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Tiny target detection in marine scenes is of practical importance in marine

vision applications such as personnel search and rescue, navigation safety, and

marine management. In the past few years, methods based on deep

convolutional neural networks (CNN) have performed well for targets of

common sizes. However, the accurate detection of tiny targets in marine

scene images is affected by three difficulties: perspective multiscale, tiny target

pixel ratios, and complex backgrounds. We proposed the feature pyramid

network model based on multiscale attention to address the problem of tiny

target detection in aerial beach images with large field-of-view, which forms

the basis for the tiny target recognition and counting. To improve the ability of

the tiny targets’ feature extraction, the proposed model focuses on different

scales of the images to the target regions based on the multiscale attention

enhancement module. To improve the effectiveness of tiny targets’ feature

fusion, the pyramid structure is guided by the feature fusion module in order to

give further semantic information to the low-level feature maps and prevent

the tiny targets from being overwhelmed by the information at the high-level.

Experimental results show that the proposed model generally outperforms

existing models, improves accuracy by 8.56 percent compared to the baseline

model, and achieves significant performance gains on the TinyPerson dataset.

The code is publicly available via Github.

KEYWORDS

tiny object detection, multiscale attention, feature pyramid network, attention
mechanism, unmanned aerial vehicle
1 Introduction

Target detection is the key to many computer vision applications, and its importance has

gradually increased in the last decade for marine vision tasks, such as ship detection (Chen

et al., 2021a; Tian et al., 2021), and maritime rescue (Varga et al., 2022), environmental

monitoring (Ribeiro et al., 2019; Lieshout et al., 2020; Cheng et al., 2021). In recent years,
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target detection has improved tremendously as deep neural

networks are trained faster and more efficiently. The combination

of deep learning-based target detection technology and Unmanned

Aerial Vehicle (UAV), as an image acquisition system with a large

field-of-view and high efficiency, has been extensively employed for

marine detection tasks with a large range and ultra-long distance.

Compared with natural scene images, most of the targets in aerial

marine scenes have tiny scales, and signal-to-noise ratios, and are

easily swamped by background noise. Therefore, it is challenging to

design a multi-scale tiny target detection model applicable to

marine scenes.

The convolutional neural network-based detection model (Yu

et al., 2020a; Yu et al., 2020b; Shen et al., 2019) has significantly

improved the target detection task. A salient feature of the deep

learning models, regarding the ability to generalize, is the quality

and quantity of the dataset, and the abundant high-quality data

can enhance the robustness and generalization of the model.

Kisantal et al. (Kisantal et al., 2019) proposed a copy-and-paste

enhancement to increase the number of samples and diversity of

the tiny targets by copying and pasting images containing the tiny

targets multiple times to ensure that they appear in the correct

context. Chen et al. (Chen et al., 2019) proposed an adaptive

resampling enhancement strategy to copy-paste the targets

considering the contextual information on top of Kisantal’s

work, to solve the problem of context and scale mismatch in the

appearance of targets, thus achieving data enhancement. This

method of increasing the number of tiny targets can, to a certain

extent, increase the positive samples and better optimize the

model for tiny target detection. However, the gains based on the

data processing have instead been constrained by the dataset.

Recently, the super-resolution reconstruction of tiny targets

based on generative adversarial networks (Li et al., 2017; Na and

Fox, 2018; Mehralian and Karasfi, 2018; Deng et al., 2022) has

been developed. Bai et al. (Bai et al., 2018b) have proposed amulti-

task generative adversarial network that feeds the super-resolution

images, generated by up-sampling tiny targets, into a multi-task

discriminator network that distinguishes the super-resolution

images from the real images and outputs the predicted classes

and bounding boxes. Noh et al. (Noh et al., 2019) have proposed a

new super-resolution method at the feature level by matching the

generated high-resolution features with the perceptual fields of the

low-resolution features by utilizing the dilated convolution. This

will help in avoiding generation of the incorrect super-resolution

features owing to the perceptual field mismatch. However, the

generators in the generative adversarial networks generate limited

sample diversity, and hence, it is difficult to establish a balance

between the generators and discriminations.

In practical applications, data enhancement methods for tiny

target features may introduce new noise, which may impair the

performance of the model in extracting features. Further, the super-

resolution structure may complicate the end-to-end model training.

To solve these problems, we designed a multiscale attention-based

feature pyramid model of tiny object detection in aerial beach
Frontiers in Marine Science 02
images. First, we addressed the problem of target information loss

owing to the down-sampling in convolutional networks. The

multiscale attention enhancement module (MAEM) was designed

by employing self-attention to obtain the weight of the target

location and retain the detailed information and the contextual

information. Thus, the proposed model can improve the feature

extraction of the tiny targets in the aerial large field-of-view and

reduce the interference caused by the complex background. We

designed a novel multiscale feature fusion module (MFFM) for the

problem of inconsistent gradient computation in the Feature

Pyramid Network (FPN) (Lin et al., 2017), which changes the

original linear fusion, and employs the attention-guided maps to

obtain the weights of the feature maps of different scales. This

prevents the target from being overwhelmed by the high-level

feature information while giving more semantic information to

the low-level feature maps. Further, the proposed model pays more

attention to the features of the tiny targets in the fusion process and

improves the efficiency of the tiny target feature fusion. The

proposed model has been validated on the TinyPerson dataset,

and the experimental results show that the accuracy of the model,

designed in this work, reaches 59.82%, which can be utilized in

personnel search and rescue for seaside security. In summary, the

contributions in this work are mainly in the following folds.
• We propose a novel network model for tiny target

detection by introducing multiscale attention and

feature pyramid networks. The detection performance

of tiny targets is improved by enhancing the ability of

tiny target feature extraction and fusion.

• We add an attention loss for the convolutional neural

network to learn discriminative features to prevent tiny

targets from being overwhelmed by complex

backgrounds.

• We conducted comprehensive ablation experiments to

demonstrate the impact of each of the proposed modules

on detection results, and experimentally tested on the

TinyPerson dataset with a significant improvement in

tiny target detection accuracy over baseline.
The remainder of this paper is organized as follows. Section 2

reviews the related work. Section 3 describes the proposed model

framework, including MAEM, MFFM, and the loss function. The

experimental results on TinyPerson datasets are reported in

Section4 to validate the performance of the proposed model.

Section 5 discusses the results, and Section 6 concludes this paper.
2 Related work

2.1 Small object detection

The advancement of deep learning technology has been

improving the accuracy of object detection greatly, researchers
frontiersin.org
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search frameworks for small object detection specifically. The

FPN proposed by Lin et al. (Lin et al., 2017) introduces a

bottom-up, top-down network structure that achieves feature

enhancement by fusing features from adjacent layers. Based on

the FPN, Liang et al. (Liang et al., 2018) proposed a deep feature

pyramid network using a feature pyramid structure with lateral

connections to enhance the semantic features of small targets,

and specialized anchors to detect small targets in high-resolution

images. Nayan et al. (Nayan et al., 2020) proposed a new real-

time detection algorithm for the problem that small targets tend

to lose feature information after multi-layer networks. The

algorithm uses upsampling and jumps connections to extract

multi-scale features of different network depths during the

training process, which improves the detection accuracy and

speed of small target detection. Rotation equivariant feature

image pyramid network (REFIPN) (Shamsolmoali et al., 2022b)

improves the ability to focus on small targets in remote sensing

images through scale adaptation. REFIPN uses a single detector

in parallel with a lightweight image pyramid to extract features at

a wide range of scales and orientations and generate regions of

interest to improve the performance of small-scale object

detection performance. Shamsolmoali et al. (Shamsolmoali

et al., 2022a) proposed a weakly supervised approach for

object detection in remote sensing images and designed a

contextual fine-grained model with significant attention to

different objects and target parts. Liu et al. (Liu et al., 2021a)

proposed a high-resolution detection network for small targets,

which improves the detection performance of small targets with

reduced computational cost by using a shallow network for high-

resolution images and a deep network for low-resolution images.

These methods mentioned above improve the performance of

small target detection to some extent.
2.2 Object detection in maritime

In comparison with target detection of natural scenes, aerial

images have a wider detection range, so the obtained image field

of view is often large. Lee et al. (Lee et al., 2018) modifies the 10

different ship categories in the You Only Look Once (YOLO)

algorithm target classification and applies them to maritime

video surveillance tasks, thus enabling real-time maritime

detection. Ghahremani et al. (Ghahremani et al., 2018)

proposed a CNN-based cascaded method for detecting

maritime vessels, which takes the candidate target regions in

the original image and performs additional processing to

improve the accuracy of small target detection. Due to the

high complexity of the cascaded method, it is not suitable for

real-time monitoring applications. Moon et al. (Moon et al.,

2020) proposed a new cascade Region-based CNN (RCNN)

method to detect small targets in marine scenes. The

improvement of small target detection accuracy is due to

retaining its information in all layers.
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Soloviev et al. (Soloviev et al., 2020) proposed two datasets

for marine ship detection and evaluates the effectiveness of three

target detection models, FasterRCNN (Ren et al., 2017), Region-

based Fully Convolutional Network (R-FCN) (Dai et al., 2016),

and Single Shot multibox Detector (SSD) (Liu et al., 2016), on

this dataset. The FasterRCNN with ResNet101 as the backbone

has the highest detection accuracy for large targets, but the

detection accuracy for small targets is lower.
2.3 Attention-based maritime small
object detection

Attention mechanism is widely used for target detection in

marine scenarios due to its excellent performance. Woo et al.

(Woo et al., 2018) proposed a mixed channel and spatial attention

mechanism, which enhances the utilization of spatial and channel

information for input features by obtaining attention weights after

the spatial attention module and channel attention module are

connected in series. For small target detection in the marine

environment, Chen (Cheng et al., 2021) proposes a global

attention module for sea-level small trash detection by

adaptively fusing deep multiscale image and radar data features.

Chen (Chen et al., 2021b) proposes an improved ImYolov3 based

on an attention mechanism, which integrates spatial and channel

attention modules into the network architecture of Yolov3, and

improves the representational capability of the network by

adjusting the perceptual fields in each branch network. This

enables better differentiation between ships and backgrounds.

Therefore, how to develop an attention mechanism in aerial

image tiny target detection is a very interesting problem.
3 Materials and methods

In the UAV aerial beach images for target detection, the

complex background tends to drown tiny targets, which is not

conducive to the extraction of tiny target features. Further, the

extraction of the contextual information in the images helps the

model to differentiate between the target and the background

(Zhu et al., 2021). Therefore, we designed the multiscale

attention enhancement and fusion network with Swin-T (Liu

et al., 2021b) as the backbone, and the network structure is

shown in Figure 1. The main contributions are as follows. A key

feature attention mechanism has been designed that contains the

MAEM and attention loss, since the UAV aerial images contain

variable and complex scenes, thus causing a large amount of

redundant information in the context information extracted

from the backbone. MAEM can guide the model to focus on

tiny targets, thus obtaining an enhanced feature map A.

Furthermore, we designed a novel feature fusion module

MFFM. The height of the UAV aerial photography process

varies, and the images of different scale targets have been
frontiersin.org
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obtained. The proposed module MFFM introduces an attention

mechanism in the feature fusion process to assign attention

weights to the feature maps of different scales and put more

attention on the tiny targets. Finally, the fused feature map Q has

been passed through the Regions with CNN Features (RCNN)

(Girshick et al., 2014) prediction network to achieve the final

target location and category probability output.
3.1 Multiscale attention enhancement
module

According to previous works (Yu and Koltun, 2015; Bai

et al., 2018a; Zhang et al., 2021), the appropriate modeling by
Frontiers in Marine Science 04
using contextual information has been beneficial for improving

the performance of target detection. MAEM is a basic module in

the network as shown in Figure 2, which preserves the detailed

information of the target while obtaining contextual

information. The module contains two branches, one for

computing the global semantic information and the other for

computing the local semantic information, which are finally

computed to obtain an attention-guided map.

The local semantic information has been divided into s×s

blocks of size w×h from the input original feature map F . The

dependencies among the pixels in the local range have been

calculated by the operation of nonlocal (Wang et al., 2018),

where all blocks share weights. Thus, all the output feature maps

have been gathered together to form a new local association
FIGURE 1

Overview of proposed AEFNet for the tiny target detection, it contains a swin-T style architecture of the feature extractor, MAEM for obtaining
tiny target feature weights using a self-attention, MFFM for deep and shallow feature map fusion using attention-guided maps.
FIGURE 2

Multiscale attention enhancement module. Its upper branch and lower branch represent the global and local semantic information respectively.
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feature mapM . The purpose is to restrict the perceptual domain

of the network to a local range, and then to use the relationships

among pixels in the local range to aggregate the pixels belonging

to the same class. Concomitantly, this method excludes the

influence of structural noise within each patch on the target

and computes the probability of the target’s appearance. The

design of local associations can save computational resources

and speed up network training and inference.

The global semantic information has been obtained by first

extracting the features of each patch from the input feature map

F by adaptive pooling to obtain the pooled features with pixels

s×s , where each pixel represents a feature of each patch. Then,

the contextual information among each patch has been

computed by the non-local operation to travel a new guided

graph N . At the global level, noise in the background and targets

may have similar associations with respect to local associations,

hence we use global semantic information to assist in discerning

the location of targets, excluding the interference of similar

targets or noise. Further, we calculate the attention-guided

graph W of targets by aggregating features between the

individual blocks, as shown in the following equation,

Wk = as N⨀Mð Þ + Fk, (1)

where ⨀ denotes element-wise multiplication, s the

Sigmoid activation function, and Fk the feature map at the kth

stage. Considering that the attention-guided map M has been

employed to guide the enhanced local association features N , in

this paper, the elements in M have been directly multiplied with

each patch of N . Furthermore, to obtain a more effective

representation, setting the learning parameter a will join the

feature map F to select more effective semantic features using the

adaptive nature of the network.

The attention-guided maps, generated at different stages,

have different scale properties. The residual connection has been

used to generate the attention-guided map into an enhanced

feature map A , as shown in the following equation,

Ak = 1 +Wkð Þ⨀ Fk : (2)
3.2 Multiscale feature fusion module

The high-level semantic and the low-level semantic have

been focused on the difference in the target regions, and MFFM

guides the higher layer to the shallow layer to select the

appropriate features. Further, the appropriate features will be

optimized to the same category, which plays the role of the

feature selection. Thus, the appropriate target features in the

scale range of the current layer will flow into the next layer of

computation, whereas other features will be weakened and

suppressed, thus enhancing the efficiency of the tiny target

feature fusion. Furthermore, if the target has been detected in
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both the neighboring layers, the higher layer will optimize to the

next layer while providing more semantic information, as

follows,

Qk−1 = Iu Qkð Þ + Ak−1ð Þ⨀ Wk−1 ⨀ Iu Wkð Þð Þ, (3)

where Wk denotes the attention-guided map of the kth layer,

Iu the upsampling operation, to make the adjacent layer feature

maps of the same size, and Qk the feature map after the kth

layer fusion.
3.3 Loss function

The method given in this paper belongs to a two-stage (Ren

et al., 2017) detection model, where the first stage generates the

proposal frames through a Region Proposal Network (RPN), and

the second stage identifies the location of the target class through

Regions of Interest (RoI). During the training process, the

specific formulas of the respective loss functions of the model

are shown below

LRPN =
1
Ncls

o
i=1
Lcls pri, p*ri

� �
+ l1

1
Nreg

o
i=1
P*riLreg tri, t*ri

� �
, (4)

LHEAD =
1
Ncls

o
i=1
Lcls phi, p*hi

� �
+ l2

1
Nreg

o
i=1
P*hiLreg thi, t*hi

� �
, (5)

LA =
1
Ncls

o
i=1
Lcls pai, p*ai

� �
, (6)

where LRPN denotes the RPN loss function, LHEAD the RoI

Head loss function, and LA the attention loss function. Lcls is the

classification loss function, and the binary cross-entropy has

been used to compute the classification loss, as shown in

Equation (7). Lreg is the regression loss function, and smooth

L1 has been used to compute the regression loss, as shown in

Equation (8). pri denotes the prediction probability of each

bounding box category, and p*ri denotes the truth value of each

ground-truth box category. Since the role of RPN is to select the

proposed box and only the foreground needs to be judged, the

cross-entropy loss has been employed. Here, tri the coordinates

of the bounding box, t*ri the coordinates of the ground-truth box,

and P*ri determines the positive example box in the generated

detection box to compute the loss. Ncls denotes the number of

images in each small batch, and Nreg denotes the number of

anchor box. Classification and regression losses are each

normalized by Ncls and Nreg , and the parameters l1 and l2
have been used to adjust the balance of the two parts of the loss.

The alternative parameter settings in LHEAD and LA are similar to

those of LRPN .

Lcls p, p*ð Þ = − log  ½pp* + 1 − pð Þ 1 − p*ð Þ�, (7)
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Lreg xð Þ = 0:5x2, xj j < 1,

xj j − 0:5, xj j ≥ 1:

(
(8)

Finally, the three components of the loss have been

optimized by a joint loss function as

L = LRPN + LHEAD + LA : (9)
4 Experiments and results

4.1 Dataset

The numerical experiments in this paper utilize a publicly

available dataset for the seaside person target detection, viz.,

TinyPerson (Yu et al., 2020a). As shown in Table 1.The

annotation information of each sample includes the category

label, bounding box, and pixel size. The size range is divided into

5 intervals: Tiny1[2, 8], Tiny2[8, 12], Tiny3[12, 20], Tiny[2, 20],

and small[20, 32]. We have cropped each image with an overlap

of 40 pixels to a resolution of 640 × 512 as the input to the model.
4.2 Experimental setting

We have used Swin-T as the model backbone, and the pre-

training parameters loaded during the model training are those

obtained by training Swin-T on the ImageNet-1K (Russakovsky

et al., 2015) dataset. Experiments have been conducted based on

the training and testing sample division of the dataset.

The experimental code in this paper has been implemented

based on Pytorch 1.7.1, and the entire training process was

deployed on AMD A40 GPU with 48 GB of memory. The code

in this paper is based on the design under the MMdetection

toolbox. The model is initially trained on the TinyPerson

datasets with 12 epochs, and it took 48 hours in total. The

gradient optimization method is AdamW (Loshchilov and

Hutter, 2017), whose parameters are set as follows; i.e., weight

decay at 5e-4, training batch size 4, and the learning rate

initialized to 1e-4. The learning rate update is STEP, whose

parameters are set as warmup iterations 1000 and warmup ratio

1e-3. The hyperparameters l1 and l2 are set as 0.6 and 1,

respectively. The number of RPN proposal boxes is set as 2000

and 1000 in the training and testing phases, respectively.

To maintain consistency with the TinyPerson benchmark,

the evaluation metric in this paper employs Average Precision
Frontiers in Marine Science 06
(AP), Floating point operations (FLOPs), and Parameters

(Params). Among them, AP is the evaluation index of the

mainstream target detection model, the higher the value the

better the model performance; FLOPs is used to measure the

complexity of the model; Params is used to evaluate the number

of parameters of the model.
4.3 Visualization analysis

This paper visualizes the attention heatmaps by a qualitative

method to demonstrate the effect of attention loss on the model

performance, which can visually show the part of the region that

the model affects. According to Figure 3, the first image is the

original image, the second image is the heatmap without the

addition of attention loss, and the third image is the heatmap

after the addition of attention loss. By comparison, the boundary

around the target without adding the attention loss is blurred,

and the boundary around the target after adding attention loss is

clearer. This makes the model focus more on the tiny target area

and avoid the interference of the environment to a certain extent,

enhancing the accuracy of target detection, and thus verifying

the effectiveness of the attention loss.

To further test the effectiveness of the model design, we

present certain detection results in the Tiny Person dataset,

including the people scenarios at sea level and on land, as shown

in Figure 4.

According to the scene at sea level, the pose of people with

their bodies fully exposed on surfboards varies greatly. With

respect to the people swimming in the sea with only a part of

their bodies exposed, the method in this paper can detect and

identify the target and locate it. Furthermore, the scene of people

on the land contains dense crowds, cluttered backgrounds, and

different-scale crowds. Our method can still detect and identify

most of the target people, thus verifying the effectiveness of

our method.
4.4 Ablation study

Several sets of experiments have been set up in this paper to

demonstrate the effect of patch size on the model in the MAEM.

Choosing different patch sizes for different scales has different

effects, as shown in Table 2.

We intend to cover both the target area and a certain

background area for the selection of patch size so that the
TABLE 1 Details of TinyPerson.

Tiny Person Training Testing Total

Label image 794 816 1,610

Annotations 42,197 30,454 72,651
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experiments have been conducted for both the single-scale and

multiscale combinations. According to Table 2, the experiments

with a single size incorporate relatively little information, thus

resulting in poorer results. In contrast, better results tend to have

more dimensions combined in MAEM. The best results tested in

the Tiny Person dataset have been for the combinations of

20,16,15, and 10.

This ablation experiment has been conducted on the Tiny

Person dataset to demonstrate the effects of the MAEM, MFFM,

and attention loss on the model performance. The results are

listed in Table 3.

MAEM has been employed to improve the feature extraction

of the tiny targets in the large field-of-view and reduce the

interference generated by the complex environments, thus
Frontiers in Marine Science 07
improving detection directly with the base feature map by

0.78% . MFFM optimizes the delivery of suitable features from

the deep to shallow levels and improves the detection directly

with the base feature map by 1.29% . Attention loss improves the

performance by compensating for the shortcomings of the

model’s focus on the pixel-level classification errors, with the

addition of attention loss that improves the model by 1.14% .
4.5 Comparison to state-of-the-art
methods

Table 4 shows the results of the method proposed in this paper

relative to the other detection methods, including FasterRCNN
TABLE 2 Ablation study on patch size.

Patch Size APtiny
50

5,5,5,5 57.51

10,6,5,3 57.96

15,10,8,5 59.13

20,16,15,10 59.82
TABLE 3 Ablation study on whole network.

MAEM MFFM Attention loss APtiny
50

× × × 55.54

✓ × ✓ 56.32

× ✓ ✓ 56.83

✓ ✓ × 58.68

✓ ✓ ✓ 59.82
frontie
FIGURE 3

Result of attention heatmap. From left to right, the original mage, the heatmap, and the heatmap after adding attention loss.
FIGURE 4

Detection results on the TinyPerson dataset. The first row is the original image of different scenes, and the second row is the detection results
of the corresponding scenes.
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(Ren et al., 2017), RetinaNet (Lin et al., 2020), FoveaNet (Kong et al.,

2020), Swin-T (Liu et al., 2021b), Yolox (Ge et al., 2021), PVTv2

(Wang et al., 2022) and SSPNet (Hong et al., 2022) on the

TinyPerson dataset. Since some of these methods have not been

previously applied to the TinyPerson datasets, all the compared

methods have been tested while keeping the same configuration.

The left subscript of the evaluation metric AP represents the value

of the IoU in the target detection, and the right superscript

represents the size of the detection target.

According to Table 4, on the TinyPerson dataset, the accuracy

of our proposed method on the evaluation index APtiny
50 is 8.56%

and 7.39% higher than the anchor-based Faster-RCNN and

RetinaNet methods, respectively. Further, it is 5.64% higher than

the anchor-free FoveaNet method, 3.28% higher than the

Transformer-based Swin-T, and 1.53% higher than the latest

method SSPNet. The method in this paper shows a significant

improvement compared to the baseline model with comparable

Flops and Params. The proposed method in this paper achieves the

best results in several other evaluation metrics. The comparison of

results on the TinyPerson dataset fully illustrates the effectiveness

and superiority of our method for the tiny target detection task.
4.6 The performance on water surface
object detection dataset

To evaluate the detection performance of ourmethod inmarine

scenarios, we conducted experiments under the Water Surface
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Object Detection Dataset (WSODD) (Zhou et al., 2021), as

shown in Table 5. Unlike the TinyPerson dataset, the WSODD

dataset contains 14 different kinds of water targets, and we selected

seven algorithms (Duan et al., 2019) for testing and used mean

Average Precision (mAP) as the average evaluation metric to

measure the detection accuracy of all categories. In addition, the

proportion of images occupied by each class of targets was divided

into four parts: small (≤ 10% ), medium (10-20% ), large (20-30%

), and max (≥ 30 % ). The test results show that the method

proposed in this paper can achieve higher accuracy on small and

medium size targets compared with other methods. The visual

inspection comparison is shown in Figure 5. It shows the detection

results of the baseline model and the proposed method in this paper

under the same training strategy with green and red bounding

boxes, respectively. According to Figure 5, it can be obtained that

compared with the baseline model, our method detects significantly

more ships, especially for small targets, and the recognition rate of

obscured targets is significantly improved. In general, the results

with different datasets show that the method proposed in this paper

has good performance for small target detection in marine scenes.
5 Discussion

The main task of the tiny target detection for aerial beach

images is the accurate detection and identification of targets with

very few visual features of the image. However, equivalent to

common scale targets, tiny targets in aerial beach images usually
TABLE 4 Comparison of different methods on TinyPerson.

Method APtiny
50 APtiny1

50 APtiny2
50 APtiny3

50 APsmall
50 APtiny

25 APtiny
75

Flops Params

FasterRCNN 51.26 35.73 56.08 61.25 66.96 71.13 6.46 2*1011 51.1*106

RetinaNet 52.43 41.38 57.68 60.54 66.85 76.32 6.73 5.5*1011 31.4*106

FoveaNet 54.18 37.97 57.27 64.84 71.63 74.81 7.12 5.4*1011 36.0*106

Swin-T 55.54 42.41 58.32 64.56 68.53 74.00 7.03 2.1*1011 44.7*106

Yolox 57.12 44.37 59.51 66.03 70.11 76.28 8.13 1.9*1011 54.2*106

PVTv2 56.38 43.15 58.73 65.39 69.82 75.12 7.82 2.1*1011 43.2*106

SSPNet 58.35 46.37 60.91 66.92 71.90 77.76 8.48 4.6*1011 46.8*106

OUR 59.82 47.59 61.74 68.43 72.23 78.09 9.21 2.1*1011 51.6*106
front
Bold values indicates the best detection result in each column.
TABLE 5 Comparison of different methods on WSODD.

Method mAPsmall
50 mAPmedium

50 mAPlarge
50

mAPmax
50

FasterRCNN 12.6 17.1 31.6 51.2

SSD 15.3 18.4 28.6 52.8

Yolov3 23.1 26.6 41.5 55.9

RetinaNet 18.3 20.1 33.8 52.8

CenterNet 10.4 24.1 29.8 43.5

Swin-T 25.8 26.4 32.7 53.6

OUR 27.1 28.2 40.3 53.7
Bold values indicates the best detection result in each column.
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lack sufficient appearance information and are difficult to be

extracted from the background as the complex scene changes

(Cheng et al., 2022). Compared with the other target detection

methods, the primary advantage of the proposed model in this

paper is the introduction of a MAEM based on the self-attention

mechanism. MAEM enables the model to effectively improve the

tiny target feature extraction by learning the relationship

between the target and the background. Furthermore, based

on MFFM, the effectiveness of tiny target feature fusion is

improved by dynamically assigning weights and using self-

attention to prevent tiny targets from being overwhelmed by

high-level semantic information.

Experiment results reveal that certain tiny targets cannot be

accurately detected and recognized, when the scale of the target

crowd in the image appears extremely high, owing to the serious

tiny target occlusion situation. Therefore, exploring the

optimization of the model to cope with the tiny target

detection in the crowded situation will be an important

direction for the subsequent work. In future work, we will also

explore the theory of the attention mechanism for tiny

target detection.
6 Conclusion

We proposed a multiscale attention-based feature pyramid

network model, which is used for tiny target detection of aerial

beach images with large field-of-view. The multiscale attention

enhancement module (MAEM) in the model generates

multiscale attention-guided maps to obtain contextual

information while preserving the detailed information of the

target. As a result, MAEM improves the ability of tiny target

feature extraction in a large field-of-view and guides the model

to focus more on tiny targets. The multiscale feature fusion

module (MFFM) employs the attention-guided map to obtain

the weights of feature maps at different scales, thus giving more

semantic information to the lower-level feature maps, and
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effectively preventing the target from being overwhelmed by

the high-level feature information. Therefore, MFFM improves

the efficiency of the tiny target feature fusion. The experimental

results show that the accuracy tested on the publicly available

dataset Tiny Person reached 59.8% , and the ablation

experiments also prove the effectiveness of each module. In

future work, we will investigate the application of our proposed

model to the vision processing tasks such as target traffic

counting and multi-target tracking.
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