine learning. Compared with machine learning methods,

deep learning methods extract feature information by training

deep neural networks, which have stronger feature expression

capabilities and can achieve end-to-end training. It is worth

mentioning that the emergence of recurrent neural networks has

greatly improved the ability to solve time series prediction

problems (Zaremba et al., 2014). In addition, there are two

variant structures of RNN, one is LSTM (Yu et al., 2019)and the

other is GRU (Dey and Salem, 2017). It is precisely because of

the powerful ability of the recurrent neural network in solving

time series problems that recurrent neural network has received

extensive attention from researchers in predicting SWH

(Sadeghifar et al., 2017; Fan et al., 2020; Chen and Huang,

2021; Jörges et al., 2021; Miky et al., 2021; Zhang et al., 2021;

Bethel et al., 2022).
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However, when using recurrent neural networks for SWH

prediction, there is still a major research challenge: how to better

build a model to capture the dynamic dependencies between

variables, especially in extreme environments. Specifically, SWH

prediction models are often a mixture of short-term and long-

term dependencies. A successful SWH prediction model should

capture these two dependencies to make accurate predictions.

Long-term dependence considers the difference between

different seasons, and short-term dependence considers the

fluctuation of wave height caused by wind direction and short-

term wind direction changes. How to design the model structure,

different layer settings, model update rules, learning rate, input

length, and output length settings, etc., the results may be quite

different. Understanding the effect of different recurrent neural

network parameter settings on the SWH prediction ability is

crucial to accurately predict the SWH ability.

This paper explores the effect of different parameter settings

on the performance of RNN, LSTM, and GRU models for

predicting SWH. Based on the wind speed and SWH data of

the three stations, by setting different input lengths, prediction

lengths, and network layers, we comprehensively measure the

ability of different methods and parameters to predict SWH at

different stations. The experimental results show that: (1) It is

not that the longer the input length, the better the prediction

effect. As the input length increases, the SWH prediction

performance of the model gradually decreases. (2) As the

prediction time increases, the SWH prediction performance of

the model gradually decreases. (3) The blind increase of the

number of layers will not only not improve the SWH prediction

performance of the model, but will have the opposite effect.

The rest of the paper is organized as follows. In section 2, we

describe the research area, research data, research method, etc.

In section 3, we present the experimental results and make a

detailed discussion. Finally, in section 4, we summarize our

findings and provide an outlook for future work.
2 Materials and methods

In this section, we first introduce the data sources and

research area; then introduce three recurrent neural network

methods; and finally describe the experimental environment,

experimental procedures, and metrics in detail.
2.1 Materials

ERA5 is the fifth generation ECMWF reanalysis for the

global climate and weather for the past 4 to 7 decades. It

combines model data with observations from across the world

into a globally complete and consistent dataset using the laws

of physics.
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As shown in Figure 1, we select three stations S1 (19.75°N,

114.75°E), S2 (14.75°N, 110.75°E), S3 (11.75°N, 113.75°E) to

analyze the ability of the model to predict SWH. This area is

affected by monsoons all year round and is one of the main areas

of global typhoon activity. The temporal resolution is hours, the

horizontal resolution of wind speed is 0.25°×0.25°, and the

horizontal resolution of SWH is 0.5°×0.5°. More information

can be found on the website: https://cds.climate.copernicusc.eu/.

2.2 Description of significant wave
height prediction

For the SWH prediction of a certain station, it is essentially a

time series prediction problem that takes past time series data as

input and a certain amount of future time series data as output.

From the perspective of a time dimension, the observations

at time length t form a tensor sequence X1, X2,…, Xt. Therefore,

the SWH prediction problem can be defined as a tensor sequence

of J time lengths in the past, to predict the tensor sequence of the

next K time lengths:

X̂ t+1,…, X̂ t+K = a rg  max
Xt+1,…,Xt+K

  p(Xt+1,…,Xt+K jXt−J+1,…,Xt) (1)

In this study, we used the u10, v10, and SWH information of

the three stations S1, S2, and S3 from 2018 to 2021 to predict

SWH. Among them, we use the data from 2018-2020 as the

training set and the data from 2021 as the validation set. To

ensure the relative independence of training and validation data

sets, the validation data is excluded from model training.

2.3 Methods

2.3.1 Recurrent neural network
RNN is a type of neural network for processing time series

data. Figure 2 shows the RNN network structure. Compared with
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the traditional neural network whose inputs are independent of

each other and cannot model sequence data with contextual

relationships, RNN can retain the state of the previous input

data. When the neuron calculates the current output, the previous

neuron state is used as joint inputs are computed together. In this

way, it has a great advantage in processing time series data.

The information state transfer formula of the unit at time t in

RNN is as follows,

ht = tanh (Uxt +Wht−1 + bh) (2)

ot = Vht + bo (3)

Where U is the weight matrix from the input layer to the

hidden layer, ht is the state, ot is the output, bh and bo are the bias,

W is the weight matrix from the state to the hidden layer, and V is

the weight matrix from the hidden layer to the output layer. It can

be seen from Figure 2 that theW, U, and V corresponding to each

time node are unchanged. By this method, parameter sharing is

achieved, and the number of parameters is greatly reduced.
2.3.2 Long short-term memory
LSTM is a special kind of RNN. As shown in Figure 3, LSTM

uses two gates to control the content of the cell state c: one is the

forget gate, which determines how much the unit state ct-1 from

the previous moment is retained to the current moment ct; the

other is the input gate, which determines how much of the input

xt of the network at the current moment is saved in the unit state

ct. The LSTM uses an output gate to control how much of the

unit state ct is input to the current output value ht of the LSTM.

The information state transfer formula of the unit at time t in

LSTM is as follows,
FIGURE 1

Location distribution of stations S1, S2, and S3, the green curve represents the path of Typhoon Rai.
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ft = s (Wf ht−1, xt½ � + bf ) (4)

it = s(Wi ht−1, xt½ � + bi) (5)

zt = tanh (Wz ht−1, xt½ � + bz) (6)

ct = ft · ct−1 + it · zt (7)

ot = s (Wo ht−1, xt½ � + bo) (8)

ht = ot · tanh (ct) (9)

where ft represents the processing formula of the forget gate,

it represents the processing formula of the input gate, zt is the

unit state candidate vector at the current time, ot represents the
Frontiers in Marine Science 04
processing formula of the output gate, W represents the given

weight matrix, s represents the sigmoid function, and ·

represents the element-wise product.
2.3.3 Gate recurrent unit
GRU is a variant of LSTM. GRU further simplifies the LSTM

network, using only two gated structures, an update gate, and a

reset gate, to update and transfer information. The update gate is

responsible for controlling the influence of the state information of

the previous moment on the state of the current moment. The

larger the value of the update gate, themore the state information of

the previous moment is brought in, and the reset gate is responsible

for controlling the degree of ignoring the status information of the

previous moment. The smaller the value of the reset gate, the more

is ignored. Its unit structure is shown in Figure 4.
FIGURE 3

LSTM module architecture.
FIGURE 2

RNN module architecture.
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The information state transfer formula of the unit at time t in

GRU is as follows,

zt = s (Wz ht−1, xt½ � + bz) (10)

rt = s (Wr ht−1, xt½ � + br) (11)

~ht = tanh (W~h rt · ht−1, xt½ � + b~h) (12)

ht = (1 − zt) · ht−1 + zt · ~ht (13)

where zt is the processing formula of the update gate, rt is the

processing formula of the reset gate, ~ht is the unit state candidate

vector at the current time, ht is the output value, W represents

the given weight matrix, s represents the sigmoid function, and ·

represents the element-wise product.
2.4 Experimental design

2.4.1 Experimental environment
All models are trained using the Adam optimizer (Kingma

and Ba, 2014) with a starting learning rate of 0.001. The training

process is stopped after 30 epochs. All experiments are

implemented in Pytorch (Paszke et al., 2019) and conducted

on NVIDIA 3070 GPU. Other detailed parameter information in

the experiment is listed in Table 1.

2.4.2 Experimental procedures
In this study, all methods can achieve end-to-end training,

and the entire calculation process does not require manual
Frontiers in Marine Science 05
processing but is completely handed over to the deep learning

model, from learning the input data feature to obtaining the

result. The advantage of end-to-end training is that it reduces the

complexity of computational processing. The overall flow of

the experimental design is shown in Figure 5.

The detailed steps of the SWH prediction experiment are

as follows.
(1) Data preprocessing, using the MinmaxScaler function of

the sklearn library to normalize the input data.

(2) Divide the data, using the data from 2018-2020 as the

training set and the data in 2021 as the validation set.

(3) Set a fixed random seed to ensure that each experiment

can be reproduced.

(4) Model training, using the Mean Square Error (MSE) loss

function and the Adam optimization function to

iteratively train the model, and automatically save the

optimal weight by recording the loss function value.

During the training process, the learning rate is

dynamically adjusted every 10 epochs to prevent the

model from not converging.

(5) Visualization, visualize the experimental results and

intuitively compare the SWH prediction ability of

different methods.
2.4.3 Metrics
We use the following three measures to assess the model’s

performance: Root Mean Square Error (RMSE), Mean Absolute

Error (MAE), and Coefficient of Determination (R2). The

following are the calculation algorithms for the above-
FIGURE 4

GRU module architecture.
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mentioned three metrics,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ŷ i − yi)

2

s
(14)

MAE =
1
no

n

i=1
ŷ i − yij j (15)

R2 = 1 −o
n
i=1(ŷ i − yi)

2

on
i=1(yi − �y)2

(16)

where n is the total number of test samples, yi, ŷ i and �y are the

true value, the predicted value, and the arithmetic mean of yi,

respectively. Note that the lower the RMSE andMAE values, the

better the consistency between the measurement and the

prediction, but the higher the R2 value, the more accurate

the prediction.
Frontiers in Marine Science 06
3 Results

3.1 Effect of input length on SWH
prediction performance

To verify the influence of the input length on the SWH

prediction results, when the initial learning rate is 0.001, the

number of hidden layers is 3, the hidden size is 128, and the

prediction length is 24h, the input lengths are set to 24h, 168h,

360h, 720h, discuss the effect of input length on SWH prediction

performance. The influence of input length on the prediction of

SWH is shown in Table 2, in which the bold font is the optimal

result of this group of experiments.

It can be seen from the experimental results that it is not

that the longer the input length, the better the prediction

effect. As the input length increases, the model’s SWH

prediction performance tends to be poor. Although using

the RNN model to predict SWH at S1, the best result is

obtained when the input length is 168h, but from the overall

trend, the SWH prediction effect still shows a downward

trend. At S1, the prediction effect of RNN is the best, and

the prediction effect of GRU is slightly better than that of

LSTM. The possible reason is that the SWH of the S1 is lower

throughout the year, and the complex model has the opposite

effect. At S2 and S3, the GRU model had the best SWH

prediction effect, and the values of RMSE and MAE were

slightly higher than those at S1. The possible reason was that

S1 and S2 had higher annual SWH and greater fluctuations.

Overall, considering the SWH prediction performance of

different models at S1, S2, and S3, when the input length is

24h, GRU predicts SWH the best, which also benefits from the

unique design of the GRU model.
3.2 Effect of prediction length on SWH
prediction performance

To verify the influence of prediction length on SWH

prediction results, according to the analysis of experimental

results in Section 3.1, the initial learning rate was set as 0.001,

the number of hidden layers as 3, the hidden size as 128, the input

length as 24h, and the output length as 1h, 6h, 12h, 24h, and 48h,

respectively, to discuss the influence of output length on SWH

prediction performance. The influence of prediction length on the

prediction of SWH is shown in Table 3, in which the bold font is

the optimal result of this group of experiments.

It can be seen from the results that with the increase in the

prediction length, the prediction effect gradually decreases. In S1,

S2, and S3, the prediction results of the RNN method in 1h are all

the best, the possible reason is that the RNN model is relatively

simple and the prediction length is short. However, the prediction

results at 48h show that the SWH prediction effect of the RNN

model is poor and may not be used for long-term SWH
TABLE 1 Parameters setting.

Parameter Setting

Input length 24/168/360/720

Output length 1/6/12/24/48

Layers 1/2/3/4/5

Hidden size 128

Stride 1

Batch size 64
FIGURE 5

Experimental flow chart.
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prediction. As the prediction length increases, the advantages of

the unique design of the LSTM and GRUmodels emerge. Overall,

the SWH prediction performance of the GRU model is slightly

better than that of the LSTM model. The RNN model has certain

advantages in short-term SWH prediction, but as the prediction

length gradually increases to 24h later, it loses its effect.
3.3 Effect of hidden layers on SWH
prediction performance

To verify the influence of the hidden layers on the SWH

prediction results, when the initial learning rate is 0.001, the

hidden size is 128, the input length is 24h, and the prediction

length is 24h, discuss the effect of layers on SWH prediction

performance. The influence of hidden layers on the prediction of
Frontiers in Marine Science 07
SWH is shown in Table 4, in which the bold font is the optimal

result of this group of experiments.

It can be seen from the results that it is not that the more

layers of the model, the better the prediction performance. In S1,

RNN and LSTM have the best SWH prediction performance

when the number of layers is set to 2, but GRU can also achieve

the same prediction performance when the number of layers is set

to 4. In S2, RNN and LSTM have the best SWH prediction

performance when the number of layers is set to 4, and the SWH

prediction performance of RNN is slightly better than that of

LSTM; GRU can achieve the best SWH performance when the

number of layers is set to 3 and is better than RNN, LSTM. In S3,

the prediction effect of GRU is the best when the number of layers

is set to 3. To sum up, when building a model to predict SWH, it is

necessary to set a reasonable number of layers, to achieve the goal

of low calculation amount and good prediction effect.
TABLE 3 The prediction result of significant wave height.

Output Length
RNN LSTM GRU

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

S1

1h
6h
12h
24h
48h

0.007
0.041
0.084
0.116
0.163

0.004
0.030
0.064
0.084
0.123

0.999
0.971
0.884
0.779
0.566

0.009
0.043
0.076
0.118
0.164

0.006
0.032
0.054
0.085
0.124

0.998
0.968
0.906
0.771
0.560

0.008
0.040
0.074
0.116
0.163

0.005
0.029
0.053
0.084
0.123

0.998
0.972
0.910
0.778
0.567

S2

1h
6h
12h
24h
48h

0.025
0.162
0.252
0.428
0.942

0.017
0.112
0.170
0.295
0.810

0.999
0.969
0.926
0.790
0.003

0.041
0.153
0.263
0.431
0.659

0.028
0.103
0.175
0.295
0.479

0.997
0.972
0.919
0.787
0.512

0.032
0.142
0.255
0.422
0.654

0.020
0.095
0.172
0.293
0.481

0.998
0.976
0.924
0.796
0.519

S3

1h
6h
12h
24h
48h

0.021
0.186
0.272
0.436
0.870

0.014
0.155
0.214
0.297
0.747

0.999
0.960
0.916
0.788
0.176

0.037
0.135
0.250
0.423
0.669

0.025
0.095
0.175
0.289
0.470

0.998
0.979
0.929
0.800
0.513

0.032
0.131
0.237
0.420
0.659

0.022
0.093
0.166
0.289
0.466

0.998
0.980
0.936
0.803
0.526
fro
Bold: Black font is the optimal result.
TABLE 2 The prediction result of significant wave height.

Input Length
RNN LSTM GRU

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

S1

24h
168h
360h
720h

0.116
0.113
0.118
0.125

0.084
0.083
0.085
0.095

0.779
0.786
0.763
0.731

0.118
0.119
0.118
0.122

0.085
0.087
0.087
0.092

0.771
0.765
0.762
0.743

0.116
0.118
0.119
0.126

0.084
0.087
0.089
0.095

0.778
0.766
0.758
0.728

S2

24h
168h
360h
720h

0.428
0.887
0.472
0.515

0.295
0.773
0.345
0.375

0.790
0.044
0.721
0.668

0.431
0.447
0.469
0.499

0.295
0.311
0.331
0.362

0.787
0.757
0.725
0.686

0.422
0.449
0.484
0.530

0.293
0.316
0.345
0.389

0.796
0.754
0.707
0.646

S3

24h
168h
360h
720h

0.436
0.591
0.489
0.589

0.297
0.459
0.353
0.469

0.788
0.589
0.714
0.582

0.423
0.458
0.482
0.515

0.289
0.312
0.331
0.365

0.800
0.753
0.722
0.680

0.420
0.458
0.496
0.544

0.289
0.315
0.348
0.395

0.803
0.752
0.705
0.644
Bold: Black font is the optimal result.
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3.4 Experiments on typhoon cases to
test the performance of SWH prediction

Typhoon Rai (No. 2122) formed on December 13, 2021, in

the low latitudes of the Northwest Pacific Ocean. It developed

slowly at the beginning, and then experienced rapid

intensification twice in the coastal waters east of the

Philippines and after crossing the Philippines and entering the

South China Sea, reaching the level of a super typhoon identified

by the Central Meteorological Observatory. On December 21, it

gradually weakened and dissipated. Typhoon “Rai” became the

strongest super typhoon affecting the South China Sea since

meteorological records began.

To better study the prediction ability of SWH under extreme

environments, we selected the period from December 1, 2021, to

December 31, 2021, at S1, S2, and S3 for the experiment. When the

initial learning rate is 0.001, the hidden size is 128, the number of

layers is 3, the input length is 24h, and the prediction length is 1h,

6h, 12h, and 24h respectively, we comprehensively analyze the

advantages and disadvantages of SWH prediction by different

methods in the extreme environment by analyzing the prediction

and real comparison curve and the error value curve.

It can be seen from Figure 6 that the three methods of RNN,

LSTM, and GRU all showed better prediction performance in

the 1h short-term SWH prediction. Specifically, at the peak of

SWH, the RNN method can fit well, while LSTM and GRU will

predict too high or too low. In this respect, the SWH prediction
Frontiers in Marine Science 08
effect of RNN is slightly better than that of LSTM and GRU. As

the prediction time increases, the prediction performance of the

three methods starts to decrease. It can be seen from Figure 7

that during the 6h SWH prediction process, in S1, the prediction

of LSTM at the peak is greater than the actual value. In S2, a

similar situation also occurs, but this situation does not exist in

S3. The possible reason is data features that lack similar variation

features in the training set. As can be seen from Figure 8, in the

12h SWH prediction, LSTM still has the situation mentioned

above. We have reason to think that this is caused by the lack of

data with similar changing characteristics in the training set.

With the further increase of the forecast time, it can be seen from

Figure 9 that the SWH prediction results of the three methods

are compared with the true value, and the 24h prediction results

have an obvious trend of lagging, and there will be a certain

prediction error at the peak. However, the overall trend is still

roughly the same, indicating that RNN, LSTM, and GRU still

have certain reference values for the prediction of long-term

SWH in extreme environments.
4 Conclusions

Predicting SWH is conducive to understanding the sea wave

conditions in advance, effectively improving the safety of marine

activities, and reducing the occurrence of marine accidents,

which is of great significance to the development of national
TABLE 4 The prediction result of significant wave height.

Layers
RNN LSTM GRU

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

S1

1
2
3
4
5
6

0.117
0.116
0.116
0.116
0.116
0.116

0.085
0.084
0.084
0.084
0.084
0.085

0.776
0.779
0.779
0.779
0.779
0.779

0.119
0.118
0.118
0.119
0.132
0.141

0.086
0.085
0.085
0.085
0.096
0.103

0.769
0.772
0.771
0.770
0.716
0.677

0.118
0.117
0.116
0.116
0.116
0.117

0.085
0.084
0.084
0.084
0.084
0.084

0.773
0.777
0.778
0.779
0.779
0.777

S2

1
2
3
4
5
6

0.441
0.429
0.428
0.427
0.616
0.792

0.306
0.295
0.295
0.292
0.518
0.638

0.777
0.790
0.790
0.791
0.567
0.283

0.437
0.431
0.431
0.431
0.937
0.937

0.304
0.298
0.295
0.293
0.737
0.736

0.781
0.787
0.787
0.787
-0.001
-0.001

0.435
0.427
0.422
0.426
0.424
0.429

0.302
0.295
0.293
0.295
0.294
0.298

0.783
0.792
0.796
0.792
0.794
0.789

S3

1
2
3
4
5
6

0.447
0.487
0.436
0.421
0.427
0.584

0.308
0.379
0.297
0.288
0.291
0.434

0.777
0.736
0.788
0.802
0.797
0.620

0.442
0.430
0.423
0.431
0.943
0.932

0.305
0.295
0.289
0.291
0.739
0.734

0.782
0.793
0.800
0.793
0.010
0.032

0.439
0.423
0.420
0.421
0.422
0.421

0.302
0.291
0.289
0.288
0.289
0.290

0.785
0.800
0.803
0.802
0.801
0.802
fro
Bold: Black font is the optimal result.
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FIGURE 7

6h SWH prediction performance of RNN, LSTM, and GRU at S1, S2, and S3. (A) The 6h SWH prediction performance of RNN, LSTM, and GRU at the S1
station. (B) The 6h SWH prediction performance of RNN, LSTM, and GRU at the S2 station. (C) The 6h SWH prediction performance of RNN, LSTM, and
GRU at the S3 station.
A

B

C

FIGURE 6

1h SWH prediction performance of RNN, LSTM, and GRU at S1, S2, and S3. (A) The 1h SWH prediction performance of RNN, LSTM, and GRU at
the S1 station. (B) The 1h SWH prediction performance of RNN, LSTM, and GRU at the S2 station. (C) The 1h SWH prediction performance of
RNN, LSTM, and GRU at the S3 station.
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FIGURE 8

12h SWH prediction performance of RNN, LSTM, and GRU at S1, S2, and S3. (A) The 12h SWH prediction performance of RNN, LSTM, and GRU
at the S1 station. (B) The 12h SWH prediction performance of RNN, LSTM, and GRU at the S2 station. (C) The 12h SWH prediction performance
of RNN, LSTM, and GRU at the S3 station.
A

B

C

FIGURE 9

24h SWH prediction performance of RNN, LSTM, and GRU at S1, S2, and S3. (A) The 24h SWH prediction performance of RNN, LSTM, and GRU
at the S1 station. (B) The 24h SWH prediction performance of RNN, LSTM, and GRU at the S2 station. (C) The 24h SWH prediction performance
of RNN, LSTM, and GRU at the S3 station.
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security and the marine economy. This paper comprehensively

analyzes and discusses the SWH prediction performance of

RNN, LSTM, and GRU. The main findings of this paper are

as follows:
Fron
(1) The input length has an influence on the prediction

results, but it does not mean that the longer the input

length, the better the prediction performance. As the

input length increases, the SWH prediction performance

of the model tends to decrease.

(2) The prediction length has an influence on the prediction

results. As the prediction length increases, the prediction

performance gradually decreases. But in the 48h SWH

prediction, the prediction performance of RNN is the

worst, which is not suitable for long-term SWH

prediction.

(3) The more layers of the model, the better the SWH

prediction performance is not necessarily. When

establishing an SWH prediction model, it is necessary to

set the number of layers reasonably to achieve the purpose

of less calculation and better prediction performance.
Deep learning methods have achieved good results in

predicting SWH experiments. But there are also certain

defects: (1) It is like a “black box”. The inference mechanism

between input and output is unclear. (2) These methods focus on

time series research the response to spatial changes is not

obvious. In future work, we will focus on the interpretability

of the model and generalize the research scope from a single

point to a region.
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