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An operational improvement of
A-4DEnVar and its application
to the estimation of the
spatially varying bottom
friction coefficients of
the M2 constituent in the
Bohai and Yellow seas
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and Xiaobin Qiu1,2

1Tianjin Key Laboratory for Oceanic Meteorology, Tianjin, China, 2Tianjin Institute of Meteorological
Science, Tianjin, China, 3School of Marine Science and Technology, Tianjin University, Tianjin, China
The analytical four-dimensional ensemble variational (A-4DEnVar) data

assimilation scheme inherits the advantages of the conventional four-

dimensional variational (4D-Var) data assimilation scheme and removes the

adjoint model. However, compatible operational improvements such as the

reduction of the computational costs and the localization method should be

considered when it is used in realistic systems. In this paper, the computational

complexity of calculating the inverse of background error covariance (the B

matrix) is decreased by a precondition transform method, i.e., introducing a

new state variable whose product with the Bmatrix is the original state variable

to be optimized in the cost function. Furthermore, an independent point (IP)

scheme is combined to construct an implicit localization method and further

decreases the computational cost. Based on the Princeton Ocean Model with

the generalized coordinate system (POMgcs), the operational improved A-

4DEnVar is applied to optimize the spatially varying bottom friction coefficients

(BFCs) of the M2 constituent in the Bohai and Yellow seas. A twin experiment

with idealized observations is designed to validate the effectiveness of the

proposed method. In practical experiments, with no more than 10 IPs, the

algorithm can assimilate observations from the National Astronomical

Observatory (NAO) dataset and obtain a good simulation. The experimental

performances increase with the increase of either the IPs or observations,

which indicates the efficacy of the proposed algorithm.
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1 Introduction

Modern numerical weather prediction (NWP) and/or ocean

prediction suffer from the uncertainty of initial conditions and

parameters in numerical models. Data assimilation methods are

widely implemented to provide better initial fields and

parameters by blending numerical models with information

extracted from a variety of observations. The four-dimensional

variational data assimilation method (4D-Var, Courtier and

Talagrand, 1987; Talagrand and Courtier, 1987; Rabier et al.,

2000; Stammer et al., 2002; Rawlins et al., 2007 and Wunsch and

Heimbach, 2013) and ensemble Kalman filter (EnKF) are two

major advanced data assimilation methods (Evensen, 1994;

Evensen, 2004). They have been successfully applied in many

operational centers, and both of them have great characteristics

(Kalnay et al., 2007; Buehner et al., 2010a; Buehner et al., 2010b).

As a non-sequential data assimilation method, 4D-Var can

assimilate asynchronous observations so that the analysis

results from 4D-Var are continuous in a long data assimilation

window. Developed from the Kalman filter and extended

Kalman filter, EnKF benefits from the estimation of a flow-

dependent analysis error covariance. However, the two well-

accepted powerful data assimilation schemes are also hampered

by their deficiencies. On the one hand, a defection for 4D-Var is

its high dependency on the adjoint model (of the forecast model)

that usually costs a lot of human resources and is difficult to

maintain or transplant to other systems. Furthermore, the lack of

flow-dependent background error covariance (denoted as B)
reduces the performance of 4D-Var. On the other hand, by

considering observations sequentially, the EnKF can hardly

assimilate all observations spread in a long data assimilation

window simultaneously. The discontinuous analysis fields are

not consistent with the natural facts.

A suite of cutting-edge hybrid data assimilation methods has

been proposed to possess the advantages of 4D-Var and EnKF and

avoid their disadvantages. En4DVar and 4DEnVar methods are

both outstanding schemes of them (Goodliff et al., 2015; Lorenc

et al., 2015; Liu and Xue, 2016). The En4DVar constructs the B
matrix as a linear combination of a static part with a flow-

dependent part estimated from ensemble members (Buehner,

2005). Since it retains the structure of 4D-Var, the adjoint

model is also necessary for the En4DVar scheme. The 4DEnVar

is devoted to not only introduce a flow-dependent B matrix into

the form of 4D-Var but also remove the adjoint model. To this

end, the 4DEnVar utilizes some ensemble perturbation evolutions

to approximate the tangent linear model. Liu et al. (2008; 2009)

and Liu and Xiao (2013) proposed the primary formulation of the

4DEnVar in which the analysis field is a linear combination of the

ensemble mean with observation perturbations. Other studies like

Tian et al. (2018) noticed the shortcomings of the 4DEnVar

schemes that the ensemble members and thereby the values of the

adjoint model are unchanged in iteration loops. To improve the

performance, Tian et al. (2018) proposed a series of non-linear
Frontiers in Marine Science 02
least squares En4DVar (NLSi-En4DVar) methods. Especially, the

fifth variant (NLS5-En4DVar) is a so-called iterative improvement

scheme. NLS5-En4DVar is composed of inner loops and outer

loops in which the conventional 4DEnVar and update of

ensemble members are implemented, respectively. A multigrid

scheme is also developed in Zhang and Tian (2018). The ill-

posedness of the inverse problem caused by the increase of the

number of variables to be estimated or optimized should be

eliminated by reducing the dimensions of variables or

introducing useful regularizations. Nowadays, Tian and Zhang

(2019a); Tian and Zhang (2019b) studied the generation of

ensemble members and expanded the cost function with a

regularization (Tian et al., 2020). The most significant

superiority of the 4DEnVar schemes beyond others is that it

inherits the performance of the conventional 4D-Var and avoids

the usage of the adjoint model. As assumed explicitly or implicitly

in the above studies, to estimate a reasonable adjoint model, the

ensemble perturbations need to be as small as possible. Large

perturbations are not compatible with the framework of the

4DEnVar schemes. However, in these above works, the

ensemble covariance is set to be the same as the B matrix like

EnKF does. To overcome this drawback, Liang et al. (2021)

constructed the ensemble covariance by multiplying a small

scaling factor (denoted as m) to the B matrix. It is demonstrated

that only if the scaling factor is less than 10-6 for the Lorenz-63

model, the value of the adjoint model and the gradients estimated

by ensemble members would be close enough to the value

obtained from the conventional 4D-Var. Otherwise, the

assertion that 4DEnVar is equivalent to the conventional 4D-

Var only holds for short data assimilation windows where the

non-linearity is limited. Compared to other schemes, A-4DEnVar

proposed by Liang et al. (2021) is a more rigorous framework. The

superiority of the method has been proven not only in theory but

also in ideal twin experiments, especially with long data

assimilation windows.

Beyond these advantages, A-4DEnVar lacks of discussions in

realistic models. In practice, the dimensions of the state variables

in operational systems are often large. For ensemble-based

methods, operational improvements and/or modifications are

necessary to avoid the high computational cost of the inverse of

the B matrix and restrain the spurious correlations caused by

insufficient ensemble members. For the first issue, to remove the

inverse of the B matrix, the usual process is introducing a new

state variable, denoted as w, for example, and preconditioning

the cost function using the transformation ~x = B1=2w (Oddo

et al., 2016; Storto et al., 2018) or ~x = Bw , where ~x is the state

variables or perturbations in the physical space. For the second

issue, a straightforward way to eliminate the spurious

correlations is to modify the background error covariance

matrix through a localization operator or function. Some

improvements and variants are also studied. Liu et al. (2009)

proposed a reasonable localization approach through

multiplying ensemble members by the first M empirical
frontiersin.org
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orthogonal functions (EOFs) of the Schur operator. Although

the approach is well accepted in ensemble-based algorithms, the

necessary computational cost increases because it increases the

ensemble size by M times. Despite the above methods, some

simple and convenient strategies are enlightening. One of these

methods, the so-called independent point (IP) or feature point

(FP) scheme, is proposed in the studies of Zhang and Lu (2008);

Zhang and Lu (2010) and Zhang et al. (2011) and is used in

Zhang and Wang (2014); Guo et al. (2017), and Qian et al.

(2021) to optimize the open-boundary conditions of tidal

currents and/or bottom friction coefficients (BFCs) of the tidal

constituent. In this scheme, only the values of several selected

nodes are optimized, and the value of other rest nodes is

calculated by Cressman linear interpolation. As they

demonstrated, both the dimension of the parameter space and

the ill-posedness of inverse problems are reduced. Apparently,

the IPs scheme is easy to implement, especially for the estimation

of spatially or temporally distributed parameters. Pan et al.

(2017) discussed the IP interpolation methods in detail. While

the conventional adjoint method is implemented in the above

studies, a natural question is how to integrate this convenient

approach into A-4DEnVar and exploit its ability on some

realistic operational systems.

We address the above questions in this paper. We not only

constructed an operational improvement variant of A-4DEnVar

with a precondition transformation but also combined it with

the IP scheme and explored its potential for the BFC estimation

problems. At the beginning of the paper, the preconditioning

transformation is introduced to A-4DEnVar to avoid the inverse

of the Bmatrix. The algorithm is decomposed as inner and outer

loops to further improve its ease of implementation. Following

the derivation and combining with the IP scheme, we estimate

the spatially varying BFCs using the newly improved variant.

The estimation is based on the external mode of the Princeton

Ocean Model general coordinate system (POMgcs, Ezer and

Mellor, 2004), which is, in fact, a two-dimensional shallow water

equation. The effectiveness and good performance of A-

4DEnVar are validated by a twin experiment with some

known and randomly chosen BFCs. A practical experiment in

which the sea-level evaluation observations are generated from

the NAO (Matsumoto et al., 2000) tidal harmonic constant

datasets (https://www.miz.nao.ac.jp/staffs/nao99/data/nao99Jb.

tar.gz) is implemented to investigate the distribution of BFCs

in the Bohai and Yellow seas.

The remainder of this paper is organized as follows. In

section 2, the formulations and derivations of the operational

improved variant algorithm are described in detail. Section 3

introduces the numerical model and datasets. The data

assimilation experiment setups and their results are shown in

section 4. The last section lists the discussions and conclusions of

this study.
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2 Methodology

2.1 Preconditioning of the cost function

For the conventional 4D-Var scheme, the cost function is

defined as

J = 1
2 x0 − xbð ÞTB−1 x0 − xbð Þ + 1

2 l − lbð ÞTC−1 l0 − lbð Þ
+ 1

2o
i
ℋiℳi x0, lð Þ − yi½ �TR−1

i ℋiℳi x0, lð Þ − yi½ � (1)

where x0 and l are the initial conditions and the parameters

in dynamic models. xb and B are the background initial

conditions and the corresponding background error

covariance. Here, a priori or background parameter lb and

error covariance C are also included for the combined

estimation problem, but they are not always explicit in

practice. The dynamic model evolving from t0 to ti is denoted

as ℳi =. The observation operator at time step ti is ℋi . yi and
Ri are the observations and their error covariances, respectively.

Although the cost function mentioned above contains the

estimation of the initial conditions and parameters

simultaneously, it is convenient to reconstruct it to the

estimation problems in which only initial condition or

parameters are considered. However, to simplify the

descriptions below, we consider Equation 1 directly and

without any modifications for both initial condition estimation

and parameter estimation problems.

The cost function in A-4DEnVar is similar with that in

conventional 4D-Var except for the expression of independent

variables that are composed of an approximation of the truth

(denoted as x*0 and l*) and their perturbations (denoted as ~x0
and ~l) to better illustrate an iterative algorithm. That is

J = 1
2 ~x0 + x*0 − xb
� �T

B−1 ~x0 + x*0 − xb
� �

+ 1
2  ~l + l* − lb

� �T
C−1 ~l + l* − lb

� �

+ 1
2o

i
ℋiℳi ~x0 + x*0 ,

~l + l*
� �

− yi
h iT

R−1
i ℋiℳi ~x0 + x*0 ,

~l + l*
� �

− yi
h i (2)

If there are no precondition processes, a straight way to

obtain the minimum of the cost function is to calculate its

gradient as done in the original A-4DEnVar. In the initial

optimization problems, for the fixed x*0 , the gradient of the

cost function with respect to perturbations are

∇J ~x0ð Þ = B−1 ~x0 + x*0 − xb
� �

+o
i

Mijx*0

� �T

HT
i R

−1
i ℋiℳi x*0 + ~x0, l

� �
− yi

h i

(3)

Due to the large dimensions of the background error

covariances, accurate calculations for the inverse matrix B-1

require a lot of computational resources. If the localizations

are not considered, an elegant way is to estimate them with the

covariances of several (often less than 100) ensemble members

so that the inverse is, in fact, replaced with the pseudo-inverse
frontiersin.org
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matrix [see the appendix of Liang et al. (2021) for details)].

However, localizations play a significant role in the construction

of the background error covariances and are often irreplaceable

in operational systems to eliminate the long-distance pseudo-

correlations. The elegant way would introduce some unexpected

errors into gradient. Similar questions also exist in parameter

estimations if the dimension of parameters is large. A convenient

way is to remove the inverse matrix in Equations 2 and 3

through a precondition process as described below.

To avoid the calculation of the inverse of B, one often

preconditions the independent variable using ~x0 = Bw . The

cost function is hence expressed as

J wð Þ = 1
2 Bw + x*0 − xb
� �T

B−1 Bw + x*0 − xb
� �

+ 1
2 l − lbð ÞTC−1 l0 − lbð Þ

+ 1
2o

i
ℋiℳi x*0 + Bw , l

� �
− yi

h iT
R−1
i ℋiℳi x*0 + Bw ,l

� �
− yi

h i (4)

In fact, the terms corresponding to the parameters are

treated as constants in the initial condition estimation

problem. The gradient of the cost function is

∇J wð Þ = Bw − xb − x*0
� �

+o
i

BMijx*0

� �T

HT
i R

−1
i ℋiℳi x*0 + Bw , l

� �
− yi

h i
(5)

where Hi denotes the tangent linear model of the observation

operatorℋi. It should be noted that the value of tangent linearmodel

Mijx*0 and, hence, the structure of cost function depends on x*0 , the
prior approximation of the truth. Thus, to achieve the minimization

of the cost function in Equation 1, x*0 should be updated iteratively.

Since ~x0 is a small perturbation, the Taylor expansions of the

dynamic model operators indicate that

ℳi x*0 + ~x
� �

≈ ℳi x*0
� �

+Mijx*0 ~x0 (6)

or it can be further simplified as

~xi = Mijx*0 ~x0 (7)

in which Mijx*0 is the tangent linear model of ℳi. Equation

7 provides an efficient way to estimate the tangent linear model.

The processes are similar to what was mentioned in Liang et al.

(2021). Once there are N sufficient samples of ~x0 and ~xi, denoted
as ~X0 = (~x10, ~x

2
0,⋯, ~xN0 )and ~X i = (~x1i , ~x

2
i ,⋯, ~xNi ), respectively, the

tangent linear model satisfies

~Xi = Mijx*0 ~x0 (8)

The least squares estimation of the tangent linear model is

M̂ ijx*0 = 1
N
~X0

~XT
0

� �−1 1
N
~Xi
~XT
0 (9)

if the dimension of state variables is not large and ~X0
~XT
0 is

full rank. It is clear that for different ~X0 (although the ~Xi is

different in this situation), Equations 8 and 9 are satisfied. Thus,

the generation of ensemble does not influence the estimation of

the tangent linear models and adjoint models. Otherwise,
Frontiers in Marine Science 04
M̂ ijx*0 = 1
N
~XT
0
~X0

� �−1 1
N
~XT
0
~Xi = ~X+

0
~Xi (10)

where a pseudo-inverse of ~X0 denoted as ~X+
0 = ½~XT

0
~X0�−1~XT

0

is adopted. In this situation, the estimations of tangent linear

models are different with the difference of space generated by

ensemble members. The widely used EOFs should be used to

construct reasonable ensembles. However, due to the fact that

the IP scheme is adopted in this paper, this situation is avoided

actually. Substituting the M̂ ijx*0 into Equation 5 yields the

estimation of the gradient

∇J wð Þ = Bw − xb − x*0
� �

+o
i

BM̂ ijx*0

� �T

HT
i R

−1
i ℋiℳi x*0 + Bw ,l

� �
− yi

h i
(11)

Equation 11 is the gradient of cost functions with respect to

the precondition variables in the initial condition optimization

problems. The construction details of BM̂ ijx*0 are related to the

generation of the ensemble members, which will be discussed in

the next subsections.

For the parameter estimation, the processes and derivations

are similar as what was derived in the initial condition

estimation except for some details. Set parameters are

composed of prior components and perturbation components.

That is

l = l* + ~l (12)

and, again, assume that

~l = Cw (13)

The parameter perturbations have

ℳi x0, l* + ~l
� �

≈ ℳi x0, l*
� 	

+Mijl* ~l (14)

where the tangent linear model is about the parameter

variables l*.
Let
~l = (~l1, ~l2,⋯, ~lN ) be a matrix with N samples of ~l as its

columns and their corresponding state variable perturbations

also be composed of a matrix named as ~Xi. Then, the

estimation of

Mi|l* is

M̂ ijl* = 1
N
~l~lT

� �−1
1
N
~Xi
~lT (15)

when the ~l~lT is full rank. Otherwise, the estimation is

M̂ ijl* = 1
N
~lT ~l

h i−1
1
N
~lT ~X i =

~l+~Xi (16)

where ~l+ is the pseudo-inverse of ~l.
The cost function for parameter estimation is expressed as

J wð Þ = 1
2 x0 − xbð ÞTB−1 x0 − xbð Þ + 1

2 l* + Cw − lb

� 	TC−1 l* + Cw − lb

� 	
+ 1

2o
i
ℋiℳi x0, l* + Cw

� 	
− yi

� �TR−1
i ℋiℳi x0, l* + Cw

� 	
− yi

� � (17)
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The gradient with respect to w is

∇J wð Þ = Cw − lb − l*
� 	

+o
i

CM̂ ijl*
� �T

HT
i R

−1
i R−1

i ℋiℳi x0, l* + Cw
� 	

− yi
� �

(18)

Again, the generation of ensemble members will be

discussed in the next sections.

Since the gradients are obtained, combining with a suitable

optimization method [e.g., the linear research gradient descent

method, the Newton descent method, and the limited-memory

quasi-Newton method (L-BFGS) method], the minimization of

the cost function can be calculated.
2.2 Generation of the ensemble
perturbations

In subsection 2.1, we presented the framework of A-

4DEnVar with precondition variables. The remaining question

is how to generate reasonable ensemble perturbations in

practice. To ensure an accurate estimation of tangent linear

models in Equations 10 and 16, the basic assumption is that the

magnitudes of perturbations should be much smaller than that

of independent variables. It must be mentioned that the errors

generated by a probability density distribution with the

covariance B (for initial estimation) or C. (for parameter

estimation) are usually not available. However, for initial

conditions, it is presented above

BM̂ ijx*0 = B 1
N
~X0

~XT
0

� �−1 1
N
~Xi
~XT
0 (19)

or

BM̂ ijx*0 = B~X
+
0
~Xi (20)

and, for parameters,

CM̂ ijl* = C 1
N
~l~lT

� �−1
1
N
~Xi
~lT (21)
Frontiers in Marine Science 05
or

CM̂ ijl* = C~l+~Xi (22)

If setting the ensemble perturbation covariances to be

1
N
~X0

~XT
i ≈ mB (23)

and

1
N llT ≈ mC (24)

The inverse terms in Equations 19–21 are eliminated. For

initial condition estimation, the gradient is

∇J = Bw − xb − x*0
� �

+o
i

1
mN

~X0
~XT
i H

T
i R

−1
i ℋiℳi x*0 + Bw , l

� �
− yi

h i

(25)

For parameter estimation, the gradient is

∇J = Cw − lb − l*
� 	

+o
i

1
mN

~l ~XT
i H

T
i R

−1
i R−1

i ℋiℳi x0, l* + Cw
� 	

− yi
� �

(26)

Note that the gradients in Equations 25 and 26 are calculated

through ensemble perturbations under the assumption that x*0
and l* are fixed. Thus, once the convergence of prediction

variable w is achieved, x*0 and l* should be updated. The

complete algorithm is composed of two parts, i.e., the

iterations of w and the updates of x*0 and/or l*. A further

development is to leave the iterations into outer loops in which

several inner loops are included. The steps for the operational

improved A-4DEnVar are described below in Figure 1.

In the outer loops, the ensemble perturbations are generated

based on the mB (and/or mC), and then, they are added to the

approximation state variables to obtain the initial conditions or

parameters of the ensemble members. The ensemble initial field

and parameters are reconstructed in the outer loops of each

cycle. The main computational costs for the integrations of

ensemble members are only needed in the outer loops,
FIGURE 1

The flowchart of the operational improved analytical four-dimensional ensemble variational (A-4DEnVar).
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whereas the inner loops focus on the iteration of precondition

state variables.
2.3 The independent point scheme

The basic assumption of IP scheme is that the features or

characters of the variables to be optimized (such as spatially

distributed BFCs) can be determined by the variables located at

some key points (Wang et al., 2021). In data assimilation, only

these key variables are optimized directly, whereas other general

variables are optimized by using interpolation methods (such as

Cressman method and uniform or nonuniform spline

interpolation methods) based on these key variables. The IP

scheme restricts estimation problems from the variable space to

the IP space. In practice, the key points are often chosen to be far

away from each other so that they are considered to be

independent. The background error covariance in the IP space

is thus simplified as a diagonal matrix. Meanwhile, the

interpolation coefficients are determined by the distances

between points; hence, the adjacent points have similar values,

obviously. It can be seen that the IP scheme not only reduces the

dimension complexity but also introduces an implicit

localization in data assimilation schemes.

If the Cressman method (Cressman, 1959) is adopted, it can

be described as

Fg =o
N

i=1
WgiFi (27)

Wgi =

R2−d2gið Þ
R2+d2gi

� 	 dgi < R

0 dgi > R

8><
>: (28)

where Fg denotes the variable located at a general point, Fi is

the variable located at a key point and/or IP, and Wgi is the

Cressman coefficient that is determined by the distance between

the general point and the IP i.e., dgi, and a predefined

parameter R.
3 The numerical model

3.1 Governing equations of
forward model

Here, the external mode of the Princeton Ocean Model

(POM, Blumberg and Mellor, 1987) is used to simulate tides

and tidal currents. The attributes of the POM model include the

sigma-coordinate system, curvilinear orthogonal coordinates

with an Arakawa C differencing scheme in the horizontal grid,

explicit horizontal time differencing, and implicit vertical time

differencing. The free surface and split time step method is
Frontiers in Marine Science 06
adopted in which the two-dimensional external mode uses a

short time step for a high-accuracy surface simulation and the

three-dimensional internal mode uses a long-time step to reduce

the computational cost. Based on the framework of POM, the

POMgcs is extended to a mixed coordinate system to make the

z-coordinate and sigma-coordinate compatible.

After the variables are integrated in the original three-

dimensional model from the bottom to the top, the governing

equations in the external mode (in z-coordinate) for BFC

estimation is

∂h
∂ t +∇h · h +Hð Þ V*

h


 �
= 0

∂ h+Hð ÞV*
h

∂ t +∇h · h +Hð Þ V*
h
V
*

h


 �
+∇h ·

Z h

−H
v
* 0

h v
* 0

h

� �
dz + f h + Hð Þ · k̂� V

*

h
=

−g h +Hð Þ∇h h − �hð Þ − 1
r0
∇h

Z h

−H

Z h

z
~rgdz

� �
dz +

1
r0

Z h

z
~rgdz

� �
jz = −H ∇h H

− t
*

top
+ t

*

bottom

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(29)

where ∇h = ( ∂
∂ x ,

∂
∂ y ) is a Hamilton operator in the

horizontal directions. The meanings of other symbols are

listed in Table 1.

The bottom friction is calculated by

t
*

bottom
= t bx , t by
� 	

= r0Cd V
*

h

����
���� V*h (30)

where Cd is the BFCs to be optimized.
3.2 Model setting

The model domain is the Bohai and Yellow seas, which

covers from 35°N to 41°N in latitudes and 117.5°E to 127.25°E in
TABLE 1 The symbols in the external mode of the Princeton Ocean
Model with the generalized coordinate system.

Symbols Variables Units

t Time s

h Sea surface height m

H Depth m

V
*

h
Average current velocity m s-1

v
* 0

h Current perturbation m s-1

f Coriolis parameter s-1

g Gravity m s-2

ro Average density kg m-3

~r Density perturbations kg m-3

t
*

top
Surface friction m2 s-2

t
*

bottom
Bottom friction m2 s-2
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longitudes. The gridded topography is interpolated from the

ETOPO5 datasets. It is shown (in Figure 2) that the depths are all

less than 85 m, such that the tide is a basic and major motion in

this area. The spatial resolutions are all 1/12° in the east and

north directions. In POMgcs, the integration time step is 4 s,

which is much enough to simulate the M2 constituent.

A static initial condition with zero sea surface height and

current velocity is used to spin up the model. Due to the fact that

the external mode of POMgcs (a shallow water model) is adopted,

the temperature and salinity in initial and open-boundary

conditions are constant. The open-boundary conditions

including the tide (sea-level height evolution) and tidal currents.

Both of them are fixed in the BFC optimization experiments. The

open-boundary tide sea-level heights are calculated through the

tidal harmonic constants from the same datasets that used to

generate the observations, i.e., the NAO datasets. However,

because the NAO datasets do not provide the harmonic

constants of tidal currents, we have to generate tidal currents

from the harmonic constants of TPXO7 (Egbert and Erofeeva,

2002) datasets. To eliminate the misfits of tide and tidal currents,

we assimilated the same observations with a fixed-background

BFC (that is 0.0025 as used in below experiments) value to provide

the optimized open-boundary tidal currents before the inversion

of BFCs. The data assimilation method we used is also the

operational improved A-4DEnVar. The fixed value is consistent

with or close to what was used in other studies. In Yao et al.

(2012), the open-boundary conditions of the M2 tidal constituent

in the Bohai and the Yellow seas are optimized with the BFCs

0.003. Fan et al. (2019) demonstrated that the value of BFCs in the

East China Shelf Seas varies from 0.001 to 0.003. Wang et al.

(2021) set the initial BFCs to 0.002 in their experiments. Following

these studies, we think that 0.0025 is a reasonable and acceptable

value in our study. Moreover, the forcing terms from the sea
Frontiers in Marine Science 07
surface such as wind stress, sensible and/or latent heat flux, and

precipitation are not included. The Coriolis parameter takes the

local value. The model ran from the 1st to the 7th of January in

2000 in which the first 6 days were used to spin up. All

observations are the sea-level heights of the M2 tidal constituent.

After that, data assimilation based on A-4DenVar is implemented.
3.3 The locations of IPs and
observation stations

The factors that influence the BFC coefficients include

topography, water depth, and sediments. Regardless of the

attributes of these factors in detail, the distributions of BFCs

ought to be continuous and smooth in most regions. The trends

and/or characters of the distributions are able to be described

through several control points (namely, IPs mentioned above) as

indicated in studies. We followed these studies and conducted a

twin experiment (denoted as EXP 1) with 10 IPs and a suite of

practical experiments (denoted as EXP 2 to EXP 5) with 1, 4, 7,

and 10 IPs, respectively. With 10 IPs, we also tested the impacts

of observations on the data assimilation performances (EXP 1

and 5). In the last suite of experiments (EXP 6 and EXP 7),

density IP stations evenly distributed on an 1°×1° grids are used

so that smaller Cressman parameters would be acceptable.

As the main purpose of this paper is to show an operational

implementation for A-4DEnVar, we do not discuss how to

design a very strict optimal solution for IP locations.

Empirically, the selection principle of IPs is that they should

be distributed evenly and cover the entire simulation area as

much as possible. In EXP 1 to EXP 5, the locations of these

points are artificial and presented in Figure 2 (marked with

yellow crosses). The observations are calculated from either a
FIGURE 2

The locations of independent points (IPs; marked with yellow crosses) and the observation stations in EXP 1 to EXP 5 (marked with red dots) for
bottom friction coefficient (BFC) optimization.
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twin model (in EXP 1) or the tidal constants of the NAO model

(in EXP 2 to EXP 5). The observations are located on stations

that gradually increase from 1°×1° (for both the EXP 1 and EXP

2), 1/2°×1/2°,1/4°×1/4° and 1/12°×1/12° in EXP 1 and 5 (the

station locations are not shown here). In EXP 6 and EXP 7, the

observational stations are only on the 1/12°×1/12° grids.

Furthermore, at each station, the simulated observation lasts

for 1 day at a frequency of 1 h. The Cressman parameter is set to

5° and fixed so that the whole simulation domain is covered even

with only one IP in EXP 1 to EXP 5, whereas it is set to be 2.5°

and 1.5° in EXP 6 and EXP 7, respectively.
4 Numerical experiments

4.1 The twin experiments (EXP 1)

The twin experiments are conducted to evaluate the

feasibility of A-4DEnVar, and the implementations are

expressed in the following steps. First, a suite of random

values varying from 1×10-4 to 3 × 10-3 are assigned to the

BFCs of the 10 IPs. Second, with these values, the BFCs of the

general locations are calculated by the Cressman interpolation

method. Starting from the static initial condition and open-

boundary conditions mentioned in the above sections, the

external mode is integrated for 7 days. In the last 24 h,

observations without noise are provided from the simulated

“true” sea-level heights at the observation stations. Finally, the

operational improved A-4DEnVar is implemented for

data assimilation.

Due to the fact that the perfect observations are assimilated in

the twin experiment, the optimizations should trust the

observations as much as possible. To this end, the algorithm

starts from an initial iteration BFC value that is 0.0025 and the

background error covariance terms of the cost function are not

included. The ensemble size is set to be 10, which is equal to the

dimension of state variables, and the factor m is fixed to 10-6. The

stopping criteria for inner loops in each outer loop is important to

ensure the coverages of the algorithm. However, the ensemble

members and hence the value of tangent linear models and the

adjoint models are only updated in the outer loop; it is not

necessary to achieve a very exact global minimum in every inner

loop where the value of the adjoint models are fixed. Given the

balance between effectiveness and the computational cost,

empirically, it is convenient to limit the inner loops less than

five times in this paper. The outer loop iterations are terminated

once the value of the cost function does not decrease significantly.

Figure 3 shows the changes of the cost function value with

inner iterations when 1°×1° observational grids are employed.

Here, the zero IPs or the zero iterations mean the result without

data assimilation. It is clear that, with the iterations, the value of

the cost function decreases continually. The experiment results

indicate that the model after data assimilation is indeed
Frontiers in Marine Science 08
restrained by the observations. With only one outer loop

containing five inner loops, the cost function decreases by

more than 77% of the initial cost function value. After 10

iterations, the algorithm converges to a local minimum of the

cost function. At the end of the iterations, the cost function value

is only 1.2% of the initial cost function value and is much close to

zero. However, because the influences of BFCs to the evolutions

of sea-level heights are complicated, it is hard to achieve the

global minimum for any gradient-based optimization algorithm.

The distributions of the BFCs are presented in Figure 4 of

which Figure 4A is the truth, Figures 4B to E are the experiment

results with increasing observational grids, i.e., 1°×1°, 1/2°×1/2°,

1/4°×1/4° and 1/12°×1/12°, respectively, and Figure 4F shows the

difference between the results in Figures 4E and 4A. These

patterns from EXP 1 are much similar with each other and the

experiment result performance is slightly better with the

increases of observations. With either sparse or density

observations, the proposed algorithm converges to a local

minimum of the cost function. Compared with the true BFCs,

all the absolute values of these misfits are under 4.5×10-4 which

is much less than the values of BFCs. Specifically, in most areas,

the BFC values from experiment results are very close to the

truth but are larger in the west of the Yellow seas, near the open

boundary, and are smaller in the north of Bohai seas.
4.2 The practical experiments with
different IPs (EXP 2 to EXP 5)

As mentioned above, we designed four experiments

(denoted as EXP 2 to EXP 5) with 1, 4, 7, and 10 IPs,

respectively, to estimate the BFCs in Bohai and Yellow seas.

The settings of practical experiments are similar to that of the

twin experiment except for the number of IPs and the generation
FIGURE 3

The cost function value decreases with iterations in the twin
experiment with perfect observations on the 1°×1° grids.
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of observations. The locations of these IPs are the same as what

was mentioned in the twin experiments, whereas the

observations are calculated from the harmonic constants of the

M2 tidal constituent derived from the NAO tide model dataset

on their corresponding observation stations.

A great difference between the twin experiment and the

practical experiments is that not only the uncertainty from BFCs

but also that from other model parameters should be considered

simultaneously. However, how to distinguish these uncertainties

is complex and beyond the scope of this paper. Instead of

discussing them in detail, we assume that these uncertainties

are reflected through the observations and the observational

errors are Gaussian white noise with a standard deviation of

0.1 m. In the cost function, the background values of BFCs are

0.0025 with a standard deviation of 0.001 (dimensionless). The

iteration processes in the practical experiments are set to be the

same with that in the twin experiments.

For the experiment with 1°×1° observational grids, Figure 5A

shows the impact of the number of IPs on the converged cost

function values in EXP 2 to EXP 5. What should be mentioned is

that, influenced by other uncertainties in the dynamic model, the
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cost function values at the beginning and the end of the

iterations are both larger than that in the twin experiments.

The cost function value decreases by approximately 14% when

only one IP is used. The trend that the minimum values of the

cost function obtained by A-4DEnVar decreases with the

increase of the IPs indicates that the distributions of BFCs are

better described with more IPs. When the number of IPs is 7 (in

EXP 4), the optimization effect tends to be stable. After that,

increasing the number of IPs would not significantly improve

the performance. Figure 5B presents the cost function values

changes with iterations while 10 IPs are used. Like what we see in

the twin experiment, the cost function values also decrease

rapidly. In the first five inner iterations, the algorithm almost

converges with the fixed ensemble members. After that, once the

ensemble members are updated in the outer loop, cost function

values decrease a rather big step and then converges again in the

inner loops. When 10 inner iterations are implemented, cost

function values decrease by approximately 29.6%.

The amplitudes and phases of M2 tidal constituents are also

calculated by the harmonic analysis process. In Figure 6, the

cotidal chart from the study of Wang et al. (2021, Figure 6A) and
FIGURE 4

Distributions of the true BFCs (A) and that of experiment results with the 1°×1° (B), 1/2°×1/2° (C), 1/4°×1/4° (D), and 1/12°×1/12° (E) observational
grids. (F)is the difference between (E) and (A).
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the NAO dataset (Figure 6B) are shown, respectively. Compared

to them, it is clear that three amphidromic points in the

simulated area and the results we obtained are consistent with

those from other studies.

The cotidal chart differences between the control model

results (“CTL” in figures) before data assimilation and that
Frontiers in Marine Science 10
from the NAO model are shown in Figure 7A (for the

amplitudes denoted as “H”) and (B) (for the phases denoted as

“g”). Figures 7C, D are similar with those in Figures 7A, B but for

the results after data assimilation (“DA” in figures). Comparing

Figures 7A with C, it is shown that the amplitudes in the north of

the Yellow Sea and the middle of the Bohai Sea are much
A B

FIGURE 5

The left (A) shows the impact of the number of IPs on the cost function values when EXP 2 to EXP 5 converged. The right (B) shows the impact
of the iterations on the cost function values when 10 IPs are used in EXP. 4.
FIGURE 6

(A, B) are the cotidal charts from Wang et al. (2021) and the National Astronomical Observatory (NAO) data, respectively. (C, D) are the cotidal
charts before and after data assimilation.
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improved. For the phases, great improvements are presented in

the north of the Yellow seas around the amphidromic point near

(123.5°E, 37.5°N) and the middle of the Bohai Sea. The misfits

around (120°E, 40°N) in the north of the Bohai Sea are caused by

the different locations of the amphidromic points from the

results after data assimilation and NAO datasets. Considering

the amplitudes in these areas are almost zeros, although the
Frontiers in Marine Science 11
phases are not close enough to that from the NAO datasets, the

sea-level evolutions are, in fact, much closer.

Specifically, Figure 8 shows the data assimilation results

in EXP 5 with 10 IPs and different observation densities.

Again, consistent with the results in the twin experiment in

the above subsections, the patterns are much similar with

each other.
FIGURE 7

(A, B) are the differences of amplitudes and phases between the control model and NAO datasets, respectively. (C, D) are similar with (A, B) but
for the differences between data assimilation results and NAO datasets.
FIGURE 8

The BFC values after data assimilation from EXP 2 (A), EXP 3 (B), EXP 4 (C) and EXP 5 (D) with different observational grids.
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The distributions of BFCs obtained here are much smooth.

This is mainly because only 10 IPs and a larger Cressman

interpolation parameter are used. For the experiment result in

Figure 8A, for example, the average BFC value in the simulation

areas is 1.323×10-3 and the maximum and minimum values are

3.179×10-3 and 9.276×10-5, respectively. For the same longitude,

the values of BFCs in the north are less, and, for the same

latitude, the values near the middle of the area are less than that

in the east or west areas.
4.3 The practical experiments with
different Cressman parameters (EXP 6
and EXP 7)

The last suite of experiments consists of EXP 6 and EXP 7.

For both of them, 35 IPs and the 1/12°×1/12° observational grids

are used. The optimization processes for them are the same as

those in the above subsections. The only differences between

them are the Cressman parameters, which are 2.5° and 1.5° in

EXP 6 and EXP 7 as mentioned in subsection 3.3.

The experiment results are shown in Figure 9. A larger

Cressman parameter might introduce some compensations

within the BFC values of IPs. Thus, in the above subsections,

the patterns are smoother and the optimization process is more

stable than what we obtained here, and, in Figure 9, the pattern

from EXP 6 is smoother than that from EXP 7. In Figure 9A, the

minimum values of BFCs are located near (37°N, 123°E) in the

Yellow seas and the north of the Bohai seas. The maximum

values are approximately 5.487×10-3 and distributed along the

east shores in the Yellow seas. In Figure 9B, with a smaller

Cressman parameter, the distribution of the BFCs shows more

local features and details. The maximum values are also

distributed along the east shores in the Yellow seas, whereas

the minimum values appear at (37°N, 123°E).

A straight intuitive comparison of the data assimilation

results is provided through the cotidal charts from EXP 6 and

EXP 7 in Figures 10A, B. The differences between the NAO
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dataset and EXP 6 [amplitudes in (Figure 10C) and phase in

(Figure 10D)] are also presented. Compared to Figures 7A, C, it

is clear that the differences of amplitudes are further decreased in

the Bohai seas and the north of the Yellow seas. A slight increase

occurs in the west of the Yellow seas. The differences of phases

are not changed significantly here.

How to choose the best Cressman parameter is a complex

issue to be discussed. The basic principle is to ensure that the

interpolation result can cover the full simulation domain.

Furthermore, if the stability of data assimilation processes can

be guaranteed, one should choose the parameter so that the cost

function convergences to a lower value. In Lu and Zhang (2006),

the Cressman parameter is set to 2° for a 1° IP grid. In this paper,

the cotidal charts from EXP 6 and EXP 7 are much similar to

each other and the difference between their cost function values

after convergences is less than 2% of its initial value. Based on

this evidence, we think that both of the two parameters are

acceptable. A more objective and accurate approach might be

discussed in the future.
5 Summary

A-4DEnVar is one of the most cutting-edge hybrid data

assimilation schemes. In early studies, both theoretical and

experimental studies based on ideal chaos dynamic models

have shown its equivalence to the conventional 4D-Var and

avoided the adjoint models. As we all know, there are still several

issues to be explored if one wants to apply the theory and

algorithm ideas into an operational system.

This paper is a bridge from the theoretical algorithm to

practical operational developments. To reduce the

computational cost caused by the inverse of the B matrix,

precondition variables are introduced. The algorithm is further

designed as an outer–inner loop structure. The ensemble

members and hence the estimated corresponding adjoint

model values in 4D-Var are updated only in the outer loops so

that too-frequent updates of the ensemble members are avoided.
FIGURE 9

The BFC distributions after data assimilation with the same 35 IPs, 1/12°×1/12° observational grids but with Cressman parameter 2.5° (A) in EXP 6
and 1.5° (B) EXP 7.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1084159
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liang et al. 10.3389/fmars.2022.1084159
The inner loops focus on the gradient-based optimization of the

precondition variables. The local minimum of the precondition

variables is combined to the increments of state variables in

outer loops.

The IP scheme is, in fact, an implicit localization method to

construct an empirical Bmatrix. In practice, the values of the IPs

are optimized using data assimilation, and the values of other

general points are calculated through interpolation methods

such as the Cressman method, linear method, and spline

interpolation method. Due to the fact that only IPs are

explicitly optimized, the IP scheme can reduce the freedom

degree and the complicity of the data assimilation process. In the

framework of the operational improved A-4DEnVar, the

combination of independent schemes makes it possible to

restrict the optimization problems on the IP space.

Considering that the number of IPs is much less than that of

original variables, the ill-posedness is, in fact, limited. Moreover,

the IP scheme also introduces an implicit localization that

increases the stability of the algorithm.

We constructed the twin experiments and practical

experiments to validate the performance of the improvement

variant of the A-4DEnVar on the optimization of the BFCs in

the Bohai and Yellow seas. In the twin experiment, the perfect

observations are used and the cost function decreases rapidly. In

the practical experiment, the observations calculated from the

tidal harmonic constants of the NAO tide model are used.

Compared with the cotidal chart from the original NAO

datasets, both the tidal heights and lag phases are improved.

After assimilation, the BFCs of the open-sea areas are larger than
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that of the coastal areas for the same latitude, and, for the same

longitude, the BFCs of the Bohai Sea are slightly smaller than

that of the Yellow Sea. It is concluded that the operational

improved variant of A-4DEnVar works well in the spatially

distributed parameter estimation problems.

We demonstrate that, if without the operational

improvement, it is a difficult task for the original A-4DEnVar

to optimize the BFCs in such vast areas. On the one hand, to

construct a full-rank background error covariance and ensure a

proper estimation of the adjoint model, the original A-4DEnVar

has to generate more than 4,000 (which is the number of BFCs in

the POMgcs model) ensemble members. It is clear that the

burden of computation cost is too high if the IP scheme is not

considered. On the other hand, the local correlations of these

BFCs are hard to construct if the Cressman interpolation (or

other interpolation skill) method is not considered. It would be a

trouble to calculate the inverse of such a big background error

covariance matrix, too. In summary, although better

improvements might be proposed for A-4DEnVar in the

future, in this stage, the IP scheme is necessary and cannot be

replaced or ignored in the experiments.

In addition to the issues above, there are some points that are

beyond the scope of this paper, but they should be studied in our

future studies. On the one hand, this paper explores the

performance of A-4DEnVar on the parameter estimation with

an implicit localization method, but the proposed algorithm

should be widely validated in the initial condition field

estimation with large freedom degrees. On the other hand,

only the M2 tide constituent is mentioned in this paper.
FIGURE 10

The cotidal chart from EXP 6 (A) and EXP 7 (B) and the differences between EXP 6 and NAO for amplitudes (C) and phases (D).
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However, many tidal constituents are combined with each other

in the real world. It is worthwhile to apply the improved scheme

to the inversion of BFCs under a more realistic model.
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