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Synergistic multi-altimeter
for estimating water level
in the coastal zone of Beibu
Gulf using SEL, ALES + and
BFAST algorithms

Jiaoling Qin1,2, Sunzhe Li1,2, Hang Yao1,2, Bolin Fu1,2*,
Hongchang He1,2, Feng Wang1, Lilong Liu1*, Donglin Fan1,2,
Xu He1,2 and Yuyang Li1,2

1College of Geomatics and Geoinformation, Guilin University of Technology, Guilin, China,
2University Key Laboratory of Ecological Spatiotemporal Big Data Perception, Guilin, China
Accurately monitoring and predicting the large-scale dynamic changes of

water levels in coastal zones is essential for its protection, restoration and

sustainable development. However, there has been a challenge for achieving

this goal using a single radar altimeter and retracking technique due to the

diversity and complexity of coastal waveforms. To solve this issue, we proposed

an approach of estimating water level of the coastal zone in Beibu Gulf, China,

by combination of waveform classifications and multiple sub-waveform

retrackers. This paper stacked Random Forest (RF), XGBoost and CatBoost

algorithms for building an ensemble learning (SEL) model to classify coastal

waveforms, and further evaluated the performance of three retracking

strategies in refining waveforms using Cryosat-2, SARAL, Sentinel-3

altimeters. We compared the estimation accuracy of the coastal water levels

between the single altimeter and synergistic multi-altimeter, and combined

Breaks for Additive Season and Trend (BFAST), Mann-Kendall mutation test (MK)

with Long Short-TermMemory (LSTM) algorithms to track the historical change

process of coastal water levels, and predict its future development trend. This

paper found that: (1) The SEL algorithm achieved high-precision classification

of different coastal waveforms with an average accuracy of 0.959, which

outperformed three single machine learning algorithms. (2) Combination of

Threshold Retracker and ALES+ Retracker (TR_ALES+) achieved the better

retracking quality with an improvement of correlation coefficient (R,

0.089~0.475) and root mean square error (RMSE, 0.008∼ 0.029 m) when

comparing to the Threshold Retracker & Primary Peak COG Retracker and

Threshold Retracker & Primary Peak Threshold Retracker. (3) The coastal water

levels of Cryosat-2, SARAL, Sentinel-3 and multi-altimeter were in good

agreement (R>0.66, RMSE<0.135m) with Copernicus Climate Change Service

(C3S) water level. (4) The coastal water levels of the Beibu Gulf displayed a

slowly rising trend from 2011 to 2021 with an average annual growth rate of
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2022.1113387/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1113387/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1113387/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1113387/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1113387/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.1113387&domain=pdf&date_stamp=2023-01-10
mailto:fubolin@glut.edu.cn
mailto:lllong99@glut.edu.cn
https://doi.org/10.3389/fmars.2022.1113387
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.1113387
https://www.frontiersin.org/journals/marine-science


Qin et al. 10.3389/fmars.2022.1113387

Frontiers in Marine Science
8mm/a, its lowest water level focused on May-August, the peak of water level

was in October-November, and the average annual growth rate of water level

from 2022-2031 was about 0.6mm/a. These results can provide guidance for

scientific monitoring and sustainable management of coastal zones.
KEYWORDS

coastal zone, multi-altimeter, ensemble learning, ALES+ retracker, BFAST and LSTM,
water level change monitoring
1 Introduction

The coastal zones are of enormous economic and social

value, where about 40% of the population in the world lives,

providing about $1.5 trillion in economic value to mankind from

the ocean (Vignudelli et al., 2019; Melet et al., 2020). In the

context of climate warming, the global mean sea level is

continuously rising, and the risk of sea level rise in coastal

areas has further increased. Its long-term cumulative effect has

increased the frequency and intensity of storm surges, floods and

saltwater intrusion, posing serious challenges to the survival and

development of human society (Reimann et al., 2018;

Taherkhani et al., 2020). Accurate knowledge of the dynamic

characteristics of coastal water level can better understand and

predict ocean processes, and provide a scientific basis for the

sustainable development of coastal zones.

Tide gauge (TG), GNSS Reflectometry (GNSS-R) and

Satellite Altimetry are the most commonly used methods to

measure sea level. Among them, the TG provides high-accuracy

and long-term sea level data, but data acquisition is difficult and

only available at monitoring points, which is not suitable for

large-scale monitoring of sea level dynamics (Cazenave et al.,

2018). GNSS-R can monitor the dynamics of water level without

direct contact with the ocean, but it has low spatial coverage and

is sometimes affected by high latitudes, extreme weather

conditions and ionospheric effects (Adebisi et al., 2021).

Satellite altimetry has the characteristics of large-scale and

high-accuracy, which can provide continuous water level

monitoring with large-scale and long time series. Since 1992,

traditional low- resolution mode (LRM) altimeters have played a

key role in estimating water level changes, and the precision has

allowed the centimeter level (Poisson et al., 2018; Peng et al.,

2021; Tran et al., 2021). However, traditional LRM altimeters do

not perform well in coastal areas due to the land reflection signal.

Cryosat-2 and Sentinel-3 are the first altimetry missions carrying

radar altimeters using the synthetic aperture radar (SAR) mode,

which uses delayed Doppler technology to significantly improve

the resolution and accuracy of data along the track. Several

studies have shown that SAR altimeters have superior

performance over conventional LRM altimeters in coastal
02
zones (Birgiel et al., 2018; Raynal et al., 2018; Fenoglio et al.,

2021). In addition, the SARAL/AltiKa mission carrying a high-

frequency Ka-band altimeter is also able to observe coastal

processes well due to the improved spatio-temporal resolution

of the Ka-band with frequencies and bandwidths of 35.75 GHz

and 500 MHz, respectively (Palanisamy et al., 2015). However,

the temporal and spatial resolution of water level change

monitoring using a single altimeter is limited, and synergistic

multi-altimeter can achieve higher spatial and temporal

resolution. Prandi et al. (2021) combined Cryosat-2, SARAL

and Sentinel-3 altimeter data to construct an Arctic sea level

anomaly(SLA) dataset, improving the resolution of this class of

products. Sun et al. (2020) used multiple altimeter data to

monitor sea level variability in the China sea and its vicinity.

Therefore, we combined Cryosat-2, SARAL and Sentinel-3

altimeters to increase the spatial and temporal density of

altimetry data, to reach high-precision inversion of water level

in the coastal zone of Beibu Gulf for a long time series.

Except for the altimeter characteristics, accurate

classification and retracking of coastal waveforms are essential

to achieve high accuracy of altimeter observations in coastal

zones. The complex surface types in coastal zones are susceptible

to the influence of land and islands, resulting in complex shapes

of radar echo waveforms. Therefore, accurate classification of

coastal waveforms is the key to obtain reliable water level data. In

recent years, the Support vector machine model (Arabsahebi

et al., 2020), Bayesian model (Zygmuntowska et al., 2013) and K-

nearest neighbor model (Jiang et al., 2019) have been applied to

waveform classification and have achieved better classification

results. However, the single classification method is not stable for

different classification scenarios and different shapes of

waveforms. The Stacking ensemble learning (SEL) algorithm

can integrate the advantages of each base model and weaken the

effects of overfitting, improving the classification accuracy. It has

been confirmed that the SEL algorithm has been successfully

applied to crop classification (Sonobe et al., 2018), multi-type

flooding delineating (Rahman et al., 2021), mangrove species

classification (Fu et al., 2022a), LAI estimation of mangrove

communities (Fu et al., 2022b), and other fields. However, the

application of the SEL algorithm to waveform classification of
frontiersin.org
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altimeters lacks systematic justification. In addition, selecting a

suitable retracker to reprocess different classes of waveforms is

also a crucial step to achieve high-accuracy water level

observation. In recent years, sub-waveform retrackers have

been considered one of the most effective retracker for

waveform retracking in coastal zones. Using a sub-waveform

instead of the full waveform for retracking can discard the

contaminated part to the maximum extent, so that the valid

information of the waveform carried in the sub-waveform can be

used to obtain a more accurate leading edge midpoint.

Currently, multiple sub-waveform retrackers have been

proposed, such as Primary peak empirical retracker (Jain et al.,

2015), MWaAPP retracker (Villadsen et al., 2016), ALES+

retracker (Passaro et al., 2018), and good retracking results

have been achieved. Therefore, a variety of retrackers need to

be combined according to the coastal waveform characteristics

to maximize the retracking quality of the coastal waveforms.

Sea level rise exacerbates the occurrence of flooding, storm

surges and shoreline erosion faced by coastal zones (Arns et al.,

2017; Orejarena-Rondón et al., 2019). To effectively address

these issues, it is critical to clarify the historical and current

processes and trends in sea level change. In recent years, various

change detection algorithms have been developed to analyze and

mine the change characteristics of long time series data. Mann

Kendall mutation test (MK) has been widely used for trend

detection of hydrometeorological time series such as water

quality parameters (Kisi and Ay, 2014), rainfall records

(Güçlü, 2020) and temperature records (Alashan, 2020) due to

its robustness in missing values and nonnormality. However, the

algorithm can only analyze the long-term changes and mutation

process of the time series, and cannot describe their seasonal

variations. The BFAST algorithm can detect long-term trends

and seasonal changes in time series, and can also capture abrupt

changes, which has received a lot of attention from scholars (Xu

et al., 2020; Mendes et al., 2022). However, this algorithm

requires the existence of regular observation frequency of time

series data, and it has not been applied in the detection of sea

level trends. In addition, sea level changes often have both linear

and nonlinear characteristics, making it difficult to monitor the

dynamics of sea levels by a single method (Sun et al., 2020).

Therefore, the comprehensive use of multiple time series

changes detection methods to reveal the accurate change

process of sea level still faces a big challenge. Meanwhile, the

analysis of dynamic changes in sea level should not be limited to

analyze its historical change process, but should further improve

the prediction accuracy of future change trends based on an

accurate assessment of its historical change process. The LSTM

algorithm can accurately capture the change characteristics of

time series using a relatively small dataset and has a strong

temporal prediction capability. It has been well used in traffic

flow prediction (Kang et al., 2017), financial market forecasting

(Bukhari et al., 2020), and precipitation nowcasting (Shi et al.,

2015), but it is less used in sea level trend forecasting. Therefore,
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we attempted to analyze the historical change process of coastal

sea level using MK and BFAST algorithms, and predicted its

future change trend using the LSTM algorithm, to reveal the

dynamic change process of coastal sea level.

This study proposed a new approach for estimating coastal

water levels in Beibu Gulf, China, by combination of stacking

ensemble learning (SEL) and multi-retrackers with the Cryosat-

2, SARAL and Sentinel-3 altimeters. We also attempted to

combinate BFAST, MK with LSTM algorithms to reveal the

dynamic change pattern of coastal water level in Beibu Gulf from

2011-2031. The main contributions of this study were as follows:

(1) We constructed an SEL-based coastal waveform classification

model by stacking RF, XGBoost and CatBoost algorithms, and

examined its ability to identify ocean-like waveforms, quasi-

specular waveforms and complex waveforms. (2) We proposed

three retracking strategies by combination of Threshold

Retracker, ALES+ Retracker, Primary Peak COG Retracker

and Primary Peak Threshold Retracker, and evaluated their

performance in retracking different coastal waveforms. (3) We

explored the estimation accuracy of the coastal water levels

between the single altimeter and synergistic multi-altimeter

using Cryosat-2, SARAL and Sentinel-3 altimeters. (4) We

combined MK, BFAST with LSTM algorithms to track the

historical change of coastal water level, further predict the

future change trend, and finally reveal the dynamic change

pattern of water level in the Beibu Gulf, China.
2 Study area and data sources

2.1 Study area

The coastal zone of Beibu Gulf in Guangxi Zhuang

Autonomous Region (Guangxi) (107°29′E~110°20′E, 20°58′
N~22°50′N) is located at the southwest end of China’s

mainland coastline, including three coastal cities of

Fangchenggang, Qinzhou and Beihai with a total sea area of

128,000 km2 and a total population of 6,157,100 at the end of the

year 2021. This region is the subtropical monsoon climate with

an average annual temperature from 21.5°C to 22.4°C, and an

average annual rainfall from 1500 to1800 mm. The study area is

the frontier of China-ASEAN economic cooperation and has an

important strategic location. In addition, the mangroves on the

coastal zone of Beibu Gulf in Guangxi accounted more than 37%

of the total mangrove area in China and the study area also are

the second largest mangrove habitat in China (Jia et al., 2015).

However, as the threat of sea level rise, parts of the shoreline of

the study area have been severely eroded, and the frequency and

intensity of typhoons and storm surges have increased from

1949 to 2013. Therefore, it is significant for its sustainable

development to exactly monitor the dynamic changes in water

level. Figure 1 showed the geographic location of the study area

and the ground tracks of the three altimeters in 2021.
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2.2 Data sources

2.2.1 Satellite altimetry data
This paper used Cryosat-2 altimeter data from January 2011-

December 2021, SARAL altimeter data from March 2013-

December 2021, and Sentinel-3 altimeter data from April2016-

December 2021 to estimate the water level in the coastal zone of

Beibu Gulf. The main parameters of three radar altimeters were

shown in Table 1.

(1) Cryosat-2 altimeter data

The Cryosat-2 mission was launched by ESA on April 8,

2010, with an orbital altitude of 717 km, an inclination of 92°,

and a repeat cycle of 369 days, which could be downloaded by

https://science-pds.cryosat.esa.int/ (Salameh et al., 2018). The

Cryosat-2 mission is equipped with an advanced synthetic

aperture interferometric radar altimeter (SIRAL) that operates

in three different measurement modes: Low Resolution Mode
Frontiers in Marine Science 04
(LRM), Synthetic Aperture Radar Mode (SAR), and Synthetic

Aperture Radar Interferometer Mode (SARIn). Cryosat-2

altimeter data include L1 and L2 data, where L1 data contain

orbital information and waveforms, and L2 data contain various

geophysical corrections, range and altitude estimates. In this

paper, the data products of GOP L1 and L2 LRMmode based on

Baseline-C processing from January 2011-December 2021

were used.

(2) SARAL altimeter data

The SARAL/Altika mission was successfully launched on

February 25, 2013, with 501 orbits and a 35-day repeat cycle (ftp-

access.aviso.altimetry.fr). SARAL/Altika is the first altimeter to

operate in Ka-band with an enhanced 500 MHz bandwidth for

better range resolution (Verron et al., 2015). SARAL/Altika Data

Center offers three types of data products, Operational

Geophysical Data Records (OGDR), Interim Geophysical Data

Records (IGDR), and Geophysical Data Records (GDR). This
FIGURE 1

Geographical location of the study area and ground tracks of the three altimeters.
TABLE 1 Summary of main parameters of three radar altimeters.

Altimeters Duration in this study Frequency Data types Mode Level Repeat cycle (day)

Cryosat-2 2011.01-2021.12 1hz and 20hz GOP LRM L1、L2 369(subcycle 30)

SARAL 2013.03-2021.12 1hz and 40hz SGDR LRM L2 35

Sentinel-3 2016.04-2021.12 1hz and 20hz WAT SAR L2 27
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study used the GDR products from March 2013 to December

2021, which have three different data types, including GDR-

SSHA, GDR and SGDR data. In this study, we used SGDR data

with a total of 92 cycles from 1-35,100-156, which contains 1hz,

40hz high rate and waveform data.

(3) Sentinel-3 altimeter data

The Sentinel-3 mission consists of two satellites, Sentinel-3A

and Sentinel-3B, with an orbital altitude of 815 km and a repeat

cycle of 27 days, and can be downloaded via https://archive.

eumetsat.int/usc/UserServicesClient.html (Shu et al., 2020).

Sentinel-3 is the first satellite altimeter to provide global

coverage in SAR mode with a dual-frequency (13.575 GHz in

Ku-band and 5.41 GHz in C-band) synthetic aperture radar

altimeter (SRAL) that provides more precise along-track

resolution observations. Sentinel-3 offers three types of SRAL

Level 2 data products, including Near Real Time (NRT), Short

Time Critical (STC), and Non-Time Critical (NTC) products.

This paper adopted the NTC Level 2 WAT products for April

2016-December 2021, which contain three data files, including

the ‘Reduced’, ‘Standard’ and ‘Enhanced’ data files, and the

“Enhanced” data was utilized in the following analysis.
Frontiers in Marine Science 05
2.2.2 Validation data
The validation data for this paper is the sea level daily gridded

data from satellite observations of the global ocean from 1993 to

present, which can download through the Copernicus Climate

Change Service (C3S) (https://climate.copernicus.eu/). The C3S

SLA dataset is computed with respect to a twenty-year mean

reference period (1993-2012) using up-to-date altimeter standards

(Taburet et al., 2019). And this dataset has a spatial resolution of

0.25° × 0.25°, obtained by the DUACS processing system by

merging two stable satellite missions, thus ensuring the

homogeneity and stability of the SLA record. The vDT2021

released in 2021 is the latest version of the C3S SLA dataset,

which updates the altimetric standards and geophysical parameter

corrections, refines the measurement errors, and achieves

significant improvements in mesoscale observations compared

with vDT2018 (Faugère et al., 2022). Therefore, the C3S SLA

dataset from January 2011-December 2021 of the DT2021

version was selected as the validation data in our research.

Since the C3S SLA data only had a measurement for each grid

point in every day, we used the inverse distance weighting function

to find the geographical position closest to the C3S SLA
FIGURE 2

Technical route of this study.
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measurements from the four altimeter-based SLA measurements,

then calculated the average of altimeter-based and C3S SLA

measurements each day to obtain the daily average water

level, respectively.
3 Methods

The workflow of this study includes three main parts, as shown

in Figure 2. Firstly, we constructed an SEL model by stacking RF,

XGBoost and CatBoost algorithms to classify the coastal waveforms

of three altimeters into ocean-like waveforms, quasi-specular

waveforms and complex waveforms. We further used three

retracking strategies, including Threshold Retracker & ALES+

Retracker (TR_ALES+), Threshold Retracker & Primary Peak

COG Retracker (TR_PPCR) and Threshold Retracker & Primary

Peak Threshold Retracker (TR_PPTR), to retrack three coastal

waveforms to gain the retracked range, respectively, and

reconstructed the time-series water level of Cryosat-2, SARAL

and Sentinel-3 using the parameters of geophysical corrections,

satellite altitude, range and retracked range. Secondly, we assessed

the classification performance of the SEL model and three machine

learning models for coastal waveforms using two metrics of overall

accuracy and average accuracy, verified the estimation accuracy of
Frontiers in Marine Science 06
water level based on three strategies for retracking coastal

waveforms using R, RMSE, and standard deviation(SD), and

quantitatively evaluated the accuracy of four altimeter-based

measurements of water levels using R, RMSE, and Bland-Altman.

Finally, we used the BFAST and MK algorithms to track the

historical changes of time-series water level, and further utilized

the LSTM model to predict the future change trends of the coastal

water level in the Beibu Gulf.
3.1 Stacking-based waveforms
classification

This paper divided the coastal waveforms of the Beibu Gulf into

ocean-like waveforms, quasi-specular waveforms and complex

waveforms, as displayed in Figure 3. The overall shape of the

ocean-like waveforms conformed to the standard ocean-like

waveforms, the leading edge was not contaminated, and the sub-

waveforms width of the ocean-like waveforms was long enough.

Quasi-specular waveforms could be regarded as the combination of

quasi-specular waveforms and multiple quasi-specular waveforms,

its main characteristics were narrow waveform width and peak

value. Complex waveforms included waveforms with irregular

shapes and waveforms with multiple peaks.
B

C

A

FIGURE 3

Three coastal waveforms of Cryosat-2, SARAL and Sentinel-3 altimeters in this study. (A) Cryosat-2, (B) SARAL, (C) Sentinel-3
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The ensemble learning algorithm has been widely used in

various fields of classification and has shown better classification

performance than single algorithms. The stacking algorithm

belongs to heterogeneous integration algorithms with a two-layer

structure, where the base classifier is first used to train a model on

the feature variables and then the prediction results are used as

training data for the second layer of meta-classifiers to enhance the

classification ability. RF, XGBoost and CatBoost algorithms have

the advantages of fast computational speed, classification ability and

generalization ability (Fu et al., 2022a). Therefore, we selected to

stack these three models to establish the stacking ensemble learning

(SEL) classification model. The specific training process was

displayed below. (1) 500 ocean-like waveforms, quasi-specular

waveforms and complex waveforms from three kinds of

altimeters were selected as sample data, and the sample data were

split into a training set and test set in the ratio of 7:3 in the RStudio

platform, and the training set was divided into 5 subsets. (2)

Constructing RF, XGBoost and CatBoost models by using 5-fold

cross-validation to predict the training and validation subsets in

turn. Finally, stacking the classification results of the two data sets as

new feature variables. (3) Inputting the feature variables in step 2 to

build a meta-classification model to realize higher accuracy

waveform classification. To further enhance the classification

results, the base model with the highest overall classification

accuracy was selected as the meta-model.
3.2 Waveforms retrackers

According to the characteristics of the three coastal

waveforms, selection of the appropriate retracker is a key step

in obtaining high-precision water levels. We evaluated the

quality of three strategies (Table 2) for retracking coastal

waveforms by combination of Threshold Retracker (TR),

ALES+ Retracker, Primary Peak COG Retracker (PPCR) and

Primary Peak Threshold Retracker (PPTR). The detail of three
Frontiers in Marine Science 07
strategies included Threshold Retracker & ALES+ Retracker

(TR_ALES+), Threshold Retracker & Primary Peak COG

Retracker (TR_PPCR), and Thresholdod Retracker & Primary

Peak Threshold Retracker (TR_PPTR).

Since the development team of ALES+ retracker has not yet

applied it to the Cryosat-2 waveforms in LRM mode, only two

retracking strategies, TR_PPCR and TR_PPTR, were used in this

paper for the Cryosat-2 altimeter. In addition, several studies

have shown that a 50% threshold has superior performance in

oceanic retracking compared to other thresholds (Peacock and

Laxon, 2004; Salameh et al., 2018). Therefore, a 50% threshold

level was chosen for TR, PPCR, and PPTR in this research.

(1) Threshold Retracker

Threshold Retracker was first proposed by Davis (1997) to

estimate the thermal noise PN through the first five bins of the

waveforms, the threshold value Pthres was calculated according to

the amplitude A obtained from the OCOG retracker and a given

threshold of 50%, and linearly interpolated between the

proximity sampling values to obtain the midpoint of the

corrected leading edge Crt_thres.

PN = 1
5o

5

i=1
Pi

A =

ffiffiffiffiffiffiffiffiffiffiffiffi
o
N

i¼1
Pi

4

o
N

i¼1
Pi

2

vuuuuuut
Pthres = A − PNð Þ*50%+PN

Crt _ thres = ithres − 1 + Pthres−Pithres−1
Pithres−Pithres−1

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(1)

WhereN is the total number of retracking bins for the altimeter

waveforms, ithres is the first bin with power greater than the

threshold Pthres, Pithres is its corresponding power, ithres-1 is the

bin before ithres, Pithres-1 is the power corresponding to ithres-1, and

Pi is the power value corresponding to each bin.

(2) Primary Peak Empirical Retracker
TABLE 2 Summary of the retracking strategies of three radar altimeters.

Altimeters Ocean-like Quasi-specular Complex Combined
retrackers

Cryosat-2 PPCR TR PPCR TR_PPCR

PPTR TR PPTR TR_PPTR

SARAL ALES+ TR ALES+ TR_ALES+

PPCR TR PPCR TR_PPCR

PPTR TR PPTR TR_PPTR

Sentinel-3 ALES+ TR ALES+ TR_ALES+

PPCR TR PPCR TR_PPCR

PPTR TR PPTR TR_PPTR
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Primary Peak Empirical Retracker includes Primary Peak

COG Retracker(PPCR) and Primary Peak Threshold Retracker

(PPTR). Jain et al. (2015) found that retracking sub-waveforms

rather than full waveforms are expected to raise retracking

accuracy. The Primary Peak Empirical Retracker set a start

gate Thstart and a stop gate Thstop, and a bin within the start

and stop gate intervals was a valid sub-waveform. PPCR

performed an OCOG retracker using the sub-waveforms, and

similarly, PPTR performed a threshold retracker on the sub-

waveforms.

di2 = Pi+2 − Pi

Thstart =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N−2)o

N−2

i=1
di2
� �2

− (o
N−2

i=1
di2
� �2

(N−2)(N−3)

vuut
di1 = Pi+1 − Pi

Thstop =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N−1)o

N−2

i=1
di2
� �2

− (o
N−2

i=1
di2
� �2

(N−1)(N−2)

vuut
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(2)

(3) ALES+ Retracker

ALES+ retracker was developed by Passaro et al. (2018) and

was based on the Brown-Hayne model, which divided the

procedure into standard ocean leading edge detection

(SOLED) procedure and non-standard ocean leading edge

detection (NOLED) procedure according to the Pulse

Peakiness (PP) (Peacock and Laxon, 2004) index. In this

study, the SOLED procedure was used to retrack the ocean-

like waveforms of the SARAL and Sentinel-3 altimeters, and the

NOLED procedure was used to retrack the complex waveforms

of the SARAL and Sentinel-3 altimeters.

Vm(t) = axPu
1+erf (u)½ �

2 exp ( − v) + TN

ax = exp ( −4 sin
2 x

g )  , g = sin2 (q0) 1
2 ln (2)   , u =

t−t−cxs 2
cffiffi

2
p

sc
,

 v ¼cx(t − t − 1
2 cxs

2
c )

ss =
SWH
2c ,  s2

c = s 2
s + s 2

p ,  cx = bxa,  a  ¼ 4c
g h(1+ h

Re
)
,

 bx = cos (2x) − sin2 (2x)
g

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(3)

Where c is the speed of light, h is the satellite altitude, Re the

Earth radius, z the off-nadir mispointing angle, t the time, q0 the
antenna beam width, t the epoch, sc the rise time of the leading

edge (depending on a term ss linked to SWH and on sp the

width of the radar point target response), Pu the amplitude of the

waveform and TN the thermal noise level.
3.3 Water level estimation

In this study, the Retracked Range was obtained by

retracking three coastal waveforms with the above retracking
Frontiers in Marine Science 08
strategies. The sea level anomaly (SLA) value for each

measurement point could be calculated by combining the

distance between the satellite and the reference ellipsoid

Altitude, the distance from the satellite to the Earth’s surface

Range, Retracked Range, Corrections and mean sea level MSS:

SLA = Altitude − Range − Retracked Range − Corrections

−MSS (4)

Where Corrections include dynamic atmospheric correction,

dry tropospheric correction, ionosphere correction, wet

tropospheric correction, ocean tide, pole tide, sea state bias,

solid tide.

In this work, we used a three-step method to eliminate the

outliers of the above SLA measurements. (1) The obvious SLA

outliers that were particularly high or low were eliminated by

visual interpretation. (2) A threshold value of [-1m,1m] was set

to exclude all measurements outside this interval. (3) After

screening by the threshold value, there were still certain

outliers, so the 3-Sigma rule was used to screen all SLA data

that do not conform to this rule, so that the water level time

series of the three altimeters were obtained separately.

Since the SLA measurements obtained by a single altimeter

were instantaneous and had a limited ground tracks, continuous

water level observations for long time series cannot be achieved.

Consequently, we combined Cryosat-2, SARAL and Sentinel-3

altimeters to construct a multi-altimeter water level to increase

the frequency of spatial and temporal coverage in the coastal

zone of Beibu Gulf. Because the Sentinel-3 and Cryosat-2

altimeters use the WGS84 ellipsoid and the SARAL altimeter

uses the T/P ellipsoid, it is necessary to convert them to the same

reference ellipsoid. Therefore, we converted the T/P ellipsoid to

the WGS84 ellipsoid by performing the following conversion

(Salameh et al., 2018).

Dh =
a
0
1 − e

02
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e

02 sin2 q
p −

a 1 − e2
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2 sin2 q
p (5)

Where q is the latitude of the SARALmeasurements, Dh is the
altitude change due to the conversion of the T/P ellipsoid to the

WGS84 ellipsoid; a and e is the semi-long axis and eccentricity of

theWGS84 ellipsoid, a=6378137m, e=0.081819190842621, a′ and
e′ is the semi-long axis and eccentricity of the T/P ellipsoid, a′
=6378136.3 m, e' =0.081819221456.

Due to the systematic errors of different altimeters, there

were still elevation differences in the SLA estimated after the

unified ellipsoid. In this study, referring to Chen and Liao

(2020), we took the Cryosat-2 water level time series as the

reference series, and subtracted the water level differences

between Cryosat-2 and SARAL, Cryosat-2 and Sentinel-3 to

weaken the systematic elevation errors, the calculation was as

follows.
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SLAcor tið Þ = SLAini tið Þ + SLAref − SLAini

� �
(6)

Where SLAcor(ti) is the corrected water level at time ti, SLAini

(ti) is the uncorrected water level at time ti, SLAref is the mean of

the Cryosat-2 water level time series, and SLAini is the mean of

the uncorrected water level time series for SARAL and Sentinel-

3, respectively.
3.4 Water level time series dynamic
change monitoring and trend prediction

Water level changes often exhibit both linear and nonlinear

characteristics, so it is difficult to monitor its dynamic changes

by a single method. Therefore, we combined the BFAST, MK,

and LSTM algorithms to track the dynamic process of the coast

water level in Beibu Gulf comprehensively.

In this study, we took the monthly average water levels of

Cryosat-2, SARAL, Sentinel-3, and multi-altimeter as input data,

using MK and BFAST algorithms to explore the historical

change process of the coastal water level in Beibu Gulf. Firstly,

we employed the MK algorithm to detect the specific change

process of the water level time series and the moments when

abrupt changes occurred, and the MK was calculated as follows.

mi,j =
1, SIA(i,j) > SIA(h,j)

0, SIA(i,j) ≤ SIA(h,j)

(

UFk =
dk−E(dk)ffiffiffiffiffiffiffiffiffiffiffi
Var(dk)

p

8>>><>>>: (7)

Where SIA(i,j) is the monthly average water level data, UFk is a

series of statistics calculated in time series order, and at a

significance level a2, if |UFk|>U1−a2/2 , it indicates that there is a

significant trend change in the series.UBk is an inverse ordered time

series,UBk=−UFk, k = n,n-1,…,1, when the two curves intersect and

the intersection point is between −U1−a2/2 and U1−a2/2 , then the

moment corresponding to the intersection point is the time when

the mutation starts. In this paper, only the region where UBk and

UFk had a unique intersection point was retained, and a2 = 0.05

was taken.

As the MK algorithm cannot discover the seasonal variation

of time series, we applied the BFAST algorithm to further

analyze the long-term variation and seasonal variation. The

basic structure of the BFAST algorithm was as follows.

Yt = Tt + St + et     t = 1, 2,…, nð Þ (8)

Where Yt is the original monthly average water level data, Tt

is the trend component, St is the seasonal component, et is the

residual component, and n is the length of the water level

time series.

The BFAST algorithm required equal time interrupted time

series data in the fitting process, while the SARAL altimeter data

used in this paper were from March 2013-December 2021, and
Frontiers in Marine Science 09
Sentinel-3 altimeter data were from April 2016-December 2021.

And due to the influence of retracking errors, data screening and

other factors, the monthly average water level data may have

individual months missing, which cannot meet the requirements

of the BFAST algorithm. Thus, this study applied linear fitting to

supplement the time series data.

Finally, we took 132 multi-altimeter monthly average water

levels as input data, divided the input data into a 70% training

set, 20% validation set, and 10% test set, and substituted the test

set data into the LSTM model to predict the future trend of

coastal water level in Beibu Gulf. In addition, we also selected R

and RMSE to assess the reliability of the LSTM model.

The LSTM model consists of four main parts, including the

forget gate, the input gate, the memory cell, and the output gate.

The forget gate determines which information should be

discarded from the cell state. The input gate determines

whether data enters the training network at a specific time.

The memory cell stores computed values for using in the next

stage. The output gate decides whether to output the computed

values. the exact structure of LSTM at moment t was as follows.

f t = s Wf xt + Uf ht−1 + bf
� �

it = s Wixt + Uiht−1 + bið Þ
Ct = f t*Ct−1 + it* eCt

ot = s Woxt + Uoht−1 + boð Þ

8>>>>><>>>>>:
(9)

Where ft is the forget gate, it is the input gate, ot is the output

gate, and Ct is the cell state.
4 Results

4.1 Waveform classification results and
accuracy assessment

This paper used validation samples to calculate overall

classification accuracy and average accuracy indicators,

quantitatively evaluated the classification ability of the SEL

algorithm and three single machine learning algorithms about

coastal waveforms of Cryosat-2, SARAL, and Sentinel-3

altimeters. Table 3 showed the classification accuracy of the

four algorithms.

As can be seen from Table 3, all four algorithms achieved

better classification results in recognizing coastal waveforms,

and the overall classification accuracy was above 0.927. The

overall classification accuracy of the SEL algorithm was more

stable than the three basic algorithms, and the SEL algorithm

realized the highest average accuracy of 0.959, which was 0.5%

higher than RF, 0.9% higher than XGBoost, and 1% higher than

CatBoost, proving that the SEL algorithm had stronger

classification capability for coastal waveforms. Among the

three altimeters, Cryosat-2 altimeter had the highest average
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accuracy of 0.963, which was 0.05% higher than SARAL

altimeter, and 2.5% higher than Sentinel-3 altimeter, indicating

that Cryosat-2 altimeter had more obvious features among

different coastal waveforms and was easier to distinguish.

To specifically analyze the distribution characteristics of the

three types of waveforms, this study divided the coastal zone of

Beibu Gulf into four regions, including 0-5 km, 5-10 km, 10-

20 km and 20-30 km along the coast. Table 4 depicted the

distribution of the three types of coastal waveforms within

30 km. It can be seen that 5 km from the coast was a very

obvious dividing line, and the distribution of waveforms within

5 km from the coast and beyond 5 km had very significant

characteristics. Within 5 km, the discharge of rivers and the

influence of land reduced the sea surface roughness, increasing

the number of quasi-specular waveforms, with all three

altimeters accounting for more than 18% of the coastal

waveforms. Land echoes could seriously contaminate the

trailing edge of coastal waveforms, causing an increase in

complex waveforms, and the Cryosat-2 complex waveforms

occupied 65% of the all-coastal waveforms. Therefore, within

0-5 km, quasi-specular waveforms and complex waveforms were

the dominant coastal waveforms, with a high percentage (>

60%). For Cryosat-2 coastal waveforms, the percentage of quasi-

specular and complex waveforms was even more than 90%.

Beyond 5 km, with increasing distance from the coast, ocean-like

waveforms increased when quasi-specular and complex

waveforms decreased. The percentage of ocean-like waveforms
Frontiers in Marine Science 10
remained at high levels (>80%) beyond 5 km from the coast,

except for Cryosat-2, which had 57.53% of ocean-like waveforms

within 5-10 km.
4.2 Evaluation of waveform retracking
quality

This paper used the C3S SLA dataset to calculate R, RMSE,

and standard deviation (SD) index, evaluating the water level

accuracy after retracking coastal waveforms with three strategies,

Threshold Retracker and ALES+ retracker(TR_ALES+),

Threshold Retracker & Primary Peak COG Retracker

(TR_PPCR), and Threshold Retracker & Primary Peak

Threshold Retracker (TR_PPTR). The water level accuracy

after retracking was shown in Table 5.

Table 5 showed that the waveform retracking quality after

using TR_ALES+ was significantly better than TR_PPCR and

TR_PPTR. For the SARAL altimeter, compared to TR_PPTR,

TR_ALES+ had the highest accuracy with R of 0.661, RMSE

decreased from 0.125m to 0.096m, and SD decreased by 0.01m.

For the Sentinel-3 altimeter, R increased from 0.264 to 0.739,

RMSE declined by 0.015 m, after using TR_ALES+ when

compared to TR_PPTR. The above study demonstrated the

superior performance of the TR_ALES+ retracker in

improving the coastal waveforms. Besides, the water level

accuracy after using TR_PPCR was also preferred over
TABLE 4 Percentage of different coastal waveforms in the 0-30 km for three altimeters.

Altimeters Waveform types 0-5 km 5-10 km 10-20 km 20-30 km

Cryosat-2 Ocean-like 9.20% 57.53% 87.10% 88.21%

Quasi-specular 24.97% 1.98% 1.13% 1.05%

Complex 65.83% 40.49% 11.77% 10.74%

SARAL Ocean-like 20.53% 80.61% 87.73% 90.25%

Quasi-specular 24.05% 0.77% 0.01% 0%

Complex 55.42% 18.62% 12.26% 9.75%

Sentinel-3 Ocean-like 39.75% 90.18% 94.90% 93.89%

Quasi-specular 18.91% 0.03% 0% 0.03%

Complex 41.34% 9.79% 5.10% 6.08%
f

TABLE 3 Comparison of the overall accuracy of coastal waveforms based on four classification algorithms.

Altimeters SEL RF XGBoost CatBoost Average accuracy

Cryosat-2 0.967 0.967 0.965 0.951 0.963

SARAL 0.962 0.960 0.958 0.953 0.958

Sentinel-3 0.948 0.934 0.927 0.944 0.938

Average accuracy 0.959 0.954 0.950 0.949 –
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TR_PPTR. Compared with TR_PPTR, the waveform retracking

quality of SARAL and Sentinel-3 altimeters were enhanced to

different degrees after using TR_PPCR, while the improvement

of the Cryosat-2 altimeter was not obvious.

In summary, among the three retracking strategies,

TR_ALES+ had superior retracking performance, and

TR_PPCR had a better retracking performance than

TR_PPTR. Therefore, we selected TR_ALES+ to retrack the

coastal waveforms of SARAL and Sentinel-3 altimeters, and

selected TR_PPCR to retrack the coastal waveforms of the

Cryosat-2 altimeter. Figure 4 displayed the correction results

of the Sentinel-3 coastal waveforms using TR_ALES+ retracker.

To compare the ability of multiple retrackers and single

retracker to refine coastal waveforms, this study used ALES+ and

TR methods to retrack SARAL and Sentinel-3 coastal

waveforms. TR and PPCR methods were used to retrack the

Cryosat-2 coastal waveforms. Table 6 showed the retracking

performance of the multiple retrackers and single retracker.

A comprehensive analysis of Table 6 indicated that the SLA

measurements after retracking were more stable and the

fluctuations of the data were not significant (SD ≤ 0.14m).
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Comprehensive evaluation of the R, RMSE and SD of the

three altimeters revealed that multiple retrackers outperformed

the single retracker in modifying coastal waveforms.
4.3 Comparative analysis of water level
estimation

This study used absolute differences of two consecutive SLA

estimates and C3S SLA products to verify the ability of three

altimeters to extract coastal water levels in the Beibu Gulf from

2011-2021.

The median of the absolute difference between two

consecutive SLA estimates (Peng et al., 2021) was used to

analyze the noise level in four different coastal distance bands.

Figure 5 displayed the noise level of SLA estimates for three

altimeters in four different coastal distance bands. It could be

seen that there was a large difference in the precision within and

outside 5 km from the coast. Within 5 km from the coast, the

SLA noise level of the three altimeters were large and fluctuate

more sharply among the values, due to the influence of coastal
FIGURE 4

Correction results of Sentinel-3 coastal waveforms using TR_ALES+ retracker.
TABLE 5 Comparison of estimation accuracy of coastal water level based on three retracking strategies.

Altimeters Retrackers R RMSE (m) SD (m)

Cryosat-2 TR_ALES+ – – –

TR_PPCR 0.824 0.077 0.136

TR_PPTR 0.823 0.078 0.137

SARAL TR_ALES+ 0.661 0.096 0.119

TR_PPCR 0.572 0.117 0.128

TR_PPTR 0.528 0.125 0.129

Sentinel-3 TR_ALES+ 0.739 0.097 0.140

TR_PPCR 0.328 0.105 0.078

TR_PPTR 0.264 0.112 0.075
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topography with more quasi-specular waveforms and complex

waveforms. Beyond 5 km from the coast, the SLA estimated by

the three altimeters at 5-10 km, 10-20 km and 20-30 km were

relatively stable, and the proportion of noise level varied within

0.1m increased, with Cryosat-2 accounting for an average of

95.6%, SARAL accounting for an average of 76.3%, and Sentinel-

3 accounting for an average of 95.3%, which could reach high-

accuracy SLA estimation.

We used the C3S SLA dataset to calculate R and RMSE

(Figure 6) for verifying the feasibility of estimating water level of

three altimeters and multi-altimeter in the coastal area of Beibu

Gulf. This paper also utilized the Bland-Altman method to

examine the consistency of altimeter-based water levels and

C3S SLA data (Figure 7).

As can be seen from Figure 6, the altimeter-based water

levels were in good agreement with the C3S SLA products

(R>0.66), indicating that the application of the three altimeters

to estimate the water level in the coastal zone of Beibu Gulf was

more reliable. The multi-altimeter water level was consistent

with the C3S products (R=0.669), indicating that it is feasible to

combine the three altimeters to construct a long time series of

water level, and the fused altimeter water level increased the

spatial and temporal coverage of the observation data. The

Bland-Altman plots in Figure 7 showed that the scattered

points of the Cryosat-2, Sentinel-3, and multi-altimeter were

all within the consistency limits, and >98% scattered points of

the SARAL altimeter were within the consistency limits,

demonstrating that the altimeter-based water levels and the

C3S SLA products were in good agreement, further illustrated

that it is feasible to apply the coastal zone water level estimating

approach proposed in this paper to the water level estimating in

the coastal Beibu Gulf. The RMSE of the altimeter-based water

levels were all within 0.135m, reflecting that the accuracy of

altimeter-based water levels estimated in this paper could reach

the decimeter level, and three single altimeters have reached the

centimeter level accuracy.
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4.4 Analysis of water level dynamic
changes

To clarify the water level dynamic change rule in the coastal

area of Beibu Gulf, this paper combined two change detection

algorithms, BFAST and MK, to detect the long-term change and

abrupt change of water level in Beibu Gulf from 2011-2021.

Figure 8 showed the MK test results for the time-series water

levels from 2011-2021.

It can be seen from Figure 8 that there were multiple

mutation points for the four time-series water levels, most of

the UFk statistics were within the critical line of the significance

level of 0.05, illustrating that the changes of the four time-series

water levels were relatively smooth. In Figure 8A, Cryosat-2

time-series water level was in a decreasing trend from January

2011 to August 2011, and after August 2011, the water levels all

showed an increasing trend, with 19.7% of the monthly average

water levels exceeding the critical line of the significance level of

0.05, indicating a significant increase in water levels during this

period. In Figure 8B, the SARAL time-series water level changed

more frequently from 2013 to 2015, and the level followed an

increasing trend after 2016, then raised from 2017 to 2019, and

then decreased again in 2020 and 2021. In Figure 8C, the

Sentinel-3 time-series water level was in a downward trend

from July 2016 to May 2017, and the rest of the months were

in an upward trend. In Figure 8D, there were 65% of the monthly

average water level in the multi-altimeter displayed an increasing

trend, with the monthly average water level from November

2020 to December 2021 being outside the threshold of

significance level 0.05, indicating a significant increase in water

levels during this period. In general, the four time-series water

levels showed an overall increasing trend.

Table 7 counted the number of abrupt changes for the four

time-series water levels in each season to better explain the

abrupt changes. As can be seen from Table 7, Cryosat-2 and

multi-altimeter water levels did not mutate in spring and winter,
TABLE 6 Comparison of estimation accuracy of coastal water level between single and multiple retrackers.

Altimeters Retrackers R RMSE (m) SD (m)

Cryosat-2 TR_PPCR 0.824 0.077 0.136

TR 0.798 0.081 0.133

PPCR 0.827 0.077 0.136

SARAL TR_ALES+ 0.661 0.096 0.119

TR 0.070 0.213 0.140

ALES+ 0.676 0.093 0.118

Sentinel-3 TR_ALES+ 0.739 0.097 0.140

TR 0.734 0.090 0.127

ALES+ 0.718 0.099 0.138
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and the mutation points were concentrated in summer and

autumn, proving that the water levels changed more slowly in

winter and spring, and more drastically in summer and autumn.

SARAL and Sentinel-3 water levels mutated in different seasons.

SARAL water level had the most mutations in spring, and

Sentinel-3 water level had the same number of mutations in

each season. In addition, the four time-series water levels
Frontiers in Marine Science 13
mutated in 2021, indicating that the water levels changed

frequently in 2021.

To further analyze the dynamic change characteristics of the

coastal water level in the Beibu Gulf from 2011 to 2021, this

study used the BFAST algorithm to further check the long-term

change, seasonal change and abrupt change of the four time-

series water levels (Figure 9).
B

C

A

FIGURE 5

Noise level of SLA estimates of three altimeters in four different coastal distance bands. (A) Cryosat-2, (B) SARAL, (C) Sentinel-3.
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As shown in Figure 9, the seasonal component (St) of the

four time-series water levels displayed a regular cyclical

characteristic with a one-year variation period. On the trend

component (Tt), the time-series water levels of the three single

altimeters showed a monotonic upward trend, and the water

level of the multi-altimeter increased monotonically from

January 2011 to September 2012, with a breakpoint in

September 2012 and a monotonic increase from October 2012

to December 2021. In the residual component (Rt), the four

time-series water levels did not reveal a significant regularity. In

addition, the original time series (Yt) of the four altimeter-based

water levels displayed good consistency in intra-annual

variation, showing an overall declining-rising-declining

variation process, with a distinct peak and a minimum value

throughout the year. The four time-series water levels varied

slowly in January-March, and frequently in April-August. The

lowest values occurred in May-August, after which the water

levels presented an upward trend and reached a peak in October-

November, with the monthly average water levels in September-

December being significantly higher than those in

January-August.

Based on mastering the historical change process of the

coastal water level in Beibu Gulf from 2011 to 2021, this paper
Frontiers in Marine Science 14
took the monthly average water level of multi-altimeter as the

input data, utilized the LSTM model to simulate and predict the

water level change trend in the coastal zone of Beibu Gulf from

2022 to 2031(Figure 10).

In Figure 10A, the monthly average water levels predicted by

the LSTM model have good agreement with the true monthly

average water levels, with R reaching 0.848 and RMSE of

0.049 m, indicating that it is feasible to predict the water level

variation over a long time series using the LSTM algorithm. In

Figure 10B, the standard deviation between the predicted water

levels and the true water levels using the LSTM algorithm was

small, and most of the standard deviation varied between 0.0005

and 0.08 m, which had good prediction accuracy. Therefore, we

predicted the monthly average water level changes in the coastal

zone of Beibu Gulf in the next 10 years (January 2022-December

2031), and the prediction results were displayed in Figure 10C.

From Figure 10C, it can be found that the water level time series

in Beibu Gulf in the next 10 years also had distinct seasonality,

with a seasonal variation period of one year. In the interannual

variation, the water level showed a slow upward trend from

2011-2021, with a water level rise rate of 8 mm/a, the water level

change from 2022-2031 also displayed a slow upward trend, with

a water level rise rate of about 0.6 mm/a.
B

C D

A

FIGURE 6

Comparison of the estimation accuracy between altimeter-based water levels and C3S data products. (A) Cryosat-2, (B) SARAL, (C) Sentinel-3,
(D) Multi-altimeter.
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5 Discussion

This paper found that the SEL algorithm achieved high

accuracy classification of coastal waveforms with an average

accuracy of 0.959 (Table 3). The SEL algorithm improved the

average accuracy by 0.5%-1% over three single machine learning

classification algorithms, proving that the SEL algorithm could

effectively improve the classification accuracy of coastal

waveforms, and this conclusion was consistent with the

conclusion reached by Fu et al. (2022a). In addition, the SEL

algorithm also displayed superior classification performance in

recognizing coastal waveforms from different altimeters. In the

Cryosat-2 altimeter, the SEL algorithm had the highest accuracy

in recognizing ocean-like waveforms and complex waveforms.

In the SARAL altimeter, the SEL algorithm had the highest

accuracy in recognizing quasi-specular waveforms and complex

waveforms. In the Sentinel-3 altimeter, the SEL algorithm had

higher accuracy in recognizing all three coastal waveforms than

the three single machine learning algorithms. The above findings

demonstrated that the SEL algorithm was more adaptable to

multi-source data and had good and stable performance in

classifying coastal waveforms (Cai et al., 2020). Based on the

coastal waveforms classification results of three altimeters using
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the SEL algorithm, this paper found that quasi-specular

waveforms and complex waveforms within 0-5 km accounted

for more than 60% of all waveforms (Table 4), and ocean-like

waveforms within 5-30 km accounted for more than 80% of all

waveforms. These results illustrated that the coastal waveforms

within 0-5 km were heavily contaminated, and it is necessary to

use multiple retrackers for optimal processing of different

coastal waveforms.

Among the three retracking strategies proposed in this

study, Threshold Retracker & ALES+ Retracker (TR_ALES+)

exhibited the optimal retracking performance, followed by

Threshold Retracker & Primary Peak COG Retracker

(TR_PPCR), and finally Threshold Retracker & Primary Peak

Threshold Retracker (TR_PPTR). Comparing the water level

accuracy after retracking coastal waveforms with the three

strategies (Table 5), it could be found that after retracking

coastal waveforms using TR_ALES+, the R of SARAL

altimeter improved by 0.089~0.133, RMSE decreased by

0.021~0.029m, and SD decreased by 0.009~0.010m, the R of

Sentinel-3 altimeter improved by 0.411~0.475 and RMSE

decreased by 0.008~0.015m. The above study also showed that

the ALES+ retracker improved the coastal waveforms better than

PPCR and PPTR retracker. However, there were differences in
FIGURE 7

The Bland–Altman plots present the agreement between altimeter-based water levels and C3S SLA products during 2011– 2021. (A) Cryosat-2, (B)
SARAL, (C) Sentinel-3, (D) Multi-altimeter. Dashed, black line in the center of the plot presents mean value of the above described differences, and
outer dashed yellow lines presents 95% level of agreement (mean − 1.96 standard deviation and mean + 1.96 standard deviation).
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the improvement of coastal waveforms from different altimeters

by ALES+ retracker. The water level accuracy after retracking

coastal waveforms with multiple retrackers and single retracker

(Table 6) identified that the overall retracking performance of

the Sentinel-3 altimeter was better than the SARAL altimeter

when only used ALES+ retracker. Due to the small study area of

this paper and the small number of quasi-specular waveforms

and complex waveforms, the water level accuracy after

retracking coastal waveforms with multiple retrackers and

single retracker did not show significant differences. In

addition to the retracking method, the operation mode of the

altimeter is also an important factor affecting the water level

accuracy in coastal areas. The water level accuracy of the three

altimeters (Figure 6) revealed that the water level accuracy of the
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Sentinel-3 altimeter in SAR mode was better than the SARAL

altimeter in the LRM mode when the same TR_ALES+ retracker

was used, with an R improvement of 0.078, indicating that the

SAR altimeter outperformed the LRM altimeter in the coastal

region, which was consistent with the findings of Fenoglio et al.

(2021). Furthermore, the coastal water level estimating approach

proposed in this paper did not obtain high-accuracy water level

data, which may be due to the following reasons: on the one

hand, the performance of altimeters in coastal areas decreased

compared to the superior performance in the open ocean, as well

demonstrated by Salameh et al. (2018). The results of Vignudelli

et al. (2019) also showed that when the satellites were less than

6 km, the data availability decreased significantly. On the other

hand, geophysical corrections such as dynamic atmospheric
FIGURE 8

MK test results for time-series water levels from 2011-2021. (A) Cryosat-2, (B) SARAL, (C) Sentinel-3, (D) Multi-altimeter.
TABLE 7 The mutation times of the time-series water levels in different seasons.

Seasons Cryosat-2 SARAL Sentinel-3 Multi-altimeter

Spring 0 9 2 0

Summer 1 2 2 3

Autumn 2 4 1 2

Winter 0 4 2 0
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correction, wet tropospheric correction, and sea state bias may

also lead to large uncertainties of satellite altimeters in coastal

areas (Marti et al., 2021). The geophysical corrections used in

this paper were all from three satellite altimeter, and more

models can be considered in the future, such as the MOG2D

model, GPD+ model, FES2014 model, and Composite SSB

model (Peng and Deng, 2020).

In this study, the historical change processes of the four

altimeter-based water levels were revealed using the BFAST and

MK algorithms. The MK test results (Figure 8) for the four

altimeter-based water levels illustrated that the MK algorithm

could well characterize the abrupt changes and long-term

change processes of the water level time series (Liang et al.,

2018). The results based on the BFAST algorithm (Figure 9) for

the four time-series water levels demonstrated that the BFAST

algorithm could detect both long-term trends and abrupt

changes in the water level time series, and also better describe

the seasonal changes (Watts and Laffan, 2014). The change

detection results of the four time-series water levels based on
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the BFAST and MK algorithms displayed that the water level in

the coastal zone in Beibu Gulf presented a slow upward trend

overall and had a one-year periodicity in seasonal changes, with

the lowest water level occurring in May-August and the highest

water level concentrated in October-November, similar to the

experimental results of Sun et al. (2020). In addition, the 2021

China Sea Level Bulletin (Ministry of Natural Resources, 2022)

reported that September-November was the seasonal high sea

level period along the coast of Guangxi, which was consistent

with the conclusion that the monthly average water levels in

September-December were higher than the rest of the months

reached in this paper. The LSTM model was used to predict the

monthly average water level of the multi-altimeter from January

2011-December 2021 (Figure 10), and the correlation coefficient

(R) between the predicted and true water level based on the

LSTM model was 0.848, with an RMSE less than 0.05m, proving

that the LSTM model could simulate the trend of the original

water level time series well and had a strong prediction capability

(Zhao et al., 2021). 2011-2031 water level displayed a slowly
B

C D

A

FIGURE 9

Decomposition results of four time-series water levels based on the BFAST algorithm. (A) Cryosat-2, (B) SARAL, (C) Sentinel-3, (D) Multi-
altimeter.
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rising trend, and the rate of water level rise was 8 mm/a in 2011-

2021 and about 0.6 mm/a in 2022-2031, and this conclusion was

significantly different from that reported in the 2021 China Sea

Level Bulletin (Ministry of Natural Resources, 2022). The main

reason for this discrepancy was that only 11 years of water level

time series were constructed in this paper, and the length of the

time series was relatively short, which may not accurately reflect

the historical water level change pattern in Beibu Gulf. In future

studies, longer water level time series should be built, and

algorithms such as Singular spectrum analysis (Shen et al.,

2018), and Radial basis function (Yang et al., 2016) can be

combined to further improve the accuracy of future trend

prediction of coastal water level, to grasp more accurate water

level dynamic change patterns and provide a scientific basis for

the sustainable development of coastal areas.
6 Conclusion

This study presented a new method for estimating water levels

of coastal zone in Beibu Gulf, south China, by combination of SEL-

based waveform classifications and multiple retrackers using

Cryosat-2, SARAL and Sentinel-3 altimeters from 2011-2021, and

further tracked the dynamic change of water level using BFAST,
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MK and LSTM algorithms. This paper found that: (1) SEL

algorithm effectively improved the classification accuracy of

coastal waveforms, and produced better classification

performance than single machine learning algorithms. Quasi-

specular and complex echoes were the main coastal waveforms

within 0-5 km, while ocean-like echo accounted for more than 80%

of all waveforms beyond 5 km. (2) Combination of Threshold

Retracker and ALES+ Retracker outperformed other two retracking

strategies, and significantly improved the retrieval accuracy of water

level in coastal areas. (3) Bland-Altman consistency test confirmed

that altimeter-based measurements of coastal water level were

consistent with the scientific dataset of C3S water level products

at the 95% confidence interval, which indicated that the approach

proposed in this study had a good performance on estimating

coastal water levels, andmonitoring its time-series dynamic changes

using multi-sources altimeters. (4) We revealed that the coastal

water level in Beibu Gulf exhibited a slow growth trend with an

annual average growth rate of 8mm/a in 2011-2021, and the intra-

year water level presented a fluctuation change with the declining-

rising-declining procedures. We also found that the lowest average

water level concentrated in May-August and the highest average

water level focused on October-November. These results can

provide guidance for scientific monitoring and sustainable

management of coastal zones.
B

C

A

FIGURE 10

Predicted results of monthly average water level in the coastal zone of Beibu Gulf using the LSTM model. (A) true and predicted values for
2013-2021. (B) the error between predicted and true values for 2013-2021. (C) the future trend of monthly average water level from 2022-
2031.
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Altimetry-based sea level trends along the coasts of Western Africa. Adv. Space Res.
68, 504–522. doi: 10.1016/j.asr.2019.05.033

Melet, A., Teatini, P., Le Cozannet, G., Jamet, C., Conversi, A., Benveniste, J.,
et al. (2020). Earth observations for monitoring marine coastal hazards and their
drivers. Surveys Geophys. 41, 1489–1534. doi: 10.1007/s10712-020-09594-5

Mendes, M. P., Rodriguez-Galiano, V., and Aragones, D. (2022). Evaluating the
BFAST method to detect and characterise changing trends in water time series: A
case study on the impact of droughts on the Mediterranean climate. Sci. Total
Environ. 846, 157428. doi: 10.1016/j.scitotenv.2022.157428

Ministry of Natural Resources (2022). 2021 bulletin of China Sea level. Available
at: http://gi.mnr.gov.cn/202205/t20220507_2735509.html

Orejarena-Rondón, A. F., Sayol, J. M., Marcos, M., Otero, L., Restrepo, J. C.,
Hernández-Carrasco, I., et al. (2019). Coastal impacts driven by sea-level rise in
cartagena de indias. Front. Mar. Sci. 6. doi: 10.3389/fmars.2019.00614

Palanisamy, H., Cazenave, A., Henry, O., Prandi, P., and Meyssignac, B. (2015).
Sea-Level variations measured by the new altimetry mission SARAL/AltiKa and its
validation based on spatial patterns and temporal curves using Jason-2, tide gauge
data and an overview of the annual Sea level budget. Mar. Geodesy 38, 339–353.
doi: 10.1080/01490419.2014.1000469

Passaro, M., Rose, S. K., Andersen, O. B., Boergens, E., Calafat, F. M.,
Dettmering, D., et al. (2018). ALES+: Adapting a homogenous ocean retracker
for satellite altimetry to sea ice leads, coastal and inland waters. Remote Sens.
Environ. 211, 456–471. doi: 10.1016/j.rse.2018.02.074

Peacock, N. R., and Laxon, S. W. (2004). Sea Surface height determination in the
Arctic ocean from ERS altimetry. J. Geophys. Res.: Oceans 109, C07001.
doi: 10.1029/2001JC001026

Peng, F., and Deng, X. (2020). Improving precision of high-rate altimeter sea
level anomalies by removing the sea state bias and intra-1-Hz covariant error.
Remote Sens. Environ. 251, 112081. doi: 10.1016/j.rse.2020.112081

Peng, F., Deng, X., and Cheng, X. (2021). Quantifying the precision of retracked
Jason-2 sea level data in the 0–5 km Australian coastal zone. Remote Sens. Environ.
263, 112539. doi: 10.1016/j.rse.2021.112539

Poisson, J.-C., Quartly, G. D., Kurekin, A. A., Thibaut, P., Hoang, D., and
Nencioli, F. (2018). Development of an ENVISAT altimetry processor providing
sea level continuity between open ocean and Arctic leads. IEEE Trans. Geosci.
Remote Sens. 56, 5299–5319. doi: 10.1109/TGRS.2018.2813061

Prandi, P., Poisson, J.-C., Faugère, Y., Guillot, A., and Dibarboure, G. (2021).
Arctic Sea surface height maps frommulti-altimeter combination. Earth System Sci.
Data 13, 5469–5482. doi: 10.5194/essd-13-5469-2021

Rahman, M., Chen, N., Elbeltagi, A., Islam, M. M., Alam, M., Pourghasemi, H.
R., et al. (2021). Application of stacking hybrid machine learning algorithms in
delineating multi-type flooding in Bangladesh. J. Environ. Manage. 295, 113086.
doi: 10.1016/j.jenvman.2021.113086

Raynal, M., Labroue, S., Moreau, T., Boy, F., and Picot, N. (2018). From
conventional to delay Doppler altimetry: A demonstration of continuity and
improvements with the cryosat-2 mission. Adv. Space Res. 62, 1564–1575.
doi: 10.1016/j.asr.2018.01.006
Frontiers in Marine Science 20
Reimann, L., Vafeidis, A. T., Brown, S., Hinkel, J., and Tol, R. S. J. (2018).
Mediterranean UNESCO World heritage at risk from coastal flooding and erosion
due to sea-level rise. Nat. Commun. 9, 4161. doi: 10.1038/s41467-018-06645-9

Salameh, E., Frappart, F., Marieu, V., Spodar, A., Parisot, J. P., Hanquiez, V.,
et al. (2018). Monitoring Sea level and topography of coastal lagoons using satellite
radar altimetry: The example of the arcachon bay in the bay of Biscay. Remote Sens.
10, 297. doi: 10.3390/rs10020297

Shen, Y., Guo, J., Liu, X., Kong, Q., Guo, L., and Li, W. (2018). Long-term
prediction of polar motion using a combined SSA and ARMAmodel. J. Geodesy 92,
333–343. doi: 10.1007/s00190-017-1065-3

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., andWoo, W.-c. (2015).
Convolutional LSTM network: A machine learning approach for precipitation
nowcasting. arXiv preprint arXiv.1506.04214. doi: 10.48550/arXiv.1506.04214

Shu, S., Liu, H., Beck, R. A., Frappart, F., Korhonen, J., Xu, M., et al. (2020).
Analysis of sentinel-3 SAR altimetry waveform retracking algorithms for deriving
temporally consistent water levels over ice-covered lakes. Remote Sens. Environ.
239, 111643. doi: 10.1016/j.rse.2020.111643

Sonobe, R., Yamaya, Y., Tani, H., Wang, X., Kobayashi, N., and Mochizuki, K.-i.
(2018). Crop classification from sentinel-2-derived vegetation indices using
ensemble learning. J. Appl. Remote Sens. 12, 26019. doi: 10.1117/1.JRS.12.026019

Sun, Q., Wan, J., and Liu, S. (2020). Estimation of Sea level variability in the
China Sea and its vicinity using the SARIMA and LSTM models. IEEE J. Selected
Topics Appl. Earth Observations Remote Sens. 13, 3317–3326. doi: 10.1109/
JSTARS.2020.2997817

Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F.,
Fournier, F., et al. (2019). DUACS DT2018: 25 years of reprocessed sea level
altimetry products. Ocean Sci. 15, 1207–1224. doi: 10.5194/os-15-1207-2019

Taherkhani, M., Vitousek, S., Barnard, P. L., Frazer, N., Anderson, T. R., and
Fletcher, C. H. (2020). Sea-Level rise exponentially increases coastal flood
frequency. Sci. Rep. 10, 6466. doi: 10.1038/s41598-020-62188-4

Tran, N., Vandemark, D., Zaron, E. D., Thibaut, P., Dibarboure, G., and Picot, N.
(2021). Assessing the effects of sea-state related errors on the precision of high-rate
Jason-3 altimeter sea level data. Adv. Space Res. 68, 963–977. doi: 10.1016/
j.asr.2019.11.034

Verron, J., Sengenes, P., Lambin, J., Noubel, J., Steunou, N., Guillot, A., et al.
(2015). The SARAL/AltiKa altimetry satellite mission. Mar. Geodesy 38, 2–21.
doi: 10.1080/01490419.2014.1000471

Vignudelli, S., Birol, F., Benveniste, J., Fu, L.-L., Picot, N., Raynal, M., et al.
(2019). Satellite altimetry measurements of Sea level in the coastal zone. Surveys
Geophys. 40, 1319–1349. doi: 10.1007/s10712-019-09569-1

Villadsen, H., Deng, X., Andersen, O. B., Stenseng, L., Nielsen, K., and Knudsen,
P. (2016). Improved inland water levels from SAR altimetry using novel empirical
and physical retrackers. J. Hydrol. 537, 234–247. doi: 10.1016/j.jhydrol.2016.03.051

Watts, L. M., and Laffan, S. W. (2014). Effectiveness of the BFAST algorithm for
detecting vegetation response patterns in a semi-arid region. Remote Sens. Environ.
154, 234–245. doi: 10.1016/j.rse.2014.08.023

Xu, Y., Yu, L., Peng, D., Zhao, J., Cheng, Y., Liu, X., et al. (2020). Annual 30-m
land use/land cover maps of China for 1980–2015 from the integration of AVHRR,
MODIS and landsat data using the BFAST algorithm. Sci. China Earth Sci. 63,
1390–1407. doi: 10.1007/s11430-019-9606-4

Yang, R., Er, P. V., Wang, Z., and Tan, K. K. (2016). An RBF neural network
approach towards precision motion system with selective sensor fusion.
Neurocomputing 199, 31–39. doi: 10.1016/j.neucom.2016.01.093

Zhao, J., Cai, R., and Sun, W. (2021). Regional sea level changes prediction
integrated with singular spectrum analysis and long-short-term memory network.
Adv. Space Res. 68, 4534–4543. doi: 10.1016/j.asr.2021.08.017

Zygmuntowska, M., Khvorostovsky, K., Helm, V., and Sandven, S. (2013).
Waveform classification of airborne synthetic aperture radar altimeter over
Arctic sea ice. Cryos. 7, 1315–1324. doi: 10.5194/tc-7-1315-2013
frontiersin.org

https://doi.org/10.1109/JSTARS.2014.2333527
https://doi.org/10.1109/ITSC.2017.8317872
https://doi.org/10.1016/j.jhydrol.2014.03.005
https://doi.org/10.1155/2018/1362708
https://doi.org/10.1016/j.asr.2019.05.033
https://doi.org/10.1007/s10712-020-09594-5
https://doi.org/10.1016/j.scitotenv.2022.157428
http://gi.mnr.gov.cn/202205/t20220507_2735509.html
https://doi.org/10.3389/fmars.2019.00614
https://doi.org/10.1080/01490419.2014.1000469
https://doi.org/10.1016/j.rse.2018.02.074
https://doi.org/10.1029/2001JC001026
https://doi.org/10.1016/j.rse.2020.112081
https://doi.org/10.1016/j.rse.2021.112539
https://doi.org/10.1109/TGRS.2018.2813061
https://doi.org/10.5194/essd-13-5469-2021
https://doi.org/10.1016/j.jenvman.2021.113086
https://doi.org/10.1016/j.asr.2018.01.006
https://doi.org/10.1038/s41467-018-06645-9
https://doi.org/10.3390/rs10020297
https://doi.org/10.1007/s00190-017-1065-3
https://doi.org/10.48550/arXiv.1506.04214
https://doi.org/10.1016/j.rse.2020.111643
https://doi.org/10.1117/1.JRS.12.026019
https://doi.org/10.1109/JSTARS.2020.2997817
https://doi.org/10.1109/JSTARS.2020.2997817
https://doi.org/10.5194/os-15-1207-2019
https://doi.org/10.1038/s41598-020-62188-4
https://doi.org/10.1016/j.asr.2019.11.034
https://doi.org/10.1016/j.asr.2019.11.034
https://doi.org/10.1080/01490419.2014.1000471
https://doi.org/10.1007/s10712-019-09569-1
https://doi.org/10.1016/j.jhydrol.2016.03.051
https://doi.org/10.1016/j.rse.2014.08.023
https://doi.org/10.1007/s11430-019-9606-4
https://doi.org/10.1016/j.neucom.2016.01.093
https://doi.org/10.1016/j.asr.2021.08.017
https://doi.org/10.5194/tc-7-1315-2013
https://doi.org/10.3389/fmars.2022.1113387
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Synergistic multi-altimeter for estimating water level in the coastal zone of Beibu Gulf using SEL, ALES + and BFAST algorithms
	1 Introduction
	2 Study area and data sources
	2.1 Study area
	2.2 Data sources
	2.2.1 Satellite altimetry data
	2.2.2 Validation data


	3 Methods
	3.1 Stacking-based waveforms classification
	3.2 Waveforms retrackers
	3.3 Water level estimation
	3.4 Water level time series dynamic change monitoring and trend prediction

	4 Results
	4.1 Waveform classification results and accuracy assessment
	4.2 Evaluation of waveform retracking quality
	4.3 Comparative analysis of water level estimation
	4.4 Analysis of water level dynamic changes

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


