AUTHOR=Nakayama Shinnosuke , Dong WenXin , Correro Richard G. , Selig Elizabeth R. , Wabnitz Colette C.C. , Hastie Trevor J. , Leape Jim , Yeung Serena , Micheli Fiorenza TITLE=Comparing spatial patterns of marine vessels between vessel-tracking data and satellite imagery JOURNAL=Frontiers in Marine Science VOLUME=9 YEAR=2023 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.1076775 DOI=10.3389/fmars.2022.1076775 ISSN=2296-7745 ABSTRACT=
Monitoring marine use is essential to effective management but is extremely challenging, particularly where capacity and resources are limited. To overcome these limitations, satellite imagery has emerged as a promising tool for monitoring marine vessel activities that are difficult to observe through publicly available vessel-tracking data. However, the broader use of satellite imagery is hindered by the lack of a clear understanding of where and when it would bring novel information to existing vessel-tracking data. Here, we outline an analytical framework to (1) automatically detect marine vessels in optical satellite imagery using deep learning and (2) statistically contrast geospatial distributions of vessels with the vessel-tracking data. As a proof of concept, we applied our framework to the coastal regions of Peru, where vessels without the Automatic Information System (AIS) are prevalent. Quantifying differences in spatial information between disparate datasets—satellite imagery and vessel-tracking data—offers insight into the biases of each dataset and the potential for additional knowledge through data integration. Our study lays the foundation for understanding how satellite imagery can complement existing vessel-tracking data to improve marine oversight and due diligence.