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Determination of nitrogen
content in Ulva fenestrata
by color image analysis –
a rapid and cost-efficient
method to estimate nitrogen
content in seaweeds

Kristoffer Stedt1*, Gunilla B. Toth1, Johan Davegård2,
Henrik Pavia1 and Sophie Steinhagen1

1Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg,
Strömstad, Sweden, 2Independent researcher, Gothenburg, Sweden
There is an increasing interest in the cultivation of seaweeds for food and feed,

and the seaweed aquaculture industry is rapidly developing. The nutritional

status of the seaweeds is important to ensure a good quality crop. Cost-

efficient and straightforward methods for farmers to analyze their crop are

essential for the successful development of the industry. In this study, we

developed non-destructive, labor- and cost-efficient models to estimate the

nitrogen content in the crop seaweed Ulva fenestrata by color image analysis.

We quantified tissue nitrogen content and thallus color in sea-farmed seaweed

every week throughout a whole cultivation season (15 consecutive weeks) and

analyzed data with linear regression models. We showed that color image

analysis accurately estimated the nitrogen content in the seaweed (R2 = 0.944

and 0.827 for fresh tissue and dried powder, respectively), and through tenfold

cross validation we showed that the developed models were robust and

precise. Based on these models, we developed a web-based application that

automatically analyzes the nitrogen content of U. fenestrata. Furthermore, we

produced a color guide that can easily be brought to the farm for onsite crude

estimation of the nitrogen content of U. fenestrata. Our results demonstrate

that color can be a powerful tool for seaweed farmers (and researchers) to

estimate seaweeds’ nutritional status. We anticipate that similar models can be

developed for other commercially interesting seaweed species.

KEYWORDS

color image analysis, web-based application, regression, RGB, nitrogen content
correlation, seaweed, protein content, ulva
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Introduction

In recent years there has been an increasing interest in the

cultivation of seaweeds for food and feed. The global seaweed

market is increasing exponentially and tripled in production

during the last 20 years, reaching 32 million tonnes produced

seaweeds annually (FAO, 2018; Duarte et al., 2022). Today,

nearly 99% of the global seaweed production is produced in

Eastern Asia (FAO, 2018), but as the European Commission’s

Bioeconomy strategy and Green Deal is implemented (European

Commission, 2018; European Commission, 2020a; European

Commission, 2020b; European Commission, 2020c), the

European seaweed aquaculture industry is expected to develop

rapidly (Campbell et al., 2019; Araújo et al., 2021). Apart from

boosting economic growth by investments in coastal

communities and new employments (Barbier et al., 2019;

Araújo et al., 2021), seaweed aquaculture is a sustainable

alternative to traditional farming of land crops (Hasselström

et al., 2018; Gephart et al., 2021; Stedt et al., 2022a). However, as

for all new industries there are challenges and obstacles to

overcome. For example, for food and feed purposes the

nitrogen (N) content of the seaweeds is essential, as it directly

correlates to the protein content (Angell et al., 2016; Biancarosa

et al., 2017). However, the methods to measure nitrogen in

biomass often requires laboratory procedures that are time

consuming, expensive, and labor intensive. There is thus a

need to develop alternative methods to estimate the

nitrogen content of cultivated seaweeds that are cheap, rapid,

and straightforward.

The color of seaweed thallus has been related to tissue

nitrogen content (e.g. Nagler et al., 2003; Yu and Yang, 2008;

Robertson-Andersson et al., 2009; Ashkenazi et al., 2022; Stedt

et al., 2022a). Nitrogen is a major component of the chlorophyll

molecule (Tumbo et al., 2002), and changes in chlorophyll

content alters the color of the seaweed thallus (Robertson-

Andersson et al., 2009). Therefore, the color of the seaweed

thallus could possibly be used to give an estimation of the

seaweed’s nitrogen content. We have previously reported that

Ulva fenestrata Postels and Ruprecht with higher nitrogen

content are darker, and more olive-green, as compared to

seaweeds with lower nitrogen content (Stedt et al., 2022b;

Steinhagen et al., 2022). Color image analysis that does not

require any laboratory or technical skills could potentially

provide a rapid and cost-efficient method to determine

nitrogen content in seaweed tissues. For cultivated land plants,

e.g. tomato seedlings (Mercado-Luna et al., 2010), sorghum

(Zhang et al., 2022), quinoa and amaranth leaves (Riccardi

et al., 2014), and paddy crops (Tewari et al., 2013), color

image analysis has been used to develop models that assess

their nitrogen content. However, to our knowledge, no models

based on color image analysis have so far been developed for the

quantitative estimation of nitrogen content in seaweeds.
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The objective of this study was to develop a quick and easy-to-

use model that estimates the nitrogen content (and hence protein

content as it is correlated to the nitrogen content (Angell et al.,

2016)) in the green seaweed U. fenestrata based on color image

analysis. We did this by sampling sea cultivatedU. fenestrata every

week for 15 consecutive weeks during a full cultivation season of

the crop (Steinhagen et al., 2022). We used digital images of both

the fresh seaweed thallus and dried seaweed powder to obtain

their color components. Simple and multiple regression analysis

with the color components as independent variables and the true

nitrogen content as the dependent variable were then tested and

verified to find the best-fitting models. From these models, we

aimed to develop a web-based image application intended to be

used as a future practical tool for seaweed farmers and researchers

to estimate the physiological status based on the nitrogen content

of their crop. Our second objective was to produce a color guide

for rapid and easy estimation of nitrogen content in U. fenestrata

in the field. We did this by matching the seaweeds’ color to the

closest Pantone® uncoated matt color code.
Materials and methods

Seaweed biomass and taxonomic
identification

Vegetative thallus tissue of U. fenestrata were collected from

a sea-based cultivation (2 ha; 100 x 200 m) located in the Koster

archipelago (Skagerrak), Sweden (58°51’34.0”N, 11°04′06.2”E).
Details on the seafarm and cultivation conditions can be found

in Steinhagen et al. (2021); Steinhagen et al. (2022). Molecular

identification of the algal material used in the present study has

been described in detail by Toth et al. (2020) (GenBank

accession numbers: MN240309, MN240310, MN240311).

U. fenestrata was seeded to cultivation twines and deployed

in the seafarm at the 21st of September 2021, following the

procedure described in Steinhagen et al. (2022). To obtain

biomass with different nitrogen content, five replicates of U.

fenestrata were harvested every week, at 15 defined consecutive

time points, starting the 8th of March 2022 (Supplementary

material 1; Table S1). This sampling procedure allowed for

seaweed nitrogen content ranging from 0.54 to 5.22% dw

(Supplementary material 1; Table S1).
Color determination

After harvest, seaweeds were brought to Tjärnö Marine

Laboratory (TML, 58°52′33.7′′N 11°08′44.9′′E) where they

were placed on a lightning table and photographed using a

Canon EOS400D digital camera (1/25, F22, ISO400). For each

image, a representative part of the seaweed thallus was analyzed
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https://doi.org/10.3389/fmars.2022.1081870
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Stedt et al. 10.3389/fmars.2022.1081870
for the mean of each pixel (0 – 255) for the three band colors red

(R), green (G), and blue (B) (RGB-values), using a web-based

image color summarizer (Krzywinski, 2022). The mean of the R,

G, and B values, often referred to as intensity (I), was calculated

using the equation:

Eq1:  I  ¼  
(R + G + B)

3

After lyophilization, the seaweeds were homogenized into a

fine powder. The powder was attached to transparent tape to

allow for even distribution and representative pictures of the

powder. The powder was photographed and analyzed following

the same protocol as described for fresh tissue.

Furthermore, alternative representations of the RGB color

model were analyzed as HSV (hue, saturation, value), LCH

(lightness, chroma, hue), and Lab (lightness, visual perception

of red-green chroma, visual perception of blue-yellow chroma).

These results can be found in the Supplementary material 1.

To develop the color guide, we arranged the seaweeds into

six different groups based on their nitrogen content, with one

percentage point between each group (first group: 0 – 1% dw N,

last group: 5 – 6% dw N). We then matched the R, G, and B

values of each group to the nearest possible Pantone® uncoated

matt color code using the Pantone® Connect color converter

(Pantone®, 2022) and the Pantone® color print formula guide.
Nitrogen tissue content

The total nitrogen content was analyzed by combustion

using a GSL elemental analyzer coupled to an isotope-ratio

mass spectrometer (EA-IRMS, 20 – 22, Sercon Ltd., Crewe UK).
Regression models and model
performances

The relationship between the color components and seaweed

nitrogen content was analyzed with linear regression models, using

Student’s t-test at 95% confidence levels. The color components (R,

G, B, and I) were analyzed separately as single variables in simple

linear regressions, and together in multiple regression models.

Furthermore, the performance of the models was evaluated with

tenfold cross validation to estimate the accuracy of the models. All

data were analyzed in RStudio (v. 4.0.4). Based on the best-fitting

models, a web-based application was built in Python (v. 3.10.8)

using Dash (v. 2.3.1), and launched on Heroku, that analyzes the

nitrogen content of U. fenestrata from uploaded images (Stedt and

Davegård, 2022; Supplementary material 2).
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Results

Regression of color and seaweed
nitrogen content from fresh biomass

Negative linear relationships were observed between

nitrogen content and the three band colors R (F1, 73 = 719, p<

0.001), G (F1, 73 = 498, p< 0.001), B (F1, 73 = 1098, p< 0.001), as

well as for I (F1, 73 = 1067, p< 0.001). The determination

coefficients (R2) were 0.908, 0.872, 0.938, and 0.936,

respectively (Figure 1 and Table S2).

The multiple linear regression for nitrogen content and the

color combination R + G + B showed a significant regression,

where all band colors significantly affected the model (Table 1A).

The model from the multiple linear regression was y = 3.782 -

(0.034*R) + (0.035*G) - (0.021*B) (Table 1A and Table S3).

The trained models from the tenfold cross validation were

identical to the original models from the collected data, while the

R2 from the trained models were even higher than from the

original models (Table 2A). The final models from the tenfold

cross validation verified that all the original models were robust

and precise.
Regression of color and seaweed
nitrogen content from dried
seaweed powder

Negative linear relationships were observed between

nitrogen content and the three band colors R (F1, 73 = 311, p<

0.001), G (F1, 73 = 349, p< 0.001), B (F1, 73 = 164, p< 0.001), as

well as for I (F1, 73 = 334, p< 0.001). The determination

coefficient (R2) was 0.810, 0.827, 0.692, and 0.821, respectively

(Figure 2 and Table S4).

The multiple linear regression for nitrogen content and the

color combination R + G + B showed a significant regression for

the model y = 13.496 + (0.035*R) - (0.116*G) - (0.010*B)

(Table 1B and Table S3). However, only the color variable G

was significantly affecting the model (Table 1B), resulting in the

best-fitting model being the simple linear model for G (as seen

in Figure 2B).

The trained models from the tenfold cross validation were

identical to the original models from the collected data, while the

R2 from the trained models were even higher than from the

original models (Table 2B). The final models from the tenfold

cross validation verified that all the original models were robust

and precise.
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Color guide

As described by the linear regression models, the color of the

seaweed tissue showed a transition between pale nitrogen

starved tissue to deep colored nitrogen replete tissue

(Figures 3A, B). For fresh tissue, the Pantone® color system

cannot distinguish between 3 – 5% dw N content. While for

dried powder the Pantone® color system cannot distinguish

between 2 – 4% dw N content.

Discussion

The nutritional status of seaweeds is important for any

seaweed business aiming to provide high quality biomass for

food and feed applications. The biomass composition is

dependent on seasonal conditions, and therefore harvest time
Frontiers in Marine Science 04
play a crucial role for the quality of the seaweed crop (Steinhagen

et al., 2022). In this study we developed a rapid and cost-efficient

tool to assess the nitrogen content (and hence protein content

(Angell et al., 2016)) of the commercially interesting seaweed U.

fenestrata by color image analysis. We showed that the three

band colors R, G, and B were highly correlated to the nitrogen

content in both fresh tissue (R2 = 0.872 – 0.944) and dried

powder (R2 = 0.692 – 0.829), and that the linear regression

models to estimate U. fenestrata nitrogen tissue content were

robust and precise. Additionally, we developed a web-based

application that automatically estimates the nitrogen content

of U. fenestrata from uploaded images (https://www.seaweed-

nitrogen.com, Supplementary material 2).

For many land plants, linear regression models based on

color image analysis have been developed to estimate the

physiological status and nitrogen content of the plants (e.g.
A B

DC

FIGURE 1

Nitrogen content (% dw) as a function of the independent color variables (A) red (R), (B) green (G), (C) blue (B) and (D) intensity (I) for fresh tissue
of Ulva fenestrata (n = 75). The model, its residual standard error (RSE) and determination coefficient (R2) are displayed in the top left corner.
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Mercado-Luna et al., 2010; Tewari et al., 2013; Riccardi et al.,

2014; Zhang et al., 2022). Even though changes in seaweed

thallus color due to changes in tissue nitrogen content have been

widely reported for seaweeds (Nagler et al., 2003; Yu and Yang,

2008; Robertson-Andersson et al., 2009; Ashkenazi et al., 2022;

Stedt et al., 2022a, 2022b), no previous studies have to our

knowledge developed models to quantitatively assess the

nitrogen status of seaweeds based on color. Our study showed

that all the three band colors R, G, and B can be used in simple

and multiple linear regression models to predict the nitrogen
Frontiers in Marine Science 05
content of the seaweed. For fresh tissue, all models could

accurately predict the nitrogen content, however, the best-

fitting model was developed through multiple linear regression

with all the three band colors included. For dried powder, the

simple regression using the band color G was the most accurate

model to predict the nitrogen content. For future studies, the

analysis of phosphorus (P) in the seaweed tissue could be

included to make predictions on the N:P ratio of the seaweed.

Even though most of the data points from this study were

clustered below 2% dw N and above 4% dw N, the data points
TABLE 1 Output from the multiple linear regression models for nitrogen content as a function of the independent color variables R + G + B for
(A) fresh tissue and (B) dried powder of Ulva fenestrata.

(A) Fresh tissue Slope SE t-value p-value

Intercept 3.782 1.683 2.247 0.028

R - 0.034 0.012 - 2.891 0.005

G 0.035 0.017 2.047 0.044

B - 0.021 0.003 - 6.711 3.95e-9

F3, 71 = 402 p< 2.2e-16

R2 = 0.944

Adj. R2 = 0.942

RSE = 0.422

(B) Dried powder

Intercept 13.496 1.002 13.466 < 2e-16

R 0.035 0.042 0.835 0.407

G - 0.116 0.046 - 2.516 0.0141

B - 0.010 0.019 - 0.490 0.626

F3, 71 = 115 p< 2.2e-16

R2 = 0.829

Adj. R2 = 0.822

RSE = 0.739
fronti
Significant p-values are in bold.
TABLE 2 Tenfold cross validation of the different models for (A) fresh tissue, and (B) dried powder of Ulva fenestrata.

(A) Fresh tissue No. of independent variables Final model R2 RMSE

Min Mean Max Min Mean Max

R 1 y = 11.449 - 0.057*R 0.851 0.922 0.982 0.266 0.517 0.714

G 1 y = 18.911 - 0.094*G 0.762 0.893 0.980 0.318 0.595 0.993

B 1 y = 5.296 - 0.027*B 0.876 0.951 0.991 0.226 0.410 0.633

I 1 y = 9.272 - 0.047*I 0.844 0.938 0.991 0.200 0.429 0.686

R + G + B 3 y = 3.782 - 0.034*R + 0.035*G - 0.021*B 0.884 0.949 0.990 0.227 0.424 0.600

(B) Dried powder

R 1 y = 11.760 - 0.080*R 0.566 0.817 0.970 0.317 0.755 1.078

G 1 y = 12.755 - 0.084*G 0.678 0.877 0.971 0.382 0.711 1.120

B 1 y = 16.527 - 0.142*B 0.601 0.742 0.871 0.660 0.965 1.324

I 1 y = 13.615 - 0.100*I 0.715 0.853 0.938 0.443 0.734 0.964

R + G + B 3 y = 13.496 + 0.035*R - 0.116*G - 0.010*B 0.764 0.846 0.931 0.536 0.730 0.960
ers
The minimum, mean and maximum coefficient of determination (R2), root mean squared error (RMSE), as well as the final models from the ten folds are presented.
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between 2 – 4% dw N showed a low residual from the linear

regression line. Furthermore, the tenfold cross validation

validated the models when tested on previously unseen data.

The few data points between 2 – 4% dw N can be explained by a

rapid decrease in nitrogen content between sampling point six

(13th of April 2022) and seven (20th of April 2022). This

corresponds well to previous studies on the same strain of U.

fenestrata, where higher temperatures and irradiances resulted

in decreased nitrogen tissue content (Toth et al., 2020;

Steinhagen et al., 2022).

The color guide developed in our study can be used by

seaweed farmers to rapidly assess the nitrogen content of their

seaweeds when in the field. Therefore, we provide a

representative color scheme (Figure 3). Seaweed farmers could

either print the guide or use the Pantone®, or R, G, and B values,

to make their own guide, and then simply place their cultivated
Frontiers in Marine Science 06
U. fenestrata on it to assess the tissue nitrogen content of the

seaweed. Similarly, we provide a guide for dried seaweed powder

(Figure 3). However, for nitrogen values that cannot be

distinguished with the color guide (3 – 5% for fresh tissue and

2 – 4% for dried tissue), using the linear regression models will

result in more accurate estimations.
Conclusion

In conclusion, this study showed that color image analysis

accurately estimates the nitrogen content of U. fenestrata, and

that the models are robust and precise (R2 = 0.944 and 0.827 for

fresh tissue and dried powder, respectively). Using the models

and our web-based color-to-nitrogen image application, will

allow seaweed farmers to assess the nitrogen content (and
A B

DC

FIGURE 2

Nitrogen content (% dw) as a function of the independent color variables (A) red (R), (B) green (G), (C) blue (B) and (D) intensity (I) for dried powder of
Ulva fenestrata (n = 75). The model, its residual standard error (RSE) and determination coefficient (R2) are displayed in the top left corner.
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hence protein content) of their crop quickly and cost-efficiently

without having to use time-consuming and expensive laboratory

procedures. These tools will help seaweed farmers to overcome

some of the obstacles when producing sustainable and high-

quality food and feed in the rapidly developing seaweed

aquaculture industry. Similar models can easily be developed

using the same method as described in this study for other

commercial interesting seaweed species.
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