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Environmental Sciences, Zhejiang Wanli University, Ningbo, China, 2College of Fisheries and Life,
Shanghai Ocean University, Shanghai, China, 3Ninghai Institute of Mariculture Breeding and Seed
Industry, Zhejiang Wanli University, Ninghai, China
The circadian clock is an endogenous regulation mechanism that coordinates

biological processes with daily changes, which are regulated by circadian clock

genes. Bmal1 and Period are key circadian clock genes and their roles in

reproductive development have been widely studied. The spawning time of

Sinonovacula constricta is limited to the night even under external artificial

stimulation, and it might be regulated by the internal circadian clock. In this

study, the heart rate of S. constricta was higher between 20:00-04:00 at night

and lower between 12:00-16:00 during the day, and the sex hormone contents

were the highest at 00:00 and the lowest at 18:00 (P < 0.01). Therefore, these

obvious changes in the circadian rhythm indicate that S. constricta is a

nocturnal animal. The open reading frame (ORF) of Bmal1 comprises 1944

bp encoding 647 aa, while the ORF of Period comprises 3111 bp encoding 1036

aa. Bmal1 and Periodwere both expressed in four tissues, but they had opposite

rhythmic expression patterns. Bmal1 expression was higher at 00:00-06:00

and lower at 12:00-18:00, and Period expression was opposite, thereby

suggesting that Bmal1 and Period are involved in positive and negative

pathways regulated by the circadian clock, respectively. Strong protein

fluorescence signals of Bmal1 and Period proteins were observed in mature

oocytes, spermatids, hepatocytes, and epithelial cells of siphons. After siRNA

interference, the expression of both Bmal1 and Period significantly decreased

(P < 0.01), and the sex hormone contents decreased significantly from 3 to 7

days in the siRNA treatment groups (P < 0.01). Therefore Bmal1 and Periodmay
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regulate nocturnal spawning by controlling sex hormone secretion. These

findings provide a theoretical basis for understanding the molecular

mechanism related to spawning, and may facilitate the artificial propagation

of mollusks.
KEYWORDS

Sinonovacula constricta, circadian clock, nocturnal spawning, Bmal1, Period
Introduction

The circadian clock is an endogenous timing mechanism

that produces a 24 h circadian rhythm, and is self-driven. It is

affected/synchronized by light, temperature, food availability,

and other environmental factors (Gachon et al., 2004), which

regulates various physiological, developmental, reproductive,

and metabolic processes (Bass and Takahashi, 2010). The

suprachiasmatic nucleus (SCN) in mammals, is the main

pacemaker for the circadian clock system, where it plays a

leading role in generating, maintaining, and regulating the

circadian rhythm. When the light signal is transmitted to the

SCN through the hypothalamic retinal tract, the SCN generates a

rhythm signal by regulating the periodic oscillation expression of

circadian clock genes (Weaver, 1998; Reppert and Weaver,

2002). In addition, the peripheral clock systems (e.g., liver,

stomach, kidney, and ovary) can receive rhythm signals from

the central nervous system to regulate the body’s physiological

activities together with the SCN (Durgan et al., 2005). The main

regulators of circadian rhythms are believed to be composed of

transcription–translation feedback loops (TTFLs), which drive

the periodic expression of circadian clock genes and proteins

(Ray et al., 2020). The clock protein is a transcription factor that

forms a heterodimer with Bmal1 (or Arntl) protein through the

PAS region (a “sticky” region that can attach to other proteins)

when the circadian time starts, and it drives the transcription of

Period and Cry by combining with the E-box sequence. After

some critical posttranslational modifications, including

phosphorylation by casein kinases, the mRNA expression

levels of Period and Cry increase to a certain extent, and they

form heterodimers that translocate to the nucleus where they

inhibit the activity of the Bmal1 and Clock enhancer complex

and inhibit their own transcription. The interactions between

promoting and inhibitory factors result in the changes in the 24

h circadian rhythm (Gallego and Virshup, 2007; Kojima et al.,

2011; Sellix, 2015).

Many studies have investigated the roles of circadian clock

genes in reproduction. In particular, Bmal1 and Period are

regarded as key circadian clock genes, and their roles in

reproductive development have been widely studied.
02
In mammals, the rhythmic expression of Bmal1 and Period

existed in both the male and female reproductive systems in

Rattus norvegicus (Bittman et al., 2003; Alvarez and Sehgal,

2005). Moreover, Bmal1 and Period might play important roles

in follicular development, ovulation, and other processes by

controlling the production of sex steroid hormones (Ratajczak

et al., 2009). In Mus musculus, the lack of Bmal1 caused

ovulation and impaired luteinization, which led to infertility

(Alvarez et al., 2008). Similarly, knocking out Bmal1 decreased

the ovarian weight and ovulation in M. musculus (Boden et al.,

2010; Xu et al., 2016). In addition, after injection with chorionic

gonadotropin, the expression of Bmal1 increased in mouse

ovaries and the maximum value was reached at 16 h after

injection (Momoko et al., 2018). Similarly, mutation of the

Period gene can reduce the fertility of mice (Pilorz and

Steinlechner, 2008). The application of follicle-stimulating

hormone (FSH) to stimulate apoptotic ovarian cells increased

the rhythm of Period expression in granulosa cells but decreased

that in luteal cell due to apoptosis (Chu et al., 2011). In fish,

Bmal1 and Period circadian rhythms have also been found in the

ovaries of the swordfish Xiphias gladius (Danilo et al., 2020). In

addition, mutations of Bmal1 can reduce the levels of sex

hormones such as estradiol to affect the reproductive ability of

the zebrafish Danio rerio (Wang, 2013; Wang, 2017). In

mollusks, previous studies mainly focused on the functions of

sex hormones in regulating reproduction, such as in the bay

scallop Argopecten irradians (Li et al., 2020), short necked clam

Ruditapes philippinarum (Wu, 2019), Fujian oyster Crassostrea

angulata (Ni, 2013), and Zhikong scallop Chlamys farreri (Liu

et al., 2014). However, the relationships between circadian clock

genes and sex hormones have rarely been explored in mollusks.

The razor clam Sinonovacula constricta is an economically

important bivalve with fast growth, high yield and short

production cycle. Artificial cultivation of this clam has been

developed in recent two decades. However, the spawning time

for S. constricta is limited to the night (22:00-06:00) even under

external artificial stimulation, such as drying in shade, running

water stimulation, and shading (Mo, 2008). Therefore, we

speculated that spawning might be regulated by the internal

circadian clock. In the present study, we detected and analyzed
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physiological indicators, including the heart rate, sex hormones

(estradiol and testosterone), mRNA and protein expression

patterns of Bmal1 and Period within 72 h. Small interfering

RNA (siRNA) techniques were also used to explore

the relationships between clock genes (Bmal1 and Period) and

the secretion of sex hormones. Our findings suggest that the

circadian clock might be involved in nocturnal spawning of S.

constricta , thereby providing a theoretical basis for

understanding the molecular mechanism of spawning, and

facilitating the artificial breeding of mollusks.
Materials and methods

Experimental animals and
sample collection

Razor clams were obtained from Ningbo Ocean and Fishery

Science and Technology Innovation Base (Ningbo, Zhejiang

province, China) in October, which was the reproductive

period of S. constricta. Prior to the experiment, one-year-old

clams with mature gonads (average shell length = 6.2 ± 0.5 cm,

average body weight=19.0 ± 1.5g) were selected for culture in the

mud under a light cycle of 12L: 12D for three days. The artificial

lights were turned on (the light intensity 359 ± 20 lx), and the

light shines directly into the tank from 08:00 to 20:00 as

simulating the daytime (12h light, 08:00–20:00), and black
Frontiers in Marine Science 03
clothes were covered on the tank from 20:00 to 08:00 as

simulating the nighttime (12 h dark, 20:00–08:00). The water

temperature and salinity were maintained at 20 ± 1°C and 20 ± 1

ppt, respectively. The culture water was natural seawater, and

was continuously aerated and changed once a day. The razor

clams were fed with the live microalgae of Chaetoceros muelleri

with the concentration of (2.5 ± 0.2) × 108 cell/L every day.

The razor clams were randomly placed into three tanks under

the same experimental conditions. Considering the pre-

experiment results and nocturnal spawning of S. constricta, the

samples were collected at four time points (00:00, 06:00, 12:00, and

18:00) per day over a period of three days (72 h) (Figure 1A). For

each time, it corresponded to three parallel tanks. Twelve

individuals (six males and six females) were randomly selected

at each time, and their gender was distinguished by aspirating

mature oocytes and sperm cells for observation using an optical

microscope. In order to explore the molecular mechanisms of

nocturnal spawning of S. constricta, four tissues of ovary, testis,

hepatopancreas, and siphon were dissected, immediately frozen in

liquid nitrogen, and stored at –80°C. Fresh tissues were also fixed

in 4% paraformaldehyde, and then kept in 70% alcohol at 4°C.
Heart rate monitoring

The heart rates of male and female clams were recorded

using a non-invasive infrared monitoring method to assess
A

B C

FIGURE 1

Circadian rhythm analysis of the physiological indicators in S. constricta. (A) The experimental design of circadian rhythm, the moon represents
the nighttime point, the sun represents the daytime point, and the arrow represents the sampling time point. (B) The heart rate changes of
female and male clams. (C) The circadian rhythm changes of estradiol and testosterone within 72 h in S. constricta (E2, estradiol; T,
testosterone; n=6).
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biological heartbeat parameters. Monitoring equipment facilities

containing infrared sensors (CNY-70, Newshift®, Portugal), a

heartbeat monitor amplifier (AMP-03U, Newshift®, Portugal),

PowerLab 8/35 eight-channel research high-speed recording

host (Biomart, Australia), and Blu-Tag (Bostik, Australia) were

used to acquire the signals. LabChart software was used to record

heart activity waves (AD Instruments, Australia). The diurnal

changes in heartbeat fluctuations were measured under the

conditions of 12 h light: 12 h dark over a period of three days

(72h), and the heart rate data were analyzed at intervals of 4 h.
Sex hormone measurement

Sex hormone contents (estradiol and testosterone, n=6) were

determined with mature gonads (ovary and testis) using

enzyme-linked immunosorbent assay kits (Biomart, Ningbo,

China). Briefly, 0.1 g of ovary or testis tissue sample was

mixed with 0.9 mL of normal saline and mechanically

homogenized. Subsequently, the mixture was centrifuged for

10 min at 1,000g and 4°C, and 700 mL of the supernatant was

collected and kept at –80°C. After coating, 10 mL of the sample

was added to a microtiter plate and incubated at room

temperature for 1 h (with sample wells, standard wells, and

blank wells), before washing with buffer solution. Next, 100 mL
of horseradish peroxidase-labeled detection antibody was mixed

with the standard wells and sample wells, before incubating at

room temperature for 1 h and then washing. Finally, the reaction
Frontiers in Marine Science 04
was terminated by incubation with tetramethylbenzidine at

room temperature in darkness for 15 min. The OD450nm

values were recorded with a microplate reader (Tecan,

Switzerland) to calculate the sample concentrations.
RNA extraction and full-length cDNA
cloning of Bmal1 and Period

RNA was collected and prepared using TRIzol reagent

(Sangon, Shanghai, China). The quality of RNA was assessed

by agarose gel (1.5%) electrophoresis and the RNA

concentration was measured with a nucleic acid detector

(Nanovue Plus, Thermo Scientific, USA). First-strand cDNA

of 5’ and 3’ RACE were synthesized using SMART RACE

reagent (Clontech, USA).

The partial coding sequences of Bmal1 and Period were

detected in the genome of S. constricta (WSYO00000000.1). The

primers for RACE were designed by using Primer Premier 5

(Table 1). PCR amplification was conducted following the

instructions in the SMARTer™ RACE cDNA amplification kit

(Clontech). PCR was performed in a reaction volume of 25 µL,

which contained 18 µL of DEPC water, 2.5 µL of 10 × Advantage

2 PCR buffer, 0.5 µL of 10 mM dNTPs, 0.5 µL of 10 µM primer,

2.5 µL of 10 × Universal Primer A mix (UPM), 0.5 µL of diluted

RACE cDNA, and 0.5 µL of 50 × Advantage 2 Polymerase Mix.

The 1.0% agarose gels containing the products were purified

using gel extraction kits (Tiangen, China). The purified PCR
TABLE 1 All primer sequences used in the experiments.

Primers Sequences (5′-3′) Application

Bmal1-F1 TCTTATTTGTAGTGGGGTGTGACAGGGC 3′-RACE

Bmal1-R1 GCCCTGTCACACCCCACTACAAATAAGA 5′-RACE

Bmal1-F2 CCTCCCAATCCTCCTACCA Verifying the sequence of cDNA

Bmal1-R2 AGGGCGATTGATTTAGCGG

Bmal1-F3 AGAGAAACGACGGCGAGA qRT-PCR

Bmal1-R3 GCCATCCGCAATACTGTGAG

Bmal1-F4 GCAGAACCAUAGUGAGAUATT siRNA

Bmal1-R4 UAUCUCACUAUGGUUCUGCTT

Period-F1 CTCTCAACCACTGATAGTCCCCCCATT 3′-RACE

Period-R1 AGGTAGCCCAGTAGTGGCACCGTGT 5′-RACE

Period-F2 TGGGAACGGAGATGCGAAA Verifying the sequence of cDNA

Period-R2 TGATCCTCTAGCTCCTCTAACAG

Period-F3 TGCCACTACTGGGCTACCT qRT-PCR

Period-R3 AGGTCCACTCTTGTAAGGCAC

Period-F4 CCAAGUUAUCCAGUGGCAATT siRNA

Period-F4 UUGCCACUGGAUAACUUGGTT

18S rRNA-F TCGGTTCTATTGCGTTGGTTTT Reference gene of qRT-PCR

18S rRNA-R CAGTTGGCATCGTTTATGGTCA

NC-F UUCUCCGAACGUGUCACGUTT siRNA

NC-R ACGUGACACGUUCGGAGAATT
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product was ligated with pEasy-T5 for 25 min at 30°C and

transformed into Escherichia coli DH5a (Trans, China). The

positive plasmid was then screened and sequenced to obtain the

full-length sequences. The primers used to confirm the accuracy

of Bmal1 and Period cloning and sequencing are shown

in Table 1.
Sequence analysis

EMBL-EBI was used to assemble the cDNA sequences. The

open reading frames (ORFs) of Bmal1 and Period cDNA were

identified using ORF Finder at the National Center for

Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.

gov/) website. NCBI CD-search (https://www.ncbi.nlm.nih.

gov/Structure/cdd/wrpsb.cgi)was used to analyze functional

domains, and the results were visualized by TBtools.

Phylogenetic trees were constructed using Mega11.0 software

with the maximum likelihood method [a JTT with freqs. model

plus gramma distributed (JTT+F+G) for Bmal1, and a JTT with

freqs. model plus gramma distributed with invariant Site (JTT+F

+G+I) for Period], and Homo sapiens was selected as the out

group for Bmal1 and Period. Bootstrap values were determined

from 1,000 replicates. All the GenBank accession numbers for

sequences are listed in Supplementary Table 1.
Quantitative real-time PCR
(qRT-PCR) analysis

Total RNAs from ovary, testis, hepatopancreas, and siphon

tissues (n=6) were reverse transcribed into cDNA by using RT-

PCR kits (Takara, Japan). The mRNA expression levels of Bmal1

and Period were assessed by qRT-PCR using Cham Q SYBR

qPCR Master Mix (Vazyme, Nanjing, China) and primers with

the sequences listed in Table 1. The reaction volume of 20 mL
used for amplification contained 10 mL of SYBR qPCR Master

Mix, 1 mL of each primer (10 mM), and 8 mL of cDNA sample (10

ng/mL). The reaction program was as follows: 95°C for 10 s,

followed by 40 cycles at 95°C for 5 s and 60°C for 30 s. The 18S

rRNA gene was selected as the housekeeping gene, and the

expression levels of Bmal1 and Period were normalized relative

to that of 18S rRNA by using the 2–DDCt method.
Western blot detection and
immunofluorescence analysis

Western bolts was used to verify the specificity of Bmal1 and

Period antibodies (rabbit anti-Bmal1, rabbit anti-Period,

produced by HuaBio, China) on the S. constricta. Total

proteins of ovary, testis, hepatopancreas, and siphon tissues
Frontiers in Marine Science 05
were extracted using high-efficiency RIPA tissue lysis buffer

(Solarbio, Beijing, China), and the protein concentrations were

determined by the BSA kit (Thermofisher, China). The protein

extract was separated by SDS-PAGE gel, and then the protein

glue with target protein was transferred to polyvinylidene

difluoride membrane (PVDF) (Sangon, Shanghai, China). The

PVDF membranes were blocked for 1.5 h with a blocking

solution (10% milk buffer, 5% TBS and 0.1% Tween-20), and

then incubated overnight at 4°C with primary antibodies (rabbit

anti-Bmal1, rabbit anti-Period, produced by HuaBio, China,

1:500). Subsequently, the membranes were incubated with

secondary antibodies (anti-rabbit labeled with biotin HRP,

1:8,000) (Sangon, Shanghai, China) for 1h at room

temperature. Finally, the membranes were incubated with ECL

luminescent substrate mixture, and the western blots results

were observed and photographed using gel imagers (Bio-

Rad, USA).

Immunofluorescence analysis was used to analyze the

subcellular distribution and circadian expression of Bmal1 or

Period protein in S. constricta. To obtain paraffin sections,

samples were dehydrated with an ethanol gradient, embedded

in paraffin, cut in sections with a thickness of 4 mm, and spread

on polylysine-treated glass slides. Before immunofluorescence

analysis, the paraffin sections were heated for 2–3 h at 50°C,

dewaxed with xylene, and dehydrated using an alcohol gradient.

The slices were incubated in citrate buffer for 30 min at 95 °C,

washed with phosphate-buffered saline (PBS), and blocked for 1

h at room temperature in blocking fluid containing PBS, 5%

bovine serum albumin (BSA), and 0.2% Tween-20. The sections

were incubated overnight at 4°C with primary Bmal1 or Period

antibody (rabbit anti-Bmal1, rabbit anti-Period, produced by

HuaBio, China, 1:400). Next, the sections were washed in PBS

supplemented with 5% BSA and 0.2% Tween-20, and incubated

with goat anti-rabbit IgG FITC (diluted 1: 200) (Sangon,

Shanghai, China) for 1 h at room temperature, before washing

again with PBS. Nuclei were stained with 4′, 6-diamidino-2-

phenylindole (Beyotime, Shanghai, China). A fluorescence

microscope (Nikon Eclipse 80i, Japan) was used to observe

fluorescent signals.
siRNA interference of Bmal1 and Period

The adult clams with mature gonads (average shell length =

6.2 ± 0.5 cm, average body weight=19.0 ± 1.5g) were selected for

siRNA experiments and divided into three groups comprising

experimental (small interfering RNA for Bmal1 or Period),

siRNA-negative control (NC), and blank (DEPC treated water)

groups. Subsequently, 20µL siRNA reagent (4000ng, 200 ng/µL),

NC (4000ng, 200 ng/µL), or DEPC were injected into the

gonadal tissues of the razor clams in each group. Ovary and

testis tissues (n=6) were collected from six clams in each group
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after 0, 1, 3, 5, 7, and 9 day, and stored at –80°C for detecting

gene expressions and sex hormone contents. Gene expressions

by qRT-PCR (n=6) and sex hormone analysis using enzyme-

linked immunosorbent assay kits (n=6) were conducted as the

above steps.
Statistical analysis

Statistical analysis and figure preparation were performed

using GraphPad Prism 8 software. Experimental results were

expressed as the mean ± standard deviation and differences were

detected by one-way analysis of variance. Multiple comparation

in the sex hormone contents (n=6), the circadian expression

levels of Bmal1 and Period (n=6) and siRNA interference (n=6)

were carried out among different time points, and multiple

comparation in the tissue expression levels of Bmal1 and

Period (n=6) was carried out among different tissues. P<0.05

was considered to indicate a statistically significant difference,

and P<0.01 denoted an extremely significant difference.
Results

Circadian rhythm changes in heart rate
and sex hormones

The heart rate changes in S. constricta were measured over

72 h and they generally varied between 19–26 bpm, with no

significant differences between male and female clams.

Moreover, the heart rates were higher between 20:00–04:00

and lower between 12:00–16:00, thereby demonstrating that

they changed according to a circadian rhythm (Figure 1B).

The estradiol (ovary) contents over 72 h ranged from 600 to

1800 pg/g and the testosterone (testis) contents ranged from 35

to 95 ng/g (Figure 1C). The testosterone contents in the testis

were higher than the estradiol contents in the ovaries. In

addition, the estradiol and testosterone contents were both

highest at 00:00 and lowest at 18:00, and the differences were

extremely significant (P < 0.01), thereby demonstrating that the

changes followed an obvious circadian rhythm.
Molecular characteristics of Bmal1
and Period

The ORF of Bmal1 comprises 1944 bp encoding 647 amino

acids (aa) (GenBank accession number: OP779227) and the ORF

of Period comprises 3111 bp encoding 1036 aa (GenBank

accession number: OP779228). The predicted molecular

masses of the Bmal1 and Period proteins are 71.43 kDa and

116.86 kDa, respectively. The phylogenetic trees showed that
Frontiers in Marine Science 06
Bmal1 and Period proteins of S. constricta has closer

relationships to other mollusks, and were firstly clustered with

mollusks with high bootstrap support, and then clustered with

vertebrates species (Figures 2A1, B1). Fifteen protein sequences

from S. constricta and other species were selected to analyze the

functional domains, and the results showed two functional

domains in the Bmal1 protein were found in all of the test

species, and the Period protein was predicted to contain ten

functional domains, which generally include the PAS domain

(Figures 2A2, B2).
Circadian rhythm expression patterns of
Bmal1 and Period

The mRNA and protein expression patterns of Bmal1 and

Period in ovary, testis, hepatopancreas, and siphon tissues within

72h were analyzed by qRT-PCR and immunofluorescence

assays. The qRT-PCR results showed that the Bmal1 gene was

highly expressed in hepatopancreas and testis tissues, and higher

expression levels of Period were observed in the hepatopancreas

and ovaries (P < 0.01, Figure 3A). Furthermore, the expression of

Bmal1 in the four test tissues was higher at night from 00:00–

06:00 and lower at 12:00-18:00 during the day (Figure 3B). By

contrast, the expression pattern of Period was the opposite of

that for Bmal1, with higher expression at 12:00–18:00 during the

day and lower expression at 00:00-06:00 in the night (Figure 3B).

In general, the opposite rhythmic expression pattern in terms of

mRNA level was found for Bmal1 and Period.

In order to confirm specificity of Bmal1 and Period

antibodies in S. constricta, western blots were performed with

protein extracts of ovary, testis, hepatopancreas, and siphon

tissues. As shown in Figure 4A, a single protein with a molecular

mass of about 70 kDa, which corresponds well to the expected

Bmal1 mass of 71.43 kDa in S. constricta. Meanwhile, the single

protein (about 110 kDa) was also found for the Period protein,

and the molecular mass was consistent with the expected mass of

116.86 kDa (Figure 4B). Furthermore, there were no protein

bands in the control groups (lacking the primary antibody),

which strongly indicated that the Bmal1 and Period antibodies

could specifically detect Bmal1 and Period protein in

S. constricta.

The immunofluorescence assay results obtained for Bmal1

and Period proteins in the four tissues were consistent under the

same experimental conditions (Figures 5A, B). Strong

fluorescence signals were observed for the Bmal1 and Period

proteins in mature oocytes in ovaries, spermatids in testis,

hepatocytes in the hepatopancreas, and epithelial cells at the

end of siphon (Figures 5A, B). Furthermore, the samples of the

four tissues collected at 00:00 and 12:00 were selected to observe

differences in the fluorescent signals from the Bmal1 and Period

proteins. Intriguingly, the Bmal1 protein signals in the ovary and
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siphon tissues were stronger at 00:00 than 12:00, while the

Period protein signals in the ovary and hepatopancreas tissues

were stronger at 12:00 than 00:00 (Figures 5A, B). However, the

immunofluorescence assay results were qualitative, so the

quantitative rhythmic expression patterns of Bmal1 and Period

proteins in S. constricta are required further exploration and

clarification in the next step.
Expression patterns of Bmal1/Period
and sex hormone secretion after
siRNA interference

To further verify the relationships between the circadian

clock genes Bmal1 and Period and sex hormone secretion,

siRNAs for Bmal1 and Period were injected into the mature

ovaries and testis. The mRNA expression level of Bmal1 in the

ovary was significantly lower in the siRNA group than the NC

and DEPC groups from 3 to 5 days (P < 0.01), while the

expression level of Bmal1 decreased significantly in the testis

at 5 days (P < 0.01, Figure 6A). In the siRNA group of Bmal1, the

estradiol (ovary) and testosterone (testis) concentrations
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decreased significantly from 3 to 7 days (P < 0.01, Figure 6B).

From 7 to 9 days, the testosterone concentrations were still

significantly lower in the siRNA group than the NC group (P <

0.01, Figure 6B).

Compared with the NC group, the expression of Period in

the siRNA group decreased significantly from 3 to 5 days in the

ovary (P < 0.01), and decreased significantly at 5 days in the

testis (P < 0.01, Figure 7A). In addition, compared with the NC

group, the estradiol and testosterone concentrations in the

siRNA group decreased significantly from 3 to 9 days (P <

0.01, Figure 7B).
Discussion

Circadian rhythm of physiological
activities

The circadian clock is an endogenous timing mechanism

that regulates many behaviors and physiological indicators (e.g.,

heart rate and sex hormones) in most organisms (Sallam et al.,

2016). Physiological parameters are widely used to evaluate the
A1

B1

A2

B2

FIGURE 2

Bioinformatics analysis of Bmal1 (A) and Period (B) in S. constricta. (A1 and B1) Phylogenetic trees of Bmal1 (A1) and Period (B1) constructed
from S. constricta and other species with the maximum likelihood method (Bmal1: JTT+F+G model, Period: JTT+F+G+I model). (A2 and B2)
The functional domain analysis of Bmal1 (A2) and Period (B2) proteins.
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ability of marine mollusks to respond to environmental changes

(Dong and Williams, 2011; Liu et al., 2014; Xing et al., 2019). In

C. farreri, the circadian rhythm has a significant effect on the

heart rate, which increases significantly at night from 00:00–

08:00 (Xing et al., 2019). Similarly, in the present study, we

found that the heart rate was significantly higher in the night at

20:00–04:00 than at 12:00–16:00 during the day over a 72 h

period, thereby indicating that S. constricta is more active at

night. Previous studies also showed that sex hormones may be

internal factors that induce spawning and the contents of sex
Frontiers in Marine Science 08
hormones are closely related to the reproductive cycle in

mollusks. For instance, in C. farreri, the highest contents of

estradiol and testosterone occur before spawning (Liu et al.,

2014). In the clam Dosinia corrugata, the estradiol and

testosterone contents gradually increase during sexual maturity

and ovulation, then decreasing after ovulation (Du, 2017). The

spawning times for the great ramshorn Planorbarius corneus and

river snail Viviparus are delayed when exposed to freshwater

containing estradiol (Benstead et al., 2011). Similarly, we found

obvious changes in the circadian rhythms in terms of the
A

B

FIGURE 3

Expression pattern analysis of Bmal1 and Period in S. constricta. (A) The relative mRNA expression of Bmal1 and Period in four tissues (n=6).
(B) Circadian rhythm expression of Bmal1 and Period within 72 h in four tissues (n=6).
A

B

FIGURE 4

Specificity of Bmal1 (A) and Period (B) antibodies in S. constricta. Control 1, 2, 3, and 4: lacking the primary antibody in ovary, testis,
hepatopancreas, siphons tissues, respectively. 1, 2, 3, and 4: incubated with primary antibody in ovary, testis, hepatopancreas, siphons tissues,
respectively.
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estradiol and testosterone contents in S. constricta, which were

both highest at 00:00 and lowest at 18:00, and the differences

were extremely significant (P < 0.01). The contents of sex

hormones (estradiol and testosterone) might play important

roles in nocturnal spawning of S. constricta. Thus, there were

obvious changes in the circadian rhythm in terms of the

physiological activities of S. constricta, which might be

controlled by the circadian clock and closely related to the

circadian clock genes (Hu et al., 2004; Schibler, 2006).
Relationship between Bmal1 and Period

The coordination of biological time is controlled by the

circadian timing system, which involves dynamic molecular
Frontiers in Marine Science 09
interactions among the core clock-controlled genes (Karman

and Tischkau, 2006). Fluidity and translocation in the nucleus

controls the operation of the circadian rhythm through the

phosphorylation process in protein degradation (casein kinase

and AMPK modification) to form a 24 h circadian cycle (Boden

and Kennaway, 2006; Moore et al., 2014). This process involves

many circadian clock genes, which are expressed and play

important roles in multiple tissues (He and Chen, 2016).

Bmal1 and Period are key circadian clock genes, and their

roles in reproductive development have been widely studied.

In the brain and ovary of Danio rerio, Bmal1 and Period exhibit

rhythmic expression patterns under 12 h light: 12 h dark

condition (Khan et al., 2016). Similarly, we found that Bmal1

and Period were expressed in the ovary, testis, hepatopancreas,

and siphon tissues of S. constricta, which also exhibited rhythmic
A

B

FIGURE 5

Distribution of Bmal1 and Period proteins used immunofluorescence staining in four tissues. (A) Distribution of Bmal1 protein. (B) Distribution of
Period protein. MO, Mature oocytes; ST, Spermatid; HC, Hepatocytes; CC, Ciliated column cells; EC, Epithelial cell. Scale bars were 100 mm.
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A

B

FIGURE 6

Gene expression of Bmal1 and sex hormone secretion after siRNA interference. (A) Relative expression of Bmal1 in the ovary and testis in siRNA
group, NC group, and DEPC groups after siRNA interference (n=6). (B) The sex hormone content changes among groups after siRNA
interference (E2, estradiol; T, testosterone; n=6). Asterisks indicate significant differences: *P < 0.05, and **P < 0.01.
A

B

FIGURE 7

Gene expression of Period and sex hormone secretion after siRNA interference. (A) Relative expression of Period in the ovary and testis among
groups after siRNA interference (n=6). (B) The sex hormone contents changes among groups after siRNA interference (E2, estradiol; T,
testosterone; n=6). Asterisks indicate significant differences: **P < 0.01.
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expression patterns. Furthermore, the opposite expression

patterns were found for Bmal1 and Period in the test tissues.

In R. norvegicus, Bmal1 and Period have different circadian

rhythm expression patterns in the ovaries and SCN, with

opposite expression levels (Karman and Tischkau, 2006) in a

similar way to S. constricta. Furthermore, in TTFLs, the

expression levels of the “positive element” Bmal1 and

“secondary element” Period are the opposite (Shearman et al.,

2000), thereby indicating that Bmal1 and Period are involved in

positive and negative pathways regulated by the circadian clock.

In addition, the fluorescent signals of the Bmal1 and Period

proteins were mainly located in the germ and epithelial cells in S.

constricta. In mammals, studies have shown that strong

immunoreactivity by Bmal1 and Period protein were observed

in granulosa and theca cells, as well as corpora lutea in the

ovaries (Karman and Tischkau, 2006), and the Bmal1 protein

was also located in the germinal vesicle oocytes (Amano et al.,

2009), which are similar to our results. Thus, a peripheral

circadian clock exists in mollusks, and physiological activities

are regulated by circadian clock genes in different tissues.
Relationships between Bmal1 and Period
genes, and sex hormones

The ovarian circadian clock is formed by the connection

between the autonomic nervous system SCN and ovary (Buijs

et al., 1999), and spawning is controlled precisely by the

hypothalamic–pituitary–ovarian (HPO) axis (Sellix, 2015). In

particular, sex hormones such as luteinizing hormone or follicle-

stimulating hormone might be important signals for triggering

the ovarian circadian clock to induce spawning (Karman and

Tischkau, 2006). However, no previous studies have reported the

relationships between the ovarian circadian clock and sex

hormones in mollusks. Several studies have shown that the

estradiol and testosterone contents increase during gonad

development, and the highest levels are reached before

spawning in C. farreri (Liu et al., 2014). Estradiol and

testosterone can stimulate the maturation of eggs and sperm

in the giant scallop Placopecten magellanicus (Wang and Croll,

2004), and estradiol might regulate the occurrence of oocytes in

the Chilean ribbed mussel Aulacomya ater (Saavedra et al.,

2012), thereby suggesting that sex hormones might play

important roles in spawning of mollusks.

Existing research shows that circadian clock proteins with

PAS and BHLH domains play important roles in follicular

development (Benedict, 2003; Yamada, 2004). In the present

study, we found that both Bmal1 and Period proteins contain

PAS and BHLH domains, which suggests that they might be

involved in spawning of S. constricta. In order to explore the

relationships between Bmal1, Period, and sex hormones, we

measured the estradiol and testosterone contents after siRNA
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interference with Bmal1/Period. The results showed that the

contents of estradiol and testosterone decreased after siRNA

interference. Similarly, in a previous study, knocking out Bmal1

led to a decrease in progesterone secretion in mice (Ratajczak

et al., 2009). Bmal1 interference could inhibit the synthesis of

progesterone, testosterone, and prostaglandin E2, increase

interstitial cell apoptosis, and decrease the expression of key

sex hormone synthesis genes (e.g., Ptgs2, Cyp11a1, and Cyp19a1)

in mice and zebrafish (Chen et al., 2013; Ding, 2019). Therefore,

nocturnal spawning of S. constricta might be related to the

ovarian clock genes (Bmal1 and Period) and sex hormone

secretion, in other words, Bmal1 and Period could regulate

nocturnal spawning by controlling the secretion of sex

hormones. However, the molecular mechanisms that allow

circadian clock genes to regulate sex hormone secretion

require further analysis in mollusks.
Conclusions

The spawning behavior of razor clam S. constricta is

restricted to night, which may be involved in the circadian

rhythms in terms of its physiological activities and circadian

clock genes. The heart rate and sex hormone contents

(estradiol and testosterone) were both higher in the

nighttime than the daytime, and the changes with the

circadian rhythm were obvious, indicating that S. constricta

is a nocturnal animal. The circadian clock genes Bmal1 and

Period were expressed in all test tissues with the opposite

rhythmic expression patterns, and thus they are involved in

positive and negative regulatory pathways. The estradiol and

testosterone contents decreased after siRNA interference with

Bmal1 and Period, thereby suggesting that biological clock

genes might regulate nocturnal spawning by controlling the

secretion of sex hormones. The specific regulatory mechanisms

involved are still not fully elucidated, and require further

exploration and clarification.
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