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The South Yellow Sea Cold Water Mass (SYSCWM), which occurs in the South

Yellow Sea (SYS) during summer, significantly impacts the hydrological

characteristics and marine ecosystems but lacks fine interior data. With

satellite observations, significant achievements have been made in

reconstructing high-resolution ocean subsurface thermohaline structure

based on machine learning. However, the accuracy of offshore subsurface

parameter estimation will be affected due to the macro-tidal environment and

fewer in situ observations. In this paper, we coupled the TPXO tide model and

Light Gradient Boosting Machine algorithm to develop an inversion model of

offshore subsurface thermal structure for the SYS using sea surface data and in

situ observations. After light modelling, the subsurface temperature structure in

the SYS is retrieved from sea surface parameters with a spatial resolution of

0.25° at depths of 0-55 m. Observation-based dataset (ARMOR3D) and in situ

observations are used for model evaluation. According to the validation of the

mooring buoy observations, the overall coefficient of determination (R2), which

determines the percentage of variance in the dependent variable that can be

explained by the independent variable, is more than 0.95. Furthermore, the R2 is

improved by 12% due to coupling tide model below the thermocline during the

maturity stage of SYSCWM, which is helpful for a better reconstruction of

SYSCWM. Comparing with the cruise data, the average R2 of the proposed

model is 0.927 which is slightly better than the accuracy of the observation-

based ARMOR3D dataset. Since the R2 exceeds 0.8 in the most area of 121°

E~123.5°E, 33°N~36°N, the reconstruction is reliable in this area. The method

provides a new explorable direction for reconstructing the ocean thermal

structure in offshore areas.
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1 Introduction

The South Yellow Sea (SYS) is a shallow (average depth of 46

m), semi-enclosed marginal sea in the northwestern Pacific

between the Chinese mainland and the Korean Peninsula. Due

to the vast and shallow continental shelf, seasonally atmospheric

conditions, such as the Asian monsoon, significantly impact the

thermal structure of SYS (Chu et al., 1997; Sun et al., 2022). In

the winter, strong northwest winds drive the water column to be

well-mixed until spring. Weak southeasterly winds prevail in

summer, so enhanced solar radiation causes the rapid formation

of a strong and stable seasonal thermocline, preventing vertical

mixing between the upper mixed layer and deep layer so that the

cold water from the previous winter is reserved below the

thermocline (Lee et al., 2016). It is called the South Yellow Sea

Cold Water Mass (SYSCWM; Li et al., 2017a) in the SYS, which

occupies the bottom layers of the central part with a large

temperature difference between the surface and the bottom.

The SYSCWM plays an important role in the field of

hydrodynamics and biochemistry (Wang et al., 2014; Liu et al.,

2015; Xin et al., 2015; Li et al., 2016; Guo et al., 2021; Li et al.,

2021). The Yellow Sea Warm Current in winter is another

prominent feature in the SYS, which transports warm saline

water from the Tsushima Warm Current to the SYS (Zhang

et al., 2008; Diao et al., 2022; Yu et al., 2022). In addition, SYS is a

macro-tidal environment with a huge tidal range and strong

tidal currents (Lü et al., 2010; Hwang et al., 2014). These features

lead to the water mass of the SYS having high variability. As yet,

the knowledge of the SYS has primarily depended on in situ

observations (Yang et al., 2019). Despite many subsurface in situ

measurements in the SYS, continuous and fine observations

remain sparse. Satellite observations provide multiple data at

different spatiotemporal scales but are limited to the surface

layer (Ali et al., 2004). To better comprehend the dynamical

processes, it is necessary to have continuous and high

spatiotemporal resolution subsurface data in the SYS.

Compared to the temperature profiles, the vertical variation

of the salinity profiles is slight (less than 2 PSU; Li et al., 2017b).

Hence, extensive studies have been conducted to reconstruct the

temperature field by dynamical methods in the SYS, which have

the advantage of being physically consistent. Lü et al. (2010)

reproduced the three-dimensional temperature field and

dominant tidal system in the Yellow Sea (YS) based on a

wave-tide-circulation coupled numerical model. Zhu et al.

(2018) used Princeton Ocean Model to simulate the process of

the Yellow Sea Cold Water Mass (YSCWM) and added tidal

forcing and freshwater input. Yang et al. (2019) reconstructed

the cooling process of sea surface temperature (SST) with a high

spatiotemporal resolution during the typhoon passage over the

YS by a one-dimensional mixed-layer model. Wan et al. (2022)

rebuilt temperature structure and circulation of the YS in winters
Frontiers in Marine Science 02
based on a high-resolution Regional Ocean Modeling System.

Relative to the above, the numerical model has well

reconstructed ocean temperature structure. Nonetheless, the

typical dynamical methods, including numerical simulation

and data assimilation, are complex and computationally

time-consuming.

Many ocean internal processes have manifestations at

surface, so it is possible to retrieve ocean interior parameters

from satellite observations for the dynamical connections (Meng

et al., 2022). Meantime, machine learning methods are flexible

and popular for the ability to extract nonlinear relationships.

Therefore, diverse machine learning methods have been applied

to estimate ocean interior information in recent years. The self-

organizing mapping neural network and support vector machine

methods were used to reconstruct the subsurface temperature

anomaly (STA) from multisource satellite observations in the

Atlantic Ocean and the Indian Ocean (Wu et al., 2012; Su et al.,

2015). Meantime, the importance of sea surface salinity (SSS)

and sea surface wind (SSW) was revealed by the fact that they

can improve the inversion accuracy. Lu et al. (2019) found that

the clustering method helps to obtain a better estimated thermal

structure. To tackle the challenge of estimating ocean subsurface

temperature (OST) in regions with huge seasonal changes,

establishing seasonal models is an effective method that could

reduce the error of estimated OST, especially in the upper ocean

(Su et al., 2021). It may therefore be more efficient that clustering

the temperature profiles by seasonal feature. However, it will

lead to a sharp reduction of training samples, so the ensemble

learning methods were used to predict the OST because they are

more appropriate for small sample training than deep learning

and classic machine learning approaches (Su et al., 2019; Su

et al., 2021). The aforementioned results demonstrate that

machine learning algorithms can successfully rebuild the large-

scale ocean temperature structure. However, the accuracy will be

affected when estimating the thermal structure of the offshore

areas using classic machine learning algorithms for the complex

tidal environment and fewer data. Therefore, it is worth

exploring but challenging to improve the accuracy of

estimating offshore subsurface temperature by considering

tides and ensemble learning algorithms.

In this study, we propose a framework that couples a tide

model with the Light Gradient Boosting Machine algorithm,

which is less computational and more appropriate for small

samples, to retrieve the subsurface temperature (ST) of the SYS

by combining sparse in situmeasurements with multiple satellite

observations. The rest of the paper is organized as follows:

Section 2 introduces the datasets and tide model. The methods

to retrieve the ST are described in Section 3. In Section 4, we

evaluate the reconstruction method and discuss the importance

of tides in the model. Finally, a brief conclusion and some

prospects are presented in Section 5.
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2 Data

2.1 In situ data

As the labeled data, three measurements are used in this

study: the mooring system, high-resolution profiler, and

shipboard survey cruises. A time series of temperature profiles

over 9 months (from 22 July 2019 to 15 May 2020), recorded by

a mooring system (named M1) which deployed in the SYS, near

the western boundary of SYSCWM (35.18°N,122.26°E,

Figures 1A, B). The M1 data has 244 temperature profiles after

quality control, including 17 depth levels (from 1 m to 55 m),

covering the maturation to disappearance of the SYSCWM. The

moored high-resolution profiler (named H1), which was

deployed at the same location as M1 from 3 June 2022 to 4

July 2022, provides a fine temperature profiles time series. This

profiler recorded vertical temperature profiles from 1 m to 50 m

during the growth to maturity of the SYSCWM. The sample

interval of H1 is 30 min and the vertical resolution is 0.1 m. In

this study, the spatiotemporal resolution of the H1 data is

averaged to daily and 1 m. In addition, the 55 m depth level of

H1 data is extrapolated from several adjacent temperatures for

their similarity. Cruise observations were carried out with 1 m

vertical resolution in the western SYS in April, July and October

2019. The cruise covered the sea west of 124°E, from 33°N to 37°

N, and a total of 5 latitude sections were used in this study. The

five temperature latitude sections obtained by CTD castings

during the cruise survey along different latitudes (33°N, 34°N,

35°N, 36°N, 37°N), named S33-S37 (Figure 1B).
2.2 Satellite data

Multisource satellite observations are used as input data,

including absolute dynamical topography (ADT), SST, SSS, and
Frontiers in Marine Science 03
SSW. The SSW contains u and v components (USSW, VSSW).

The ADT data are provided by SSALTO/Data Unification and

Altimeter Combination System (DUACS) and were available

through the Copernicus Marine Environment Monitoring

Service (CMEMS, https://marine.copernicus.eu/). The product

merged multiple L3 along-track measurements and conducted

the tidal corrections (Taburet et al., 2019). The SST data are

obtained from Daily Optimum Interpolation Sea Surface

Temperature (DOISST, https://psl.noaa.gov/), developed by

National Oceanic and Atmospheric Administration Physical

Sciences Laboratory (NOAA PSL). It is a blend of in situ SST

with satellite SST derived from the Advanced Very High

Resolution Radiometer (Banzon et al., 2016; Huang et al.,

2021). The SSS data are obtained from SMOS L3OS 2Q

Debiased daily valid ocean salinity values product (https://

sextant.ifremer.fr/), which are distributed by Centre Aval de

Traitement des Données SMOS (CATDS) and corrected the

offshore SSS through various in situ observations (Boutin et al.,

2018). The SSW data are provided by the Cross-Calibrated Multi-

Platform (CCMP; https://rda.ucar.edu/datasets/ds745.1/). The

CCMP uses a variational analysis method to smoothly fuse

multisource surface wind data into the gridded data at 6 hours

intervals (Atlas et al., 2011). The temporal resolution of the

CCMP data is 6 hourly while the rest is daily, and the spatial

resolution of all these data is 0.25°×0.25°.
2.3 Tide model data

We coupled the tide model data into the inputs of machine

learning model. The tide model data, including surface tidal

elevation and tidal currents, are estimated by the TPXO7 global

tidal model provided by Oregon State University, which was

built hourly on a 0.25°×0.25° grid. The tide model is based on the

hydrodynamic equation and uses the generalized inversion
A B

FIGURE 1

M2 tidal current amplitude and topography of the South Yellow Sea (SYS) and the location of different in situ observations. M1 and H1 with the
same site, indicated by the black star. (A) The amplitude of M2 tidal current from TPXO7 global tidal model in which the tidal currents are
stronger. (B) The topography and geography of the SYS. The color contours denote bathymetry. The black dots in the rectangles show the CTD
casts along five latitudinal sections (S33-S37) in the cruise survey.
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method to assimilate the measured data, including satellite

altimetry data and tide observations. Furthermore, it was

recently used for the hydrographic study in the YS (Bi et al.,

2021; Lin et al., 2021; Sun et al., 2022). The M2 tide is the most

dominant tidal component in the SYS, having stronger tidal

current (Figure 1A). The tides have complex structures in the

SYS, which is detrimental to temperature inversion. In this

study, the tidal time series of eight basic tidal components

(M2, S2, N2, K2, K1, O1, P1, and M4) are extracted by the

Matlab Tide Model Driver toolbox (https://www.esr.org/

research/polar-tide-models/tmd-software/). The tide model

data and satellite observations, which have the same spatial

resolution, were co-located with the temperature profiles by the

nearest neighbour method, and the temporal resolution is

unified to daily.
2.4 ARMOR3D dataset

We also validate the temperature estimation with the

ARMOR3D dataset (Guinehut et al., 2012), which was
Frontiers in Marine Science 04
obtained through CMEMS. The ARMOR3D used multiple

linear regression and optimal interpolation, providing the

weekly temperature and salt fields at 0.25° × 0.25° resolution

over 15 regularly spaced vertical levels between surface and 80 m

depth. The weekly averaged three-dimensional temperature field

in April, July and October 2019 from ARMOR3D is used to

compare. The YSCWM below the thermocline is clearly visible

in the observation-based ARMOR3D data (Figure 2A). In

addition, the M1 temperature data are used to evaluate

ARMOR3D. In order to match the temporal resolution, the

M1 data are first calculated as weekly average and then

compared to the nearest neighboring grid in ARMOR3D. As

shown in Figure 2B, most of the data points are distributed along

the equal line with low bias, absolute error and high Pearson’s

correlation coefficient. The evident seasonal temperature

variations in ARMOR3D are well simulated compared to the

M1 observations (Figures 2C, D). Even though ARMOR3D

presents a shallower mixed layer and a more durable YSCWM

which lasts until October, it well reproduces the vertical thermal

structure at the M1 station and is worth to refer for the thermal

structure of SYS.
A B

DC

FIGURE 2

YSCWM phenomena in ARMOR3D temperature data and comparison of ARMOR3D, M1 temperature field at M1 location during July 2019 to
May 2020. (A) The distribution of weekly average surface and subsurface temperature (°C) in the SYS with a spatial resolution of 0.25°×0.25°
between 25 July and 31 July 2019 from the ARMOR3D data, selecting 0-55 m depth to correspond to the M1 data. The YSCWM is below the
thermocline. (B) Scatter plots for M1 temperature and ARMOR3D temperature from all depth. (C) Weekly average temperature data from M1
with gaps representing interruptions in the measurements. (D) ARMOR3D temperature fields at M1 site.
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3 Methods

3.1 Gaussian mixture model clustering

Considering the large seasonal variation of the thermal

structure in the SYS, we use unsupervised GMM clustering

techniques to shrink the sample space and improve the accuracy

(Landschutzer et al., 2013; Parard et al., 2015). As a probabilistic

model, GMM is often used for data clustering (Attal et al., 2015).

First, the GMM randomly initializes the Gaussian distribution

parameters of each cluster. Then the posterior probability of each

sample is calculated and used to compute the new Gaussian

distribution parameters. The process is repeated until the

expectation function is maximized. Compared with the K-means

method, GMM is more suitable for non-spherical clusters with

different sizes and densities (Wang et al., 2019; Askari, 2021).

Therefore, it is appropriate for the classification of ocean

temperature profiles (Maze et al., 2017; Sambe and Suga, 2022).

GMM requires the number of classes (K) as an input parameter.

Therefore, the Davies-Bouldin index (DBI) is used to determine

the appropriate number of classes in this study. The number of

classes having the minimized DBI is considered the optimal result.

Since the initial values of the Expectation-Maximization algorithm

are randomized, the GMM clustering was applied 20 times, and

80% of the data were randomly selected from the M1 and H1 data

each time to stabilize the clustering results. Figure 3 shows the DBI

from clustering results with different K. As a result, we judge that

stable and good clustering results could be obtained if K = 3. The

clustering results are shown in Figure 4. Although the YSCWM

temperature structure from H1 data is still growing, it is

approaching maturity. Therefore, they are named after a specific

stage of YSCWM: the maturity stage, the declining stage, and the
Frontiers in Marine Science 05
disappearance stage. During the maturity stage of YSCWM with

weaker wind, the sea surface is subjected to strong thermal

radiation, forming a stable upper mixed layer and a strong

thermocline, which prevents heat transfer, so the bottom water

stays cold (Lee et al., 2016). It leads to a multi-layer temperature

structure in the SYS, with a large temperature difference between

the sea surface and the bottom (Figure 4A). In the YSCWM

declining stage, the cooling at the sea surface and stronger mixing

lead to a thicker and colder upper mixed layer and the subsequent

weakening and deepening of the thermocline (Figure 4B).

Meanwhile, critical tidal currents raise the temperature at the

bottom layer then decline the YSCWM (Li et al., 2016). Thermal

forcing at the air-ocean interface and agitation by strong winds

together cause strong vertical mixing, forming a well-mixed low

temperature structure (Figure 4C) from the sea surface to the

bottom in the YSCWM disappearance stage (Chu et al., 1997).
3.2 Light gradient boosting machine

To tackle the limitations of small data and complex

computations, we adopt the LGBM algorithm to predict the

temperature by taking advantage of its lightweight. LGBM is a

gradient boosting framework based on decision trees, which has

been well used in the marine field and shown a faster training

speed and higher accuracy for small data (Su et al., 2021; Dong

et al., 2022). Same as the other boosting algorithms, it sums the

results of multiple decision trees as the final prediction output.

Gradient-based One-Side Sampling (GOSS) and Exclusive

Feature Bundling (EFB) are two important features of LGBM.

The GOSS excludes most of the samples with small gradients

and calculates the precise information gain by the remaining
FIGURE 3

The mean value (the blue line) and confidence intervals (one s, the black error bar) of the Davies-Bouldin index (DBI) from 20 trials of Gaussian
mixture model (GMM) clustering for the different number of classes.
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samples. The EFB approach integrates many mutually exclusive

features and reduces the data dimension. To build a better

model, the Bayesian optimization strategy is used to optimize

several important parameters of LGBM. The optimization

method is a Gaussian process with a faster speed. According

to previous studies, three essential hyperparameters need to be

adjusted: the number of leaf nodes (num_leaves), the learning

rate, and the number of iterations (n_estimators). The bounds of

n_estimators were set 100 and 1000, and the best n_estimators is

400 without overfitting. It improves the accuracy by 16.6%

compared to n_estimators=100. However, the accuracy at

n_estimators=1000 is only increased by 0.1% compared to the

best n_estimators. When the learning_rate is increased to 0.01

from 0.001, the performance is improved by 21% compared to
Frontiers in Marine Science 06
the starting learning_rate=0.001, but the effect does not enhance

when it is increased further until 0.1. The test range of

num_leveas is from 5 to 30. The performance of the model at

the best num_leveas=5 improved by 3.4% over num_leveas=30.

The optimal parameters are shown in Table 1. In addition, the

max depth is set to 5, to prevent overfitting due to excessive

complexity of the model. The other parameters are set to

default values.
3.3 Experimental setup

First, we input the eight harmonic components (M2, S2, N2,

K2, K1, O1, P1, and Q1), geographic location and time parameters
A B C

FIGURE 4

Vertical temperature structure of the classified profiles from M1 data, which represents different stages of the YSCWM: (A) the maturity stage,
(B) the declining stage, and (C) the disappearance stage.
TABLE 1 Design of experiments and parameter values.

Case Coupling tide
model or not

Clustering
or not

Training Models Parameter values

GLGBM-
tides

Yes Yes ST = LGBM (SST, ADT,
SSS, SSW, tides)

n_estimators = 400, learning_rate = 0.01, max_depth = 5, num_leaves=5

GLGBM No Yes ST = LGBM (SST, ADT,
SSS, SSW)

n_estimators = 400, learning_rate = 0.01, max_depth = 5, num_leaves=5

SVR No No ST = SVR (SST, ADT, SSS,
SSW)

C = 2.5, gamma = 1.2, kernel = rbf

ANN No No ST = ANN (SST, ADT, SSS,
SSW)

Number of neural network layers = 2, number of neurons per layer = 40,
learning_rate = 0.01, loss function = MSE
The SSW contains its two components (USSW and VSSW) and the tides include tidal elevation and tidal currents.
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into the TPXO7.2 global tidal model, to extract tidal elevation

and tidal currents data. TPXO7.2 fits best the Laplace tidal

equation in the least squares sense. Second, the datasets

consisting of tide model data, satellite observations and in situ

temperature profiles are divided into three different stages by

GMM clustering. The surface parameters (ADT, SST, SSS, SSW,

tidal elevation, and tidal currents) are used as independent input

variables and the temperature time series are used as labels to

prepare the training and test data. To ensure that the training

and test sets have a similar seasonal distribution, all samples at

the location of M1 are normalized and randomly sampled into

the training set (60%) and the test set (40%) by month (Figure 5).

Third, the model is tuned and trained using the Bayesian

optimization method to obtain suitable temperature estimators

at 17 depth levels. Figure 6 shows the technique flowchart of one

stage at a certain depth. We use a total of 162 samples to train

and 114 samples to test when using mooring observations for

validation. Finally, temperature predictions are applied to a

larger horizontal space and verified with cruise observations in

the SYS where the number of training data and evaluating data

are 276 and 78, respectively.

To evaluate the tide model coupled temperature inversion

method, we designed comparative trials named GLGBM-tides

and GLGBM. They both use the LGBM method with pre-

clustering process but the former couples the tide model while

the latter does not. Additionally, we compared other

reconstruction methods. Case SVR and Case ANN use

Support Vector Regression (SVR) model and Artificial Neural

Network (ANN) model, respectively. Table 1 summarizes the

different trials. These are optimized by the Bayesian

optimization strategy, and the parameters of different models

are shown in Table 1. The ARMOR3D dataset is also used

for comparison.
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4 Results and discussion

The sea surface data of the test samples are input into the

different models to obtain the reconstructed vertical temperature

structure. Based on the test data, we first examine the

importance of tides in offshore temperature prediction from

the time series data. Then the performance of the different

models is compared. Finally, we estimate the temperature

structure of each latitude section (S33-S37) and compared it

with the ARMOR3D dataset.
4.1 The performance of tide model data
on the temperature field reconstruction

Previous studies have shown that strong tidal mixing has an

important effect on the temperature structure and enhances

vertical heat exchange in the water column during summer in

the YS (Lü et al., 2010; Yao et al., 2012; Li et al., 2016; Yu et al.,

2016). Here, we first compared GLGBM-tides and GLGBM to

investigate how tides affect temperature estimation in this study.

Figure 7 shows the comparison between the temperature profiles

obtained by the two models and in situ observations. The profiles

are randomly selected according to spring tide and neap tide in

the maturity stage of YSCWM. In this stage, bottom vertical

disturbances are stronger (Li et al., 2016), which affects the heat

transfer and thermal structure significantly. Besides, the air-sea

heat flux and the cooling process of the previous winter strongly

influences the intensity of YSCWM (Zhu et al., 2018). This leads

to machine learning models having more difficulty accessing

these temperature variations and more considerable differences

between in situ and estimated temperature (Figure 7). However,

it can be seen that the temperature profiles obtained from
FIGURE 5

Monthly distribution of the number of temperature profiles from M1 and H1 data.
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GLGBM-tides are more consistent with the measured profiles,

especially deeper than 30 m. This confirms that the method

coupled with tide model can effectively improve the structure of

the predicted temperature profiles during the maturity stage. To

further validate the above results, several evaluation indicators
Frontiers in Marine Science 08
metrics are used to assess the two models. Except for root mean

square error (RMSE), coefficient of determination (R2) and

absolute difference, the error (defined as the proportion of

RMSE in the actual mean temperature observations) is also

used to evaluate the accuracy and reliability of the model. The
FIGURE 6

Flowchart of the subsurface temperature (ST) estimation at different depth levels using LGBM models for a certain class. In the moored buoy
observation validation, a total of 162 samples were used for training and 114 samples for testing. In the cruise survey validation, the training data
and validation data are 276 and 78, respectively.
A B DC

FIGURE 7

Comparison among the vertical structure of temperature at depths of 1-55 m obtained by observed ST (black), GLGBM-tides (blue) and GLGBM
(red) during maturity stage of the YSCWM. The profiles are randomly selected according to spring tide (B, D) and neap tide (A, C). The max_tcv
represents the daily maximum tidal current speed.
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evaluation indicators are computed as follows:

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1 Ti − T

0
i

� �2
r

(1)

R2 =
oN

i T
0
i − �T

� �2

oN
i Ti − �Tð Þ2 (2)

Error =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NoN

i=1 Ti − T
0
i

� �2q
�T

(3)

Here, Ti denotes the observed temperature while T
0
i is the

estimated temperature by models. The �T is the mean values of Ti
over the whole observation. N is the number of test samples.

From Figures 8A-C, the evaluation indicators of the two

methods are similar within the 1-28 m depth layer. However, in

the 40 m depth level, the RMSEs of the two are 0.806 and 0.863,

respectively. Meanwhile, the accuracy of other layers has been

improved by different degrees from 30 m to 55 m. Figure 8D

shows that the smaller absolute errors occupy a larger

proportion in the GLGBM-tides model. In addition, the

enhancement is mainly manifested during the maturity stage

(Figure 9). It may be attributed to the tidal mixing primarily

influencing the range up to 30 m from the bottom during

summer (Qiao et al., 2004b). In this trial, GLGBM-tides

coupled the tide model while GLGBM not. Meanwhile, strong

tides affect the heat transfer and thermal structure of the profile,

especially the bottom layer. As a result, GLGBM-tides better

learn the temperature variation affected by tidal mixing, and it
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presents a more consistent vertical thermal structure with in situ

observations (Figure 7) and better performance than

GLGBM (Figure 8).

Furthermore, we analyzed the accuracy of the models at

three specific stages from 30 m to 50 m (Figure 9). The averaged

R2 and RMSE are significantly different in the maturity stage of

YSCWM and similar in the decline and disappearance stages. It

performs less well in the maturity stage than the other two stages

in the YSCWM deep. Strong stratification leads to a large

difference in temperature between YSCWM and the upper

layer. Besides, YSCWM is influenced not only by the air-sea

heat flux but also by the cooling process of the previous winter

(Zhu et al., 2018). It means that the thermal structure of

YSCWM is more difficult to be described by sea surface

parameters in the machine learning models hence lower R2

and higher RMSE. The averaged R2 of GLGBM-tides and

GLGBM are 0.614/0 .547, with approximately 12%

improvement. It results from the stronger influence of tidal

mixing on the temperature structure in summer. Therefore, tides

are worth considering in the offshore temperature

field reconstruction.

Overall, the GLGBM-tides has good accuracy with errors of

less than 8% at all depth layers and most absolute difference of

less than 2°C (Figures 8C, D). It is worth noting that a bump

appears above 30 m in Figure 8B. This phenomenon may be

related to the depth of the mixed layer. According to previous

research, the depth of the mixed layer in SYSCWM is about 5-25

m (Qiao et al., 2004b). The temperature does not vary

significantly within the mixed layer, which causes the lower

RMSE and higher R2. The tidal mixing primarily influences the
A B

DC

FIGURE 8

The average RMSE (A), R2 (B), Error (C) at the 17 depth levels and absolute difference density distribution (D) between the test datasets and
estimated ST from GLGBM-tides (blue) and GLGBM (red).
frontiersin.org

https://doi.org/10.3389/fmars.2022.1075938
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


range up to 30 m from the bottom, enhancing the vertical

temperature variability (Qiao et al., 2004a) and the particular

structure of the YSCWM makes it difficult for the model to

accurately describe the temperature variations. Therefore, the

accuracy of reconstruction at these depths will be worse

(Figures 8A-C).

It helps to understand the different effects of each sea surface

parameter on the ST, by analyzing the importance of sea surface

parameters at different depths. The LGBM reflects the importance

of different features by calculating the number of times the sea

surface parameters are used to segment the data across all trees.

The relative importance of each parameter is calculated by

summing and normalizing the feature importance from the
LGBM. Figure 10A shows the relative importance of each sea

surface parameter from GLGBM-tides. According to previous

studies, the vertical thermal structure in the Yellow Sea (YS) is

influenced by air-sea heat flux, the wind, tidal vertical mixing, and

freshwater input (Chu et al., 1997). The temperature in the mixed

layer is vertically quasi-uniform due to the mixing of multiple

dynamic processes, such as wave motion and wind. Meanwhile,

the mixed layer gradually thickens from the maturity stage to the

disappearance stage of YSCWM, which means that the sea surface

temperature (SST) can explain more subsurface temperature

variations. Consequently, SST is the main driver of the model,

with a more than 30% contribution at 17 depth levels

(Figure 10A). However, below the mixed layer, the heat transfer
FIGURE 9

The average RMSE and R2 between 30 and 50 m depth using GLGBM-tides and GLGBM in three YSCWM stages (the lines indicate the RMSE and
the bars indicate the R2).
A B

FIGURE 10

The relative importance of each sea surface parameters in three stages and maturity stage at different depths. (A) Average relative importance by
three stages of all input parameters. The parameters of tides include tidal elevation (z) and tidal currents (u, v). (B) The relative importance of the
SST and tides in YSCWM maturity stage below 30 m.
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is blocked, and it is difficult to explain the temperature change by

relying on SST alone. Therefore, the trend of SST contribution

decreases with deepening (Figure 10A).

Warming or cooling mainly drives density changes, causing

sea level changes since salinity variation is not significant in the

SYS. There is a close correlation between ADT and subsurface

thermal structure. The sea level variations are influenced more

significantly by those depths where temperature sharply

changes, such as the thermocline. Therefore, the ADT

contribution is higher at those depths where the temperature

fluctuates drastically (Figure 10A), such as the thermocline in the

maturity and declining stages and the bottom layer affected by

tides. It leads to an average relative importance of 10% and 16%

for ADT above and below 15 m depth, respectively.

SSS and SSW are also important parameters (Wu et al., 2012;

Klemas and Yan, 2014; Su et al., 2015). The SSS is related to

freshwater input (Nieves et al., 2014), which causes density

anomalies and then affects the dynamics. The contribution of

SSS is less variable from surface to 40 m depth but increases at

the bottom (Figure 10A). This may be related to the Yellow Sea

Warm Current (YSWC) in the winter, which brings a more salty

and warmer water mass, especially at the bottom and manifests

in the SSS. Wind forcing changes sea level and also affects ocean

mixing, intensifying heat exchange between layers. Southerly

winds prevail in summer and northerly winds during winter in

the SYS, which causes VSSW to contribute more than USSW

(Figure 10A). The vertical distribution of the wind (USSW and

VSSW) contribution is roughly same but increases slightly at the

bottom (Figure 10A), which is due to the mixed layer deepening

during the declining stage of YSCWM.
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Tide-induced mixing causes changes in the ocean heat

vertical distribution. Even though the overall tidal contribution

is weak and less variable, it may be important for a particular

stage. During the maturity stage of YSCWM, the tides

contribution (u, v, and z in Figure 10A) is about 15% within

the mixed layer but can exceed 30% below the mixed layer

(Figure 10B) causing the tidal-induced mixing mainly affects the

bottom and above 30 m range (Qiao et al., 2004b). It is

comparable to the SST contribution (Figure 10B).
4.2 Comparison with other methods

We compared other temperature prediction methods. The

SVR and ANN methods have no pre-clustering process and

tides. The overall R2 of SVR and ANN are 0.862/0.888 with the

RMSE of 1.506/1.22°C, respectively on the time series. It shows

that the GLGBM coupled tides have better accuracy from

Figures 11A-C. However, the ANN has similar accuracy above

20 m compared to GLGBM-tides, which may be related to the

dominance of SST in this depth range. Additionally, GLGBM-

tides allows errors to be smaller and more concentrated,

effectively improving model performance, as revealed by the

error density distribution (Figure 11D).

We choose H1 data to demonstrate the performance of

different methods for fine and continuous data. Since deep

learning is more applicable to large data, ANN performs

unstable. We implement ANN 20 times to obtain the average

temperature estimation. Figure 12 shows the observation from H1

and the reconstructed temperature structure from different
A B

DC

FIGURE 11

The average RMSE (A), R2 (B), Error (C) at the 17 depth levels and absolute difference density distribution (D) between the test datasets and
estimated ST from GLGBM-tides (blue), ANN (red) and SVR (grey).
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methods. The seasonal warming in the upper mixed layer has

been reproduced by all methods. Here we adopt the upper

boundary of the thermocline as the mixed layer depth (MLD)

to further evaluate the performance of models. The reconstructed

temperature fields are interpolated to 1 m vertical resolution

before calculating MLD. The results show that the MLD is

maintained around 10-15 m in the H1 observations

(Figure 12A). For the reconstructed temperature field by

GLGBM-tides (Figure 12B), the MLD changed generally

consistent with the H1 observation. Influenced by atmospheric

processes, the MLD becomes shallower from 17 June to 1 July.

This process is wel l reproduced by GLGBM-tides.

Reconstructions from other methods failed to capture this

variation. The MLD from reconstructed temperature by ANN is

stabilized at about 15 m (Figure 12C) while the MLD

reconstructed by SVR (Figure 12D) is too deep. The

reconstructed temperature from ANN can indicate the trend of

YSCWM but has large noises (Figure 12C). The temperature field

estimated from SVR fails to reproduce the strong thermocline and

YSCWM (Figure 12D). GLGBM-tides can reproduce the vertical

temperature structure well compared to the observations.

However, the overall estimate of the YSCWM by GLGBM-tides

is slightly warmer than the observations from surface to bottom.

Hence, the intensity of YSCWM from estimation is weaker. It is

noticeable that the reconstruction of the thermocline is well,

which assists in predicting the depth of the YSCWM.

We attempt to apply the temperature estimation at the

locations of the cruise observations by training the samples

from H1 and M1 and use S33-S37 data for verification. The
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ARMOR3D reanalysis data is used to compare as well. The

temperature estimation beyond the topography is deleted.

Figure 13 shows the temperature structure of 35°N and 36°N

sections (S35 and S36) in three stages of YSCWM. The overall

RMSE by all samples of GLGBM-tides and ARMOR3D is 1.781/

2.133°C, respectively. It is higher than above due to the spatial

heterogeneity of the thermal structure in SYS but the

reconstructed vertical temperature structure is still in general

agreement with the observations. In the mixed layer, the

reconstructed temperature was colder than observation while

the ARMOR3D is warmer and the reconstruction has a small

zonal variation. It is the result of the training data containing

inadequate spatial features. In contrast, the reanalysis

data shows a clear spatial difference for fully considering

spatial features during production but shows a shallower

mixed layer, such as Figures 13B, D. In the declining and

disappearance stages, the temperature reconstruction is better

for the strong mixing but the ARMOR3D still shows a

significant temperature gradient from surface to 35 m depth

(Figures 13C, D). The estimates provide a better reconstruction

of the thermocline than ARMOR3D (Figures 13A, B). The

intensity of the thermocline in the ARMOR3D data is

strong (Figures 13A, B) in maturity stage while it is weak in

declining stage (Figures 13C, D). The estimated temperature

of YSCWM by the GLGBM-tides is slightly warmer especially in

the declining stage (Figures 13C, D), but consistent in terms of

depth and spatial distribution. The ARMOR3D have the

shallower upper boundary of the YSCWM so the temperature

of YSCWM is cold as observations (see Figure 13B). Both have
A B

DC

FIGURE 12

Comparison H1 observations (A) and reconstruction from GLGBM-tides (B), ANN (C) and SVR (D) from 0-50 m in H1 period. The MLD is
indicated by the solid black line.
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good reconstruction of well-mixed temperature structure in the

disappearance stage (Figures 13E, F). However, the cold cores in

S36 could be observed (Figures 13B, D, F) by cruise data but this

special structure is difficult to reproduce. Figure 14 shows the

spatial distribution of RMSE in three stages. The accuracy of the

proposed method is good from 121°E to 123.5°E. From

Figure 14A, the RMSE increases from the center (location of

M1) along longitude towards the sides, but with larger

differences in farther regions, which may stem from the

sparseness of the offshore observations. On the contrary, the

RMSE of ARMOR3D decreases gradually from the center to the

outside but is similar on the west side of the study area.

However, the GLGBM-tides and ARMOR3D have close

overall R2, which are 0.927 and 0.884, respectively. Generally,

our reconstruction results are reliable through comparison with

ARMOR3D data.
Frontiers in Marine Science 13
5 Conclusion

This paper proposed the offshore temperature

reconstruction method coupled TPXO tide model based on

LGBM, using sea surface parameters (ADT, SST, SSS, SSW,

tides). The performance of model incorporating tides is

quantitatively analyzed. In addition, the temperature

estimation is applied spatially and compare with other

ARMOR3D. The primary significance of this study is as follows:

(1) The SYS is a typical offshore sea with a huge tidal range,

resulting in the difficulty of temperature prediction by classic

machine learning method. We coupled the tide model by feeding

the estimated tidal elevation and tidal currents by the tide model

into a lightweight ensemble learning approach to retrieve SYS

thermal structure using small data. The method can generate

continuous 3D temperature field at 0-55 m in the SYS at daily
A

B

D

E

F

C

FIGURE 13

Comparison of vertical temperature distributions of in situ observations (left), reconstruction from GLGBM-tides (middle) and ARMOR3D (right)
in 0-55 m along the 35°N and 36°N section at maturity stage (A, B), declining stage (C, D) and disappearance stages (E, F) of YSCWM.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1075938
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yu et al. 10.3389/fmars.2022.1075938
and 0.25° × 0.25° resolution. Experiments demonstrate that

proposed method increases the R2 by 12%, compared to

GLGBM and the model tide data mainly improves the

accuracy below thermocline in the maturity stage of YSCWM.

It has significance for the depth prediction of the YSCWM.

Meanwhile, the contribution of tides is comparable with SST in

the temperature reconstruction model. The proposed method

provides a new explorable direction for reconstructing the

offshore thermal structure.

(2) The proposed method is also compared with other

machine learning approaches and ARMOR3D dataset. Time

series experiments show that the proposed method is superior to

SVR and ANN with the RMSE of 0.803°C, 1.506°C, and 1.22°C,

respectively. Compared with the cruise data, the method has

good and stable results in the three stages of YSCWM. Around

the location of M1, the RMSE and R2 have a good performance

in our experiments so our method is effective in the SYS.

Furthermore, the temperature reconstruction is comparable to

observation-based ARMOR3D dataset, with close R2 although

their RMSE differed in spatial distribution.

Due to the small samples, important oceanic phenomena at

longer time scales and larger spatial scales may not be well

represented in the reconstructed temperature fields. With

sufficient data, better accuracy will be obtained on larger

spatial and temporal scale. Therefore, extending the data over

longer time and more space to improve the prediction

performance of the model is a priority for future work.
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