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Single-channel blind source
separation of underwater
acoustic signals using improved
NMF and FastICA

Dawei Li*, Minghui Wu, Liang Yu, Jianhui Han and Hao Zhang

Aviation Operations Service Academy, Aviation University, Yantai, Shandong, China
When automatic monitoring buoys receive mixed acoustic signals from multiple

underwater acoustic targets, the statistical blind source separation (BSS) task is

used to separate the signals and identify vessel features, which is overly complex

and needs improvement, especially noting that noise cancellation and stealth

technologies are advancing rapidly. To fill this gap in capability, an improved non-

negative matrix factorization (NMF) based BSS algorithm is built on a FastICA

machine learning backbone. With this tool, the spatial and spectral correlation of

underwater acoustic signals is introduced into the NMF algorithm improved by to

resolve the non-convex and feature correlation problems commonly encountered

by contemporary NMF algorithms. Moreover, the improved modulation feature

adaptability of the NMF increases the local expressivity and independence of the

decomposed base matrix, which is proven to meet the requirements of FastICA

and used to improve the BSS effect of the FastICA. Simulated and empirical results

show that compared with state-of-the-art FastICA and NMF based BSS algorithms,

our novel approach obtains better signal-to-noise reduction and separation

accuracy while maintaining superior target signal recognition features.

KEYWORDS

single-channel multi-target underwater acoustic signal, multi-target signal separation,
improved NMF, FastICA, local expression and independent characteristics
Introduction

As a floating automatic monitoring platform for monitoring the comprehensive marine

environment, such as marine meteorological, hydrological and ecological parameters, ocean

observation sonar buoy plays an important role in the monitoring and research of marine

environment, and is the basis for caring about the ocean, understanding the ocean and

managing the ocean. Maintaining and improving this capability is crucial to the protection of

maritime and littoral waterways. With the development of marine resources and the

strengthening of maritime trade, the identification and judgment of marine and

underwater targets, based on underwater acoustic signals received by buoys, has gradually

become an important direction to analyze the impact of the development of modern ship

technology and the prosperity of maritime trade on marine ecology.
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Underwater vessels (i.e., submarines) and surface vessels create

and transmit acoustic signals with their screws (sometimes referred to

as “propellers” by folks outside the field), which are transmitted over

long distances through the water medium. So, when multi-target

signals are received by single buoys, separating and processing them

requires statistical blind source separation (BSS) techniques

(Dianmant et al., 2019; Zhang et al., 2020) prior to any recognition,

analysis, and localization efforts (Zhang and Yang, 2021). The

number of signals, source and its proportion of each underwater

acoustic target signal in the mixed signal received by a single passive

sonar buoy is unknown, Hence, a single-channel statistical BSS

framework is used (Wildeboer et al., 2020).

Although nonlinear signals are most often encountered in real

maritime scenarios, it is incredibly difficult to deconstruct and process

them, even with machine learning tools. Therefore, linear models are

widely applied based on mathematical approximations (Huang et al.,

2019). Notably, the powerful non-negative matrix factorization

(NMF) method, which was the hotspot in the linear model, ingests

a data structure that fits the linear mixed model reasonably well

(Rathnayake et al., 2020). Thus, dependence on prior knowledge is

reduced and the dimension of high-dimensional massive data is

reduced (Zhang et al., 2022).. However, owing to the non-convexity

of the NMF objective function, the globally optimal solution is

difficult to guarantee. Therefore, various constraints must be

imposed according to the signal characteristics to narrow the

solution space. The remainder of the introduction leverages the

extant literature to explain why NMF-type models are the only

viable solutions to mixed-signal BSS tasks. Subsequently, Section 2

provides additional information from the literature to provide the

current NMF machine learning advancements that illuminate the

present capability gap while also explaining algorithmic methods.

A neighborhood spatial information constraint was added into

NMF to improve its convergence and classification in Ref (Lu et al.,

2013)., by analyzing the manifold structural features of the signal

image; however, the sparse constraint of the method’s norm was

vulnerable to noise and overly sensitive to the initial value. Hence,

bias was unavoidable. Li (Li and Wang, 2019) applied a quadratic

sparse constraint to the NMF based on manifold attributes to make

better use of the sparse features of the NMF’s coefficient matrix. Wang

(Wang et al., 2020) and Lu (Lu et al., 2020) used similar adjacent

pixels to extract spatial structure information by clustering time-

frequency images. The spatial similarity, strengthened by cluster

labels, was then used to optimize the constraint of the NMF’s

objective function, and the BSS efficacy was improved (Zhang et al.,

2021). Similarly, the adaptive spectral local neighborhood

information of pixels was extracted by Chen (Chen and Lv, 2021)

and added to the NMF in the form of adaptive weights, and the blind

unmixing performance was improved.

Advancements outside the maritime domain have contributed to

the current operational capability. Wang et al. (2019) highlighted the

local features and achieved the successful separation of multiple

coupled fault signals by combining the variational mode

decomposition optimized by energy convergence with local NMF

whose optimal base matrix dimensionality was calculated by using the

adjacent feature dominance method A deep-transduction NMF was

later developed by Li (Yurong et al., 2020) to separate the mixed

speech signals from multiple speakers, and Sriharsha (Sriharsha and
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Abhijit, 2018). integrated the homotopy optimisation with

perturbation and ensemble and denoising autoencoder into an

NMF for single-channel audio source separation. The objective

speech quality was significantly improved (Zhang et al., 2022), and

the techniques were useful for underwater target signal separation.

Huang (Huang et al., 2019) fused the L21 and L1/2 norms and added

the composite to the NMF model, improving the model’s anti-noise

performance against band- and pixel-level noise.

From the examples annotated above, it is clear that NMFmethods

are essential to BSS applications in the fields of hyperspectral

unmixing, composite fault signal separation, and multi-speaker

voice separation (Huang et al., 2019), and it is clear that the NMF

model is essential to the BSS of underwater acoustic multi-target

signals. Hence, this article reports on the joint BSS algorithm based on

our improved NMF and FastICA backbone. The main improvement

of the proposed algorithm is to improve the NMF based on the

features of underwater acoustic target signal, and then, the NMF base

matrix is used as signal input of FastICA, realizing BSS. Simulated and

empirical results show that, compared with state-of-the-art NMF and

FastICA BSS models, our new method obtains better signal noise

reduction and separation accuracy while maintaining superior target

recognition signal characteristics. Hence, the verification of

underwater targets and their statuses is improved for maritime

targets detection and location.
Current application of NMF in multi-
target underwater acoustic signals

NMF achieves part-to-whole representations using non-negative

constraints on decomposed objects (Weiderer et al., 2020). For a non-

negative data matrix, V = ½v1, v2,⋯, vn� ∈ Rm�n
+ , where vi is a m-

dimensional vector, the NMF algorithm decomposes it into two

non-negative matrices, W = ½w1,w2,⋯,wr� ∈ Rm�r
+ and H = ½h1, h2,

⋯, hn� ∈ Rr�n
+ , via cyclic iterations, according to Eq. (1):

Vm�n ≈ Wm�rHr�n (1)

Where W and H are the base and coefficient matrices,

respectively, r is the dimensionality of the base vector (usually

r≪n ). Obviously, the NMF method can obtain data dimension

reduction at the same time. To measure the reconstruction effects

of Eq. (1), many optimization improvements to the objective function

have been proposed (Yurong et al., 2020), such as the Kullback–

Leibler (KL) divergence:

KL(V jWH) =o
i,j
Vi,jlog

Vi,j

(WH)ij
− Vi,j + (WH)ij (2)

The iterative solution of Eq. (2) can be found by using the

multiplication criterion (Hien and Gillis, 2021).

When performing underwater acoustic multi-target BSS with the

classical NMFmethod, the low-frequency analysis and range (LOFAR)

spectrum, V ∈ RF�N
+ , of the mixed signal is calculated first, where N

indicate the frame numbers of received mixed signal and F is the FFT

dimensions of signal frames. After estimating the optimal number r of

base vectors, the base matrix,W = foiWi ∈ RF�r
+ g, can be calculated

using Eq. (2), whereWi is the base matrix of the target i, and r reflects
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the description performance of the base vector to the original signal.

And then, if the basis matrix Wi of each source signal is separated by

using some BSS algorithm, such as FastICA, from the above W, the

source signal spectrum will be constructed using the Wi and its

corresponding coefficient matrix. In this way, the final separation of

the mixed signals received by signal buoy is achieved. This process is

shown in Figure 1, in which, the Feature Dictionary SetW is the whole

base matrix calculated from the received mixed signals andWI and e is

the base matrix of target Iand target e

Obviously, the classical NMF algorithm is suitable for underwater

acoustic multi-target signal decomposition; however, the algorithm

itself is non-convex, often causing it to fall into local optimum (Li and

Yang, 2016). Moreover, the characteristics of the underwater acoustic

target signals also affect the decomposition effect. First, the base

matrix obtained by NMF comprises an unordered array of base

vectors, which makes it difficult to reconstruct the source signal

directly. Second, the multi-source components cause a lot of

interference, which quickly leads to data redundancy. Therefore, the

performance of the NMF BSS algorithm needs to be improved by

deeply mining the relevant features contained in the underwater

acoustic target signals and establishing suitable constraints based on

the actual signal features. To answer this need, our joint BSS

algorithm for underwater acoustic multi-target signals based on an

improved NMF with a FastICA backbone is proposed.
Improving NMF using signal features

Optimize the NMF base vector using
signal features

Improving the adaptability of objective function to signal feature

will significantly improve NMF decomposition performance (Li and
Frontiers in Marine Science 03
Yang, 2016). Thus, when extracting the base vector of the received

underwater acoustic multi-target signals, if the feature correlation

between source signals is low, the local independence of the base

vector improves, as does the efficacy of the NMF algorithm (Li et al.,

2016; Zhang et al., 2022). However, underwater acoustic target signals

show significant feature diversity within the same class and feature

correlations between different classes. Notably, the line spectrum

feature of underwater acoustic signals is an important characteristic

for target recognition, leading to the limited use of that the traditional

KL divergence, F-norm, Lp-norm, and other target functions that is

easily influenced by high-energy line spectrum components within

the LOFAR spectrum (Sadeghi et al., 2021). Therefore, the proposed

algorithm improves the NMF objective function with dual

constraints, that is determinant constraints and У b-divergence, to
reduce the method’s dependence on the source signal structure.

Hence, the uniqueness and independence of the base matrix

are reinforced.

The formula of the b-divergence is

db (y, x) =

yb

b(b−1) +
xb

b − yxb−1

(b−1) , b ∈ R= 0, 1f g
y ln y

x − y + x, b = 1
y
x − ln y

x − 1, b = 0

8>>><
>>>:

(3)

Where R/{0,1} is the set of real numbers, excluding zero and one.

It can be seen from Eq. (3) that the b-divergence satisfies

db (ly, lx) = lbd(y, x) (4)

When the value of b is zero, the value of Eq. (4) is scale shift

invariant. That is, it is unrelated to scale factor l, indicating that when
NMF is performed, the line spectrum components in the LOFAR

image of mixed signal will have equal weight across the continuous

spectrum components, so as to avoid the influence of high-energy line
Class I 

Reconstructed 

signal

Class II 

Reconstructed 

signal

Base Matrix Separation

Feature dictionary set W

Mixed signals

Class 1 base matrix W1

Class II  base matrix WII  

Coefficient Matrix H

FIGURE 1

The NMF process of Underwater acoustic multi-target signal.
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spectrum on the results,. However, when b ≠ 0, b-divergence will still
be affected by the line spectrum components.

To improve the independence of the NMF base vectors andmitigate

the impact of their feature redundancy on the signal reconstruction,

determinant constraints are added. Let the volume of the space

stretched by matrix W = ½w1,w2,⋯,wr� ∈ Rm�r
+ be expressed as

vol(W) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det (WWT )

p
, m < r

  det (W)j j, m = rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det (WTW)

p
, m > r

8>><
>>: (5)

When the volume, vol(W) , in Eq. (5) is smallest, each vector

wi∈W can be uniquely determined (Sadeghi et al., 2021). Thus, the

improved NMF objective function based on b-divergence and

determinant constraints can be expressed as

min (J) = db=0(V ,WH) + a · vol(W) (6)
Optimize the NMF coefficient matrix by
spatial similarity

The radiated noise of underwater acoustic targets is the main

source of passive buoy detection (Liu et al., 2021). The shape,

displacement, structure, and other features of acoustic targets

comprise the main factors of signal characteristics, that is, when the

acoustic targets remains a relatively stable sailing state, the spectrum

distribution of its radiated signal will show good short-term stability,

as shown in Figure 2. Owing to the short interval between two

adjacent frames, even if environmental noise exists, It still shows

good short-term similarity by using of a fitted spectrum distribution

and an interframe alias is useful (Li et al., 2016),.

Figure 2 shows the spectrum of multi-target mixed signals

observed by a single marine environment monitoring buoy in a

certain time period. Although the frequency spectrums of different

targets under different working conditions are different, and the

frequency spectrums of mixed signals formed by these signals are

also diverse, it is usually difficult for each target to have a large change

in a short period of time within the monitoring range of the marine

environment monitoring buoy. Therefore, the mixed signals will also
Frontiers in Marine Science 04
maintain a certain characteristic stability in a short time. Of course,

the spectrum of the mixed signal is different for different periods of

time or for different targets, the spectrum is relatively stable only in a

short period of time.

When calculating the LOFAR spectrum of the received signal, fast

Fourier transform (FFT) resolution inefficiencies will lead to a certain

degree of spectral smoothness between adjacent frequencies.

Therefore, in addition to the short-time similarity between the

signal frames, as shown in Figure 2, the eight neighbors of the

current pixel are taken as local neighborhood candidate regions.

Then, adaptive local neighborhood weighting is used to analyze the

similarity contributions of the neighboring candidate pixels to the

current pixel to make full use of the spatial similarity between them

for the benefit of the NMF model.

Within the eight-neighborhood range of the current pixel, the

weight contribution of pixel yj to yi is expressed as

cij = G −1 + r (7)

where G describes the neighborhood position of pixel yj, and P

reflects the similarity between two pixels. The calculation formula is

G = xi − xj
�� �� + yi − yj

�� ��
r = 〈Hi,Hj 〉

(
(8)

where 〈·〉 represents the inner product of the vector, and si is the
coefficient vector corresponding to the pixel. Thus, when the spatial

similarity of two pixels is high, their weight value, cij, is also large, and

vice versa. Therefore, the weight contribution of the eight pixels in the

neighborhood of the current pixel, yi, can be expressed as

Ci = o
j∈N ið Þ

cij (9)

Thus, an adaptive calculation of the weight contribution of the

pixels in the neighborhood can be realized. The improved NMF

model that incorporates the adaptive weighted spatial similarity is

min (J) = db=0(V ,WH) +
a
2
· (vol Wð Þ + ~W −W

�� ��2)
+ lo

N

i=1
o

j∈N ið Þ
cij · Hi −Hj

�� ��2
2 + b Hk k1=2 (10)
A B

FIGURE 2

Spectrogram of radiated noise from a surface target: (A) trend diagram of two adjacent signals in a frame; (B) spectrum trend of the surface target.
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where W ≥ 0, H ≥ 0, 1Tr H = 1Tn , a, b, and l are regularization

coefficients. ‖·‖1/2 is the L1/2-norm, which is used to add a sparse

constraint to the coefficient matrix to prevent overfitting and noise

residue. ‖ ~W −W ‖2 describes the smoothness of a single source

signal, which is used to increase the separability between multi-

targets, and ~W is the moving average matrix of the calculated

values of the previous iteration of W (Liu et al., 2021). The optimal

solution of Eq. (10) can be achieved by the derivative of a variable or

the least-squares method under the Karush–Kuhn–Tucker condition

(Chen and Lv, 2021), that is:

W W
V(WH)−2 + a ~W
� �

HT

(WH)−1HT + aW
,

H H
WT V(WH)−2 + lHC

� �
WT(WH)−1 + lCH + b

2 H
−1
2

(11)

The dimensionality of the base matrix is very important for NMF

decomposition as it directly affects target feature extraction, especially

for acoustic target signals. The noise interference of the receiving

signal is large, and the signal features overlap to some extent. Hence,

when the dimensionality is too large, the NMF decomposition base

matrix introduces too much noise. However, if the dimensionality is

too small, the decomposition fidelity of the base matrix will be

reduced, leading to the non-uniqueness of the local expression

characteristics and insufficient separation accuracy. Therefore, the

nearest-neighbor eigenvalue dominance method (Wang et al., 2019) is

used to estimate the dimensionality of the base matrix.
Joint blind separation using improved
NMF and FastICA

The base matrix combines the base vector of all source signals in

the mixed signal received by a single buoy. Because the base vectors

are not ordered, it is difficult to determine which base vectors are from

the same source signal. Therefore, the FastICA algorithm is used here

to separate the base matrix into base vector groups based on their

independent sources.

According to the central limit theorem (Krishna et al., 2020), the

mixed signal obtained from independent source signals has a high

Gaussian distribution. From information theory, the stronger the

Gaussian property of the equivariance random variable, the greater its

entropy. The FastICA algorithm was explicitly built to maximize the

non-Gaussian property of mixed observation signals, and negative

entropy is used as the parameter. When negative entropy reaches its

maximum, the non-Gaussian property of each source signal also

reaches its maximum, indicating that each independent component is

well-separated (Krishna et al., 2020).

Let signal Y=BT. v be the matrix of the source signal separated

from the whitened observation signal, v. Its negative entropy can then

be expressed by its differential entropy. However, for that the

probability density of random variables is difficult to estimate, the

calculation is simplified with a common approximation formula:

J Yð Þ = (E(g(Y)) − E(g(YGauss)))
2

= (E(g(BT · v)) − E(g(YGauss))))
2 (12)
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where B is the separation matrix, bi∈B is a column vector in the

matrix, and ‖bi‖=1 . g(·) is an arbitrary non-quadratic function and its

reasonable selection leads to a good approximation of the source

signal (Abdalla and Alrufaiaat, 2021). When the y3 form is selected, it

has already been proven to be optimal for separation performance,

accuracy, and convergence when used by the FastICA model (Xiumin

et al., 2020). To solve Eq. (12), the Lagrangian function is constructed

as

L(B, b) = J(B) − b( Bk k2−1)

= (E(g(BT · v)) − E(g(YGauss)))
2 + b Bk k2 (13)

where b=E(BTvg′(BT·v)) , and g′(·) is the derivative of g(·) . It can

be seen that the maximization of Eq. (12) can be converted to the

derivative of Eq. (13):

E(v · g(BT · v)) − bB = 0 (14)

As v is the whitened data, according to the third-order Newton

iteration method, the iteration formula of the FastICA algorithm is

B* = E(vg(BTv)) − E(g 0(BTv))B

B = E(vg(BTv)) + E(vg(B*Tv))) − E(g 0(BTv))B� bB*

(
(15)

where B* is the intermediate value of the iterative calculation of

new B. FastICA is the main model used for BSS tasks. However, the

number of observed signals must be greater than or equal to the

number of source signals. Although the multivariate LOFAR time-

frequency spectrum can be obtained from the short-time Fourier

transform, it cannot be directly applied to FastICA for BSS because all

column vectors in the spectrum come from the same channel.

However, after NMF decomposition of the LOFAR spectrum, the

characteristics of each independent source signal from the mixed

signal can be reflected by NMF base vectors. Thus, the base matrix can

be viewed as a combination of the base vectors of each independent

source signal. Nevertheless, the order of the base vectors is messy,

making it impossible to determine ownership.

Therefore, after improving the NMF method, we designate the

base and coefficient matrices of the received observation signal, V, as

W, and H, respectively, where W={w1,w2,⋯,wr} , and r is the

dimensionality of the base matrix. If the ownership of the base

vectors in W={w1,w2,⋯,wr} is obtained, then W can be expressed as

W={W1,W2,⋯,Wi} , such that

Vj = W1,W2,⋯,Wif g hTj1, h
T
j2,⋯, hTji

n oT
= W1h1 +W2h2 +⋯+Wihi

  = Y1b1 + Y2b2 +⋯+Yibi = bY = hjW
T

(16)

where Y is the source signal matrix, i is the number of source

signals, and Wi is the base matrix of the source signal, which

comprises the base vector belonging to the same independent

source. It is, therefore, obvious that Wihas disturbed the order of

the original wi in W. Thus, hji becomes the new column vector of the

coefficient matrix, H, corresponding to the new order of wi (i.e.,

corresponding to the order of Wi). hi = hTji and its dimensionality is

thus consistent with that of Wi, and bi is a vector separated from hi.

Since there is a part value hi′ in hi, making Wihi
′=Yi , the remaining

part bi of hi after removing hi
′ can be regarded as the contribution of
frontiersin.org
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Yi when Vj is generated, Thus, we have the parameter of its

corresponding mixed matrix.

Alongside the derivation process of FastICA (Abdalla and

Alrufaiaat, 2021), it can be further deduced from Eq. (16) that

Y = b−1hjW
T = BWT (17)

Accordingly, the source signal, Y, can be calculated from the base

matrix, W (obtained from the improved NMF), and the unmixing

matrix, B.

The input matrix, v, of the proposed algorithm from Eq. (14) can

be obtained by recombining W and one column, Vi, of the LOFAR

image of the observed mixed signal. Then, the unmixing matrix, B, in

Eq. (17) can be obtained via iterative calculations, as shown in Eq.

(14). Finally, the BSS of the acoustic multi-target signals received by

the buoy can be achieved.

From the above analysis, the proposed BSS algorithm that joint

improved NMF and FastICA is shown in Figure 3. Note that after signal

separation, Y=BvT , because the dimensionality of the base matrix

obtained by the improved NMF is greater than the number of source

signals, there will be different sequences of the same source signal in the

separated results. Thus, it will be necessary to further select and

combine them using correlation analysis or other algorithms.
Experimental verification and analysis

To verify the efficacy of the proposed BSS algorithm used for

underwater acoustic multi-target signal received by a single buoy, the

normalized cross-correlation coefficient (NCC) and logarithmic

spectral distance (LSD) are used as evaluation criteria. The larger

the LSD value, the better the signal reconstruction performance (Li

and Wang, 2019). The LSD formula is
Frontiers in Marine Science 06
fLSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N o

N=2−1

n=0
L(S(l, n)) − L(Sd(l, n))j j

2
s

(18)

where L(S(l,n)) is the logarithmic spectrum between two signals,

and N is the number of data. The S and Sd indicate source signals and
reconstructed signals respectively

The spectrum features of an acoustic target signal mainly include

its line spectrum, continuous spectrum, and envelope modulation

spectrum (Li et al., 2016). When the sailing speed of underwater

acoustic target exceeds its critical speed, its propeller will periodically

modulate it radiated signal, representing as envelope line spectrum.

Therefore, the modulation line spectrum, which reflects the axial

frequency and other information of targets, is an important feature

for target recognition, that is why the modulated line spectrum is

needed; and it can be obtained by extracting the envelope of the signal

and performing FFT. Thus, the simulation signal model with periodic

modulation is

s tð Þ =o
i
(1 + Am · cos −2p f0 t − tið Þf g) cos (2p fc(t − iT − ti) (19)

Where Am is the modulation amplitude, and its cosine signal is

used to simulate the screw modulation, in which f0 is the modulation

frequency reflecting the axial frequency. Because the main test feature

is the axial frequency information of the underwater acoustic target,

other signals (e.g., hydrodynamic) are simplified to cosine or sine

signals with frequency fc. In our experiment, the mixed signals of

three simulation signals were used. The sampling rate, fs=1/T, was

6,000, and so there were 4,096 sampling point. the values of f0 and fC
in each simulation signal are listed in Table 1.

The mixed matrix, w = ½ 0:756 0:871 0:559 �, was generated

randomly. n(t) was the superimposed noise, and i=20. The time-

domain waveforms of all signals and mixed signals are shown

in Figure 4.
FIGURE 3

Application of the proposed improved non-negative matrix factorization (NMF) and FastICA for the blind source separation of underwater acoustic multi-
target signals.
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The demodulation line spectra of the mixed signal were calculated

via FFT on the extracted envelope, S(t) , as shown in Figure 5. The

spectrum information within 100 Hz is displayed for simplicity.

In Figure 5, the modulation line spectrum and its octave

harmonics reflect the screw frequency information of different

acoustic targets, but they are interlaced. The proposed BSS

algorithm based on the improved NMF and FastICA was used as

described in the previous sections. The signals were divided into

frames, and FFT was performed first with all 4,096 data points and a

50% overlap between the frames. Thus, the LOFAR spectrum of the

experimental mixed signals was generated. Next, the improved NMF

was used to decompose the LOFAR spectrum using an 18-

dimensional base matrix with 300 iterations. FastICA was then used

for the BSS. After that the obtained decomposed signals were analyzed

for similarity, and those with high similarity were merged into the

same source signal.

The time domain waveform and envelope spectrum of the

decomposed source signal are shown in Figures 6 and 7,

respectively. From Figure 7, owing to the b -divergence, the

proposed algorithm better maintains the spectrum components of

the mixed signal, and their three modulation components (i.e., 20, 35,

and 45 Hz) and harmonic components were effectively separated.

This verifies the efficacy of our proposed algorithm.

The cross-correlation coefficient between the separated and

source signals was calculated, as listed in Table 2. The cross-

correlation between the separated signal and its source is large, but

that of the separated signal and the other two source signals is small,

indicating that the algorithm has good BSS accuracy.
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To further understand the robustness of the proposed method,

white noise was added at different signal-to-noise ratios to the

simulated mixed source signals. The improved NMF with an

Improved Crest Factor (ICF) ICF operator (NMF+ICF) (Li and

Yang, 2016), improved FastICA (iFastICA) (Guotao et al., 2021),

and the combined classical NMF and FastICA (NMF+FastICA) were

compared. The NCC and LSD of each used were analyzed under

different signal-to-noise ratios (Yurong et al., 2020), and the results

are illustrated in Figures 8 and 9, where each value is the average of

the three source signals from several experimental trials. The KL

divergence is used as the objective function of classical NMF in this

experiment.

RSNR = 10 lg
E xTx
� �

E nTnð Þ
	 


(20)

From Figures 8 and 9, iFastICA’s BSS results were not ideal for all

SNRs because its original FastICA component requires mixed signals

in multiple channels. However, recall that the LOFAR spectrum is

essentially one channel signal. Therefore, although the FastICA

algorithm was improved in iFastICA, its blind separation effect is

still not ideal.

Compared with iFastICA, the signal separation accuracy of NMF

+ICF was improved to some extent, but it is still not ideal. On the one

hand, the algorithm improved the NMF and its adaptability to

modulated pulse signals. However, because there was no reasonable

sparse constraint on the NMF coefficient matrix, the decomposed

base matrix suffered an insufficient independent local expression

ability for the source signal. On the other hand, NMF+ICF used the

correlation-based ICF factor to select the base vector with the highest

ICF value as the final separated signal, which easily causes the loss of

important signal components.

NMF+FastICA combined the advantages of classical NMF and

FastICA algorithms and achieved the best separation results.
FIGURE 4

Time domain waveform of the simulated signal for the experiment.
TABLE 1 Simulated signal parameters for the experiment.

f01 f02 f03 fC1 fC2 fC3

20 35 45 2,500 2,000 1,500
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However, as the classic NMF is not optimized for underwater acoustic

target signals, the local and dependent characteristics of the basis

matrix affected the final BSS effect. The proposed algorithm (iNMF

+FastICA) achieved the best separation effect under various SNRs;

because of that, it better retains the separable characteristics of the via

the improved NMF. Thus, the separated signal more approximated

the source signal.
Conclusion

Based on the improved NMF and FastICA algorithm, this study

addressed an important BSS problem used for mixed signals from
Frontiers in Marine Science 08
underwater acoustic multi-targets are received by automatic

monitoring buoys Our method was successful because it addressed

the non-convex and feature correlation problems encountered by the

classical NMF algorithm with spatial and spectral correlation

optimization. This improved the adaptability of the classic NMF to

handle the modulation characteristics of underwater acoustic target

signals while improving the local expressability and independence of

the NMF base matrix. Then, the advantages of the improved NMF

and FastICA algorithms were combined to achieve superior BSS of

underwater acoustic multi-target signals.

The simulation signal experiment results showed that

compared with state-of-the-art BSS algorithms based on NMF

and FastICA, the novel proposal achieves better signal separation
FIGURE 6

Time-domain waveform of separated signals.
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FIGURE 5

Envelope spectrum of the hybrid simulation signal.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1097003
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2022.1097003
accuracy while maintaining the modulation characteristics of the

original signal. Furthermore, it reduces SNR and enhances signal

separation, which leads to better feature interpretation and

target recognition.
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Presently, when the proposed method is applied to underwater

acoustic target signals with obvious lines or modulation spectra, the

BSS is good. However, with the advancement of noise reduction

technologies, the radiated signals of underwater acoustic targets have
TABLE 2 Cross-correlation coefficient between separated and source signals.

Signal Source 1 Source 2 Source 3 Mixed Signal

Separated signal 1 0.925 0.106 0.197 0.515

Separated signal 2 0.109 0.195 0.893 0.612

Separated signal 3 0.210 0.913 0.115 0.609
SNR  /dB
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FIGURE 8

Normalized cross-correlation coefficient under different signal-to-noise ratios.
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FIGURE 7

Envelope spectrum of the separated signals.
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become more difficult to detect. Therefore, Future work should

further improve and optimize these methods by combining extant

signal detection, feature extraction, noise reduction, and signal

enhancement techniques to improve their applicability.
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