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Sea surface temperature anomalies (SSTAs) and sea surface height anomalies

(SSHAs) are indispensable parts of scientific research, such as mesoscale eddy,

current, ocean-atmosphere interaction and so on. Nowadays, extended-range

predictions of ocean dynamics, especially in SSTA and SSHA, can provide daily

prediction services in the range of 30 days, which bridges the gap between

synoptic-scale weather forecasts and monthly average scale climate predictions.

However, the forecast efficiency of extended range remains problematic. With the

development of ocean reanalysis and satellite remote sensing products, large

amounts datasets provide an unprecedented opportunity to use big data for the

extended range prediction of ocean dynamics. In this study, a hybrid model,

combing convolutional neural network (CNN) model with transfer learning (TL),

was established to predict SSTA and SSHA at monthly scales, which makes full use

of these data resources that arise from delayed gridding reanalysis products and

real-time satellite remote sensing observations. The proposed model, where both

ocean and atmosphere reanalysis datasets serve as the pretraining dataset and the

satellite remote sensing observations are employed for fine-tuning based on the

transfer learning (TL) method, can effectively capture the evolving spatial

characteristics of SSTAs and SSHAs with low prediction errors over the 30 days

range. When the forecast lead time is 30 days, the root means square errors for the

SSTAs and SSHAs model results are 0.32°C and 0.027 m in the South China Sea,

respectively, indicating that this model has not only satisfactory prediction

performance but also offers great potential for practical operational applications

in improving the skill of extended-range predictions.

KEYWORDS
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1 Introduction

Sea surface temperature anomalies (SSTAs) and sea surface height

anomalies (SSHAs), which play a crucial role in ocean dynamic

processes, such as mesoscale eddy, current. Moreover, they are also

important indicators to evaluate the ocean-atmosphere interaction

phenomena (such as El Niño/Southern Oscillation, tropical storms,

etc.). Therefore, it is significant to predict SSTA and SSHA accurately.

However, the prediction of SSTA and SSHA still faces great challenges

due to the rapid changes of the ocean and the nonlinear dynamics of

complex factors. Generally, common SSTA and SSHA forecast

methods consist of numerical and conventional statistical methods,

which are two main methods of predicting marine variables. Due to the

prediction uncertainty caused by errors related to the initial conditions,

boundary conditions and various discretization/parameterization

approximations, the numerical prediction model is substantially

limited in terms of improving the prediction time (Peng and Xie,

2006; Hervieux et al., 2019). Since Charney et al. (1950) made the first

numerical 24 hour weather prediction in 1950, the numerical methods

have made significant progress in prediction skills and temporal range.

However, according to nonlinear predictability theory, the limit to the

daily numerical weather prediction range is approximately 2 weeks

(Lorenz, 1963) since the information regarding the initial

parameterization of the ocean field cannot remain stationary for long

due to nonlinear chaos. At present, numerical oceanmodels can predict

7-10 days at the synoptic scale, and most of the numerical models

mainly focus on short- and medium-range or seasonal forecast systems.

Although some numerical models can be used for extended-range

prediction, such as the National Centers for Environmental Prediction

(NCEP) Climate Forecast System (CFSv2) and the European Centre for

Medium-Range Weather Forecasts (ECMWF) Variable Resolution

Ensemble Prediction System for monthly predictions (VarEPS-

monthly), they still suffer from lower prediction skill (Saha et al.,

2014; Nageswararao et al., 2022). The theoretical limit of the validity of

numerical prediction is 2 weeks, and the correlation coefficient of the

predictions is less than 0.5.

With the increased adoption and development of artificial

intelligence (AI), new deep learning based statistical prediction

methods now outperform the general statistical methods in terms

of predicting marine dynamics. At present, various deep learning

neural networks have emerged, such as convolutional neural networks

(CNNs) (Karpathy et al., 2014; Kim, 2014; LeCun et al., 2015;

Shelhamer et al., 2017; Kohler and Langer, 2020), long short term

memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997;

Chen et al., 2022), convolutional long short term memory networks

(ConvLSTM) (Shi et al., 2015; Tong et al., 2022), and transformers

(Vaswani et al., 2017; Wang Y et al., 2022). As one of the most popular

models, CNNs have the advantages of offering 1) powerful self-

learning ability, 2) high processing efficiency for multiple-

dimensional data, and 3) self-adaptability (Krizhevsky et al., 2012;

Oquab et al., 2014; LeCun et al., 2015). These models can be

potentially beneficial in geoscience studies and have been

successfully used in object detection (Salberg, 2015; Liu et al., 2016;

Long et al., 2017; Zhao et al., 2019; Santana et al., 2022), classification

(Castelluccio et al., 2015; Luus et al., 2015; Chen et al., 2016; Masoumi,

2021), extreme weather prediction (Gorricha et al., 2013; Zhuang and

Ding, 2016; Castangia et al., 2023), etc. In addition, these models are
Frontiers in Marine Science 02
also used for predicting marine variables. Braakmann-Folgmann et al.

(2017) combined CNN and recurrent neural network (RNN) models

to predict sea level anomalies (SLA) and analyze the spatiotemporal

evolution of the northern and central Pacific Ocean. Han et al. (2019)

utilized SST, SSH, and sea surface salinity (SSS) to predict subsurface

temperature (ST) based on a CNN model. Wang G et al. (2022)

combined ensemble empirical mode decomposition (EEMD) with

ConvLSTM to construct a hybrid model to predict sea level anomalies

(SLA). It is also worthwhile to note that CNN model was used to

predict the El Niño/Southern Oscillation (ENSO) for 1.5 years by

Ham et al. (2019), which was a substantial achievement for ENSO

predictions. The function of a CNN model is to extract hierarchical

characteristics from the input data through a convolution filter, which

makes the model suitable for extracting spatial features from marine

meteorology data. Meanwhile, the model also offers superior

performances in terms of time series analysis by inputting

continuous time series data. Based on the ability of CNNs to learn

from gridded data and spatiotemporal features, it is a suitable tool for

the prediction of SSTA and SSHA in this study. In addition, transfer

learning (TL) is also a popular technology that has been successfully

applied in research, which was proposed by Pan to solve the problem

of limited training samples (Pan and Yang, 2010). The goal of TL

methods is to transfer knowledge learned in cases of sufficient source

data to target domains consisting of less data. Additionally, this

method can solve similar difficult tasks by fine tuning a pretrained

model. TL has been actively applied in many studies. For instance,

Ham et al. (2019) applied the transfer learning technique to train a

CNN model by utilizing CMIP5 outputs and then used SODA data to

retrain the model on the basis of the former trained weights.

Currently, large amounts of relatively stable and mature ocean-

atmosphere reanalysis data can be acquired easily. Ocean

(Atmosphere) reanalysis gridded datasets are able to reproduce

historical oceanic (atmospheric) states by combining oceanic

(atmospheric) observations from multiple sources with a state-of-

the-art numerical ocean (atmosphere) model using robust data

assimilation techniques. The development of reanalysis products

has provided an unprecedented golden opportunity for deep

learning to explore time series statistical predictions methods (Song

et al., 2021). With the development of numerical models and the

increase in grid resolution, as well as the improvement of data

assimilation skills, long sequential and higher quality reanalysis data

products have begun to emerge to serve as indicators of global/local

climate and ecological change. However, there is a gap with the

gridded reanalysis data between the short term and monthly

extended-range prediction owing to the absent of the real-time

reanalysis products, which means that it is inconvenient to directly

use the reanalysis data as indicators of initial conditions for extended-

range predictions of ocean elements in time. Fortunately, real-time

and/or quasi-real-time satellite remote sensing observations of the

Earth’s resources over the past several decades have made notable

contributions in monitoring and understanding oceanic and

atmospheric variability at both global and regional scales. The use

of ocean and atmosphere reanalysis datasets as the pretraining

datasets within neural network frameworks, followed by TL-based

fine tuning with satellite remote sensing observations, can be expected

to improve the skill of extended-range predictions of ocean elements

to some degree.
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The structure of this study is as follows. Section 2 introduces the

study area and data preparation, as well as the CNNTL method. Then,

the experimental results are presented and discussed in section 3.

Based on those results, section 4 provides a summary to discuss the

contribution of this work and future research.
2 Materials and methods

2.1 Study area

As shown in Figure 1, the area focused in this study is the South

China Sea (SCS), located in the Western Pacific Ocean (5°-24.75°N,

105°-124.75°E). This region is connected to the Indian Ocean, Sulu

Sea, Pacific Ocean, and East China Sea through numerous straits. The

SCS is a semienclosed marginal sea featuring complex ocean dynamic

processes, such as many mesoscale ocean eddies, multiple circulation

systems, internal waves and other ocean conditions due to complex

submarine topography and a large north-south span (Wang et al.,

2012; Hu et al., 2014). Moreover, it is also a typical monsoon area

located in the middle of the world’s largest source of oceanic heat, the

Asian-Australian monsoon region. Monsoons can lead to complex

thermodynamics and kinetics in the upper SCS. Thus, this is a

sensitive area where significant ocean-atmosphere interactions

frequently occur that play a crucial role in changes to global and

regional climate. Therefore, the ocean-atmosphere processes in the

region can have significant impacts on economies, fisheries, and

regional transportation.
2.2 Data

Considering the significance of oceanic predictions in the SCS, the

goals of this study involve making extended-range predictions of

SSTA and SSHA using convolutional neural networks and transfer

learning technology (CNNTL) that are based on remote sensing
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observations. Moreover, this study also takes the sea surface

dynamic processes into account, using the wind speed along with

SSTA as input variables to predict SSTA. Both ocean and atmosphere

reanalysis data and remote sensing data are used in this study. The

reanalysis datasets shown in Table 1, downloaded from Copernicus

Marine and Environment Monitoring Service (CMEMS, download

from https://resources.marine.copernicus.eu/products) and European

Centre for Medium-Range Weather Forecasts (ECMWF, download

from https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-

datasets), are used for the pretraining. These data range from 1

January 1993 to 31 December 2018. Due to data availability, the

satellite remote sensing data are restricted to a 3 year period, from 1

January 2018 to 31 December 2020, and are divided into a training set

(from 2018 to 2019) and a testing set (2020) for the transfer learning

model training. The spatial resolution is the same as that of the

reanalysis data, which is 0.25°×0.25°. The data were extracted from an

area located at 5°N to 24.75°N and 105°E to 124.75°E; thus, the total

number of grids was 80×80. These blended satellite products were

used to build and test this deep learning model. The SSH satellite

observations are mainly built by combining multiple satellite

altimeter missions (Jason-3, Sentinel-3A, HY-2A, Saral/AltiKa,

Cryosat-2, Jason-2, Jason-1, T/P, ENVISAT, GFO, ERS1/2)

processed by the DUACS multimission altimeter data processing

system. SST satellite observations are multiproduct ensembles

produced by the GHRSST multiproduct ensemble (GMPE) system

at the Met Office. In addition, the 6-hourly blended wind speed is

from the WindSat radiometer onboard the Coriolis satellite.

To eliminate the influence of climate variability on model

training, the daily SSHA and SSTA values are calculated based on

reanalysis data to train the pretraining model by using the daily values

minus the average over the 26 years between 1993 and 2018. In

addition, the 6-hourly blended wind speed data was used to calculate

daily means.
2.3 CNNTL model

Convolutional neural networks have been adopted to conduct

studies successfully since LeCun et al. proposed them in 1998 (LeCun

et al., 1998). Generally, CNNs mainly contain an input layer,

convolution layer, pooling layer, and fully connected layer (FC).

Figure 2 shows an example of a CNN. In the image classification

field, the input layer represents the pixel matrix of an image as two

dimensional or three-dimensional tensors to input the network. The

introduction of convolution and pooling layers makes it superior to

traditional neural networks. The convolution layer extracts feature

from the network model through a convolution operation, which is a

weighted evaluation process that involves sliding convolution filters.

As one of the most crucial parts of CNNs, the pooling layer aims

to reduce the resolution for further layers and controls overfitting.

Mean pooling and max pooling are two main methods. Due to special

linear changes in the convolution operation, an activation function

layer must be adopted to increase the network nonlinearity before

transferring the results to the pooling layer. The common activation

functions are sigmoid, ReLU, tanh, Elu, and so on. In addition, a fully

connected layer is used to acquire outputs, which integrates the

extracted features from the convolution and pooling processes. To
FIGURE 1

The study area.
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accelerate the convergence speed of the gradient descent algorithm

and establish a robust model, it is necessary to normalize the training

data to a mean of 0 and a variance of 1 with normalization before

model training.

In this study, a CNNTL model was constructed for extended-

range scale (30 days) predictions of SSHA and SSTA in the SCS. The

structure of the CNNTL model is shown in Figure 3. It is mainly

composed of 10 convolution layers, 2 pooling layers, 1 fully connected

layer and 2 transposed convolution layers. There are 300 convolution

kernels for the first two convolution layers with a size of 5×5. The

other layers have 30 convolution kernels with sizes of 5×5 (C3 to C5

layer) and 3×3 (C6 to C10 layer). In addition, there is a batch

normalization layer after each convolution layer to solve internal

covariate shifts in neural network training. This approach was

proposed by Ioffe and Szegedy (2015) to improve the generalization

ability and training speed of the network. The convolution is a linear

process that is difficult to solve linearly inseparable and complex

problems in reality. Therefore, to increase the network’s nonlinearity,

the activation function, as an effective nonlinear method, is generally

used after the convolution layer. The rectified linear unit (ReLU) is a

popular activation function that has been widely used in recent

studies due to its fast calculation time. The ReLU is defined by

selecting the max value between the input data and 0, which leads to

the problem of dying neurons, the formula is as follows: j(z)=max {0,

z}. However, the normalized data in this study may have negative

values, which indicates that the ReLU is not suitable for using with the

data in this study. To avoid this problem, an exponential linear unit
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(ELU) was used as the activation function here, which was introduced

by Clevert in 2016. Generally, pooling layers are added to process

feature mapping results obtained through convolution operations.

These layers summarize the eigenvalues of a position and adjacent

positions as the value of this new position. Therefore, this method can

reduce the resolution for further layers and avoid overfitting. This

study used maximum pooling as a downsampling method to achieve

resolution reduction with a size of 2×2, and hence, the feature map

dimension can be reduced by half. In addition, the dropout layers are

also used to avoid overfitting, which randomly discards the neurons

in the training neural network. In this CNNTL model, they are set

behind two max pooling layers and the flattened layer with a

probability of 0.5. To acquire the same dimension for the output

matrix as the input, transposed convolution, an upsampling method,

plays an important role in neural networks. This is set to two layers

with 30 kernels, and the kernel sizes are 3×3 and 5×5.

The CNNTL consists of two main parts. First, a CNN model was

trained by reanalysis data to predict SSTA and SSHA at extended

ranges (30 time steps, or days). Second, the transfer learning models

were retrained by remote sensing data on the basis of the CNNmodel.

The framework of this proposed method is demonstrated in Figure 4.

The SSTA time series for the previous 14 and current time steps

(T-14 to T, i.e., the 1st to 15th steps) along with wind speed data for

the future 10 time steps (from T to T+10, i.e., the 1st to 10th steps)

were used to predict 30 days of future SSTAs (T+1 to T+30, i.e., the 1st

to 30th steps). Notably, the wind speed is the future rather than

historical data, and the reasons for this selection are as follows: the
TABLE 1 Description of reanalysis and satellite remote sensing data.

Data Type Variables Sources Date Spatial Resolution Temporal Resolution

Reanalysis

SSH
CMEMS

1993.01.01-2018.12.31

0.25°×0.25°
daily

SST

wind speed ECMWF

Satellite remote sensing

SSH

CMEMS 2018.01.01-2020.12.31SST

wind speed 6-hourly
FIGURE 2

An example structure of a CNN.
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FIGURE 3

Structure of the CNNTL model. This model is composed of ten convolutional layers, ten BN layers, two max pooling layers, one fully connected layer
and two upsampling layers.
FIGURE 4

Framework of the proposed prediction model.
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wind stress has an obvious correlation with SSTA. It can mix sea

water, affect oceanic dynamic processes, and influence latent heat flux

by accelerating evaporation, which leads to changes in SSTA.

Therefore, the wind speed can play an important role in SSTA

prediction. In addition, if this model is adopted for actual

applications, the wind speed forecast products (e.g., the ECMWF

10-day wind speed forecast products) can be acquired as input data.

In contrast, the SSHA is mainly influenced by quasi-geostrophic

currents. Thus, only SSHA was used as an input variable in this

study to predict the monthly extended SSHAs. The SSHA time series

for the previous 14 and current time steps (i.e., T-14 to T, i.e., the 1st

to 15th steps) were used to predict the SSHA of the following 30 time

increments. Therefore, the full range of the SSTA (SSHA) time

dimension is 25 (15). In this study, “T” indicates the current time.

Here, the length of the original reanalysis data sequence was 9490,

where the sliding window was set to 1 day. Therefore, 9445 samples

were acquired to train the CNN model, and then it was divided into a

training dataset and validation dataset, 70% and 30%, respectively.

The length of the remote sensing training data sequence was 730 from

2018 to 2019. The data from 2020 were selected as the test dataset.

The original remote sensing data were also processed as

reanalysis data.

Parameter selection is important for neural networks, such as the

loss function and optimizer. The loss function used in this study is the

mean squared error (MSE), which intuitively reflects the model’s

training quality according to the difference between the training and

validation phases. The smaller value of the loss function is, the smaller

the deviation between the results obtained by the model and the real

value is, that is, the model is more accurate. The optimizer is used to

adjust the parameters to reduce the value of the loss function. The

Adam optimizer, a deep neural network method for the adaptive

learning rate, is used in this study. It dynamically adjusts the learning

rate of each parameter using first- and second-order moment

estimators of the gradient. Furthermore, the batch size and epoch

size are also crucial parameters to reflect the speed of the model

convergence and fitting degree, which are set to 128 and

10, respectively.
2.4 Prediction performance evaluation

In this study, the correlation coefficient (CC) and root mean

squared error (RMSE) are metrics used to evaluate the performance of

the CNNTL model. The CC reflects the degree of linear correlation

between variables. As a common measure of the difference between

values, the value of the RMSE is usually the metric used to reflect

model performance. The smaller RMSE is, the smaller the prediction

difference is, and the better the performance of the model is.

Specifically, the two metrics are defined as follows:

CC = oN
n=1((Xn − X)(Yn − Y))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oN
n=1(Xn − X)2oN

n=1(Yn − Yn)
2

q (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N o

N

n=1
(Xn − Yn)

2

s
(2)
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where N denotes the number of samples and X and Y denote the

true matrix and prediction matrix, respectively. Meanwhile, the

temporal trends of CC and RMSE are calculated sample by sample

at spatial grids during the forecast lead time (30 days).
3 Results and discussions

3.1 Accuracy during the test period

This study constructed a CNNTL model based on transfer

learning using satellite remote sensing data to predict the monthly

scale extended SSTA and SSHA in the SCS. To better express the

degree of accuracy for the extended range scale predictions from the

model, a time series of regionally averaged CCs and RMSEs were

calculated among the test samples and presented in Figure 5 and

Table 2. In general, the CCs and RMSEs of SSTA (SSHA) are stable,

fluctuating between 0.6 to 0.79 (0.8 to 0.89) and 0.22°C to 0.32°C

(0.020 m to 0.027 m), respectively. Figure 5 shows that the CCs

(RMSEs) of the dataset gradually decrease (increase) with an increase

in time. When the lead time is 30 days, the CC of SSTA (SSHA)

exceeds 0.5 (0.7), indicating that the extended monthly predictions of

the CNNTL model is ideal.

Furthermore, the spatial distributions of average CC and RMSE of

the CNNTL model are given in Figure 6. The average CCs and RMSEs

of the prediction made from the 2020 test dataset were calculated grid

by grid from daily data over an extended range scale (30 days). As

shown in Figure 6A, the CCs of the SSTAs are mainly above 0.6 over

most areas of the SCS, showing the availability of the CNNTL model

in extended-range prediction. As the predictions progressed, the CCs

decreased significantly, indicating that the predictions became less

stable as time increased. The overall RMSEs of the SSTAs (Figure 6C)

during the prediction are mostly between 0.2-0.5°C, except in the

coastal sea region and the south-central SCS. The RMSE in the central

sea basin increases distinctly with increasing number of forecast lead

days. For the SSHA, CCs are mainly above 0.8 (Figure 6B), and

RMSEs (Figure 6D) are mainly 0.01-0.04 m during the prediction.

Unlike the SSTAs, the CCs of the SSHA showed greater stability as
FIGURE 5

Accuracy of the CNNTL model during the forecast lead time (30 days).
Temporal trend of CC (blue solid line: SSTA, blue dotted line: SSHA) and
RMSE (red solid line: SSTA, unit: °C; green solid line: SSHA, unit: m).
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prediction time increases, indicating the strong prediction ability of

SSHA in the SCS. The areas in the northeast along with the north to

the west of the SCS have larger RMSEs than the others, which is

because these areas have complicated dynamic processes that

influence the variation SSHA, more details of which are discussed

in section 3.4.
3.2 SSTA and SSHA spatial-temporal
evolution patterns

Figure 7 shows an example (from 14 June to 13 July 2020) of

SSTA spatial maps of satellite observations, predictions, and

differences at different prediction times with an interval of 5 days.

A strong similarity between satellite observations and predictions can

be seen in this figure, which indicates that the CNNTL model has

good prediction ability. However, the spatial characteristics between

them are slightly different. From Figure 7A, there is mainly a positive

anomaly in most areas of the SCS, while the coastal marine area

presents a negative anomaly. The SSTA prediction results shown in

Figure 7B are consistent with the observations in the most areas of

SCS. However, the location and intensity of the negative and positive

anomalies have large disagreements with the observations during the

prediction lead days, especially along the northern coast. Moreover,

from Figure 7A, it can be seen that there was a distinct high value

center in the southeast Vietnam, especially when the lead time is 25-

days and 30-days. However, it is not obvious in the prediction maps
Frontiers in Marine Science 07
(Figure 7B). The reason may be that this area is the appearance of

Vietnam cold eddy which was largely depended by the wind speed. If

the wind stress is weaker, the cold eddy may not significant, which

makes SSTA higher than the normal. Though the CNNTL model was

embedded in wind speed, it only contained future 10 days, which

played a minor role in extended-scale prediction. In addition, the

spatial distributions differences between prediction and observation

are shown in Figure 7C. The differences have no obvious changes

during prediction time. The higher values are mainly focus on the

Beibu Gulf, southeast Vietnam where the complex dynamic processes

occur frequently. The prediction results are overestimated in the

northern SCS. However, they are underestimated in most areas of

the SCS.

Compared to SSTA prediction, the CNNTL model can capture

the spatial-temporal distribution of SSHA more accurately (shown in

Figure 8). Figure 8A shows that there was an obvious dipole double

eddy structure in the eastern of Vietnam during the period from June

14 to July 13, 2020. In addition, there were obvious warm eddies in the

eastern part of Taiwan Island (labeled eddy “a” in Figure 8A-Day 5,

the same below) and the eastern part of Luzon Strait (eddy “b”), and

cold eddies in the Luzon Strait (eddy “c”), southeastern part of

Vietnam (eddy “d”) and western part of Luzon Island (eddy “e”

and “f”). Figure 8B shows the prediction results of CNNTL model, it

can be seen that there was a strong similarity between satellite

observations and the CNNTL predictions in terms of the overall

pattern and the characterization of eddies. Specifically, the warm

eddies in the eastern Luzon Strait (eddy “a” and “b”), the southwest of
A

B

D

C

FIGURE 6

Spatial distribution maps of CC and RMSE on 5, 10, 15, 20, 25, and 30 days. (A) SSTA CC, (B) SSHA CC, (C) SSTA RMSE, unit: °C, (D) SSHA RMSE, unit: m.
TABLE 2 The experimental results of 10-, 20-, and 30-day forecasts.

10-Day 20-Day 30-Day

CC RMSE CC RMSE CC RMSE

SSTA 0.6930 0.2976°C 0.5921 0.3145°C 0.5758 0.3159°C

SSHA 0.8403 0.0237 m 0.8037 0.0254 m 0.7871 0.0272 m
fron
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Taiwan Island (eddy “g”), the eastern and southeastern Indo-China

Peninsula (eddy “h” and “i”) were well captured during the prediction

interval. Although the predicted intensity was relatively weaker

compared with the satellite observations, the trend of gradual

attenuation of two warm eddies in eastern and southeastern

Vietnam (eddy “h” and “i”) during the period of June 14 to July 13

was well captured. The cold eddy in southeast Vietnam (eddy “d”)

developed gradually during this period. However, this temporal

evolution trend was not captured by CNNTL. The model can

sufficiently capture the locations of the cold eddies in eastern and

western Luzon Strait (eddy “c” and “j”) and the eastern Indo-China

Peninsula (eddy “k”), but the prediction intensity is weaker than the

actual observations. As the prediction time increases, the spatio-

temporal prediction patterns of the CNNTLmodel can also consistent

with the observations, which demonstrates the high performance

offered by the model for extended range scale predictions. Figure 8C

shows spatial differences of SSHA, it can be seen that the difference

displayed nonuniform patterns. The difference values are higher in

the locations of mesoscale eddies. According to Figures 8A, B, the

areas of warm eddies (the northern and central regions of the SCS) are
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underestimated, while the areas of cold eddies are overestimated. This

pattern remains almost unchanged as the predication time increases,

which was consisted with the patterns of the warm eddies and cold

eddies. The main reason for this may be that SSHA is mainly affected

by the quasi-geostrophic current, showing significant seasonal and

interannual variation characteristics and changes slowly over the

extended-range scale.

Figures 9 and 10 shows the evolutionary characters of satellite

observation and prediction SSHA during prediction lead time (from

June 14 to July 13, 2020) at the 21.5°N section and 118°E section,

respectively. From the Figure 9, it showed that there was a cold eddy

in the eastern of the Luzon Strait, and this pattern can be well

captured by the CNNTL model. With the prediction lead time

increasing, this cold eddy gradually attenuated firstly, then became

stronger and presented a trend of westward motion. Fortunately, the

westward motion trend of the CNNTL model prediction was in good

agreement with those satellite observations. However, the prediction

strength was much weaker than the actual observation. The reason for

this may be that influenced by Kuroshio extension and complex

topography prominently, the dynamic processes of this area are
A B C

FIGURE 7

Observation (A), prediction (B), and difference (C) snapshots of sea surface temperature anomaly (SSTA, °C) prediction for 1–30 days (interval of 5 days),
corresponding to June 14 to July 13, 2020.
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A B C

FIGURE 8

Observation (A), prediction (B), and difference (C) snapshots of sea surface height anomaly (SSHA, m) prediction for 1–30 days (interval of 5 days),
corresponding to June 14 to July 13, 2020.
A B

FIGURE 9

Longitude-time maps at the 21.5°N section. (A) observation, (B) prediction. The red solid line is the longitude range (118°E-124.75°E) of the section.
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extremely complicated, which makes the CNNTL model predict

difficultly. From the evolutionary maps at the 118°E section shown

in Figure 10, the overall patterns of prediction was consistent with

observation well within the 10 days prediction windows. But this

pattern was not last longer, the prediction strength was much weaker

than observation after 10 days. Specially, the cold eddy at

approximately 16°N presented a trend of northward motion. The

CNNTL model cannot capture this trend too well. The reason may be

that Kuroshio intrudes onto the SCS in summer through Luzon Strait

in large scale, contributing to the Luzon Strait cold eddy moved

northward. And the strength of Kuroshio intruding is influenced by

many factors, making the dynamic processes of this area more

complex, which makes it more difficult for the model to predict.

Statistical histograms of the SSTA differences and SSHA

differences between the predictions and observations over forecast

lead days in 2020 are displayed in Figure 11. It can be seen that the

statistics of this model have a lower bias and there is a higher

proportion of SSTA (SSHA) differences within a range of ±0.5°C (

± 0.035 m).
3.3 Comparison with other models

The comparison of the CNNTL model with the transformer and

ConvLSTM model was further quantified. Taking the prediction of

SSHA as an example, the RMSEs are shown in Figure 12. It showed

that the prediction error of the CNNTL model was stable in the range

0.02-0.03 m within extended-range, with an average RMSE of 0.024

m. Compared with the CNNTL model, the RMSE from the
Frontiers in Marine Science 10
transformer model was less stable and increases significantly with

prediction days increasing. It had small error in the initial first day,

indicating its suitability for a very short-term prediction. However, it

does not preform very well for extended-scale prediction. The average

RMSE of transformer model was 0.061 m during the prediction lead

time. Besides, the prediction error of ConvLSTM model was more

stable than the transformer, but it had higher RMSE during prediction

window than the CNNTL model, with the average RMSE of 0.037 m.

The RMSEs of tansformer, ConvLSTM, and CNNTL at the end of the

prediction window were approximately 0.087 m, 0.041 m, and 0.027

m, respectively. This indicates that the CNNTL model is better than

those other two models and has outstanding performance for

extended-scale prediction. Notably, both the transformer model and

ConvLSTM model used in this study are the basic network models

without using other tricks. From the view of the model advancement,

both the transformer and ConvLSTM models are more sophisticated

than the easy-to-use CNN model, which usually contain the more

parameters that need to be fine-tuned to avoid the overfitting and

underfitting, thus more data samples are needed to perform the

training process for further improving the forecast accuracy.
3.4 Discussion

Based on the above results, when the forecast time is 30 days, the

RMSEs of these model predictions for SSTA and SSHA are

approximately 0.32°C and 0.027 m, indicating that the CNNTL

model performs satisfactorily on an extended range scale. The SCS

is one of the most complicated dynamic oceanic areas in the world,
FIGURE 10

Latitude-time maps at the 118°E section. (A) observation, (B) prediction. The red solid line is the latitude range (5°N-24.75°N) of the section.
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having nonlinear and chaotic hydrodynamic processes. From the

spatial distribution maps of the RMSEs, the performances of areas are

quite different. The RMSEs of the SSTAs and SSHAs are higher in the

northern SCS and southeast of Taiwan Island. This is because the area

has strong nonlinear dynamical processes, which bring about strong

impacts on the CNNTL model prediction and hence lead to a higher

RMSE in this area. The predictions are very similar to the satellite

observations in terms of the overall pattern and the characteristics,

although the changes are not captured well in some areas. From the

difference maps of the spatial distribution, the differences in SSTA

obviously change in the central sea basin with increasing forecast

days. The reasons for these results may be as follows: in principle, the
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wind stress, which disturbed the sea surface water, can intensify the

instability of the SSTAs; in addition, SSTAs are also influenced by

other various factors, such as local advection and heat flux, while this

CNNTL model only considers wind stress without other factors.

Therefore, it limits the performance of this model. The differences in

SSHA are higher in the northern part of the central basin. In the SCS,

mesoscale eddies are quite active and mainly focus on southwestern

Taiwan Island, northwestern and southwestern Luzon Island, and the

open sea of Vietnam. They are mainly caused by the following two

reasons. First, wind stress forces the upper layer of seawater to move,

which can lead to Ekman pumping through divergence and

convergence, influencing the eddy kinetic energy (EKE) and then

contributing to the strength of mesoscale eddies. Second, the

Kuroshio intrusion and baroclinic instability of the background

current can change the distributions of SSHAs, which mainly

appear in the north of the SCS. Although the accuracy of CNNTL

is influenced by those factors, it also offers good results for SSTA and

SSHA prediction.
4 Conclusions

Currently, limited by nonlinear chaos predictability, substantial

difficulties exist in developing realistic numerical prediction models

that operate over longer temporal ranges. However, the rules

influencing complicated oceanic processes are hidden within large

volumes of spatiotemporal data and can be revealed. Therefore, the

growing availability of reanalysis and satellite sensing data makes

powerful deep learning technology a promising alternative for
A B

FIGURE 11

Statistics of the SSTA differences (°C) and SSHA differences (m) between the predictions and the observations in 2020. (A) Shows the SSTA differences
(°C) and (B) shows the SSHA differences (m) with leading times from 1 to 30 days.
FIGURE 12

The root mean square error (RMSE, unit: m) of SSHA. The CNNTL
model was compared with a transformer model (blue dot dash line), a
convolutional long short term memory networks (ConvLSTM) model
(orange dashed line), and CNNTL (green solid line).
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predictions and can circumvent certain temporal restrictions. Based

on this, a hybrid statistical predication model (CNNTL) for

extended predictions of SSTA and SSHA at monthly scales was

adopted in this study. This model accurately predicted the

spatiotemporal variations in the SSTA and SSHA that are

consistent with the satellite observations. For a forecast time of 30

days, the CCs of the model forecasts for SSTA and SSHA were

approximately 0.58 and 0.79, respectively. The RMSEs were 0.32°C

and 0.027 m, respectively, which are much smaller than those of

transformer model and ConvLSTM model. The forecast assuracy of

the more robust models are expected to be further improved throuth

increasing the data samples and/or using the fine-tune skills. The

spatial distribution of the CCs and RMSEs demonstrate that the

RMSEs of SSTA are mainly between 0.2-0.5°C during the course of

the predication, and the CCs are mainly above 0.6. Except for some

sensitive areas that have complex dynamic processes, the CCs and

RMSEs of the SSHA are approximately above 0.8 and within 0.05 m,

respectively. To further evaluate the model’s performance, this study

also analyzed differences in the predication and the satellite

observations. For the SSTA results, the positive anomalies were

mainly distributed in the northern SCS. For the SSHA, influenced by

wind stress, the Kuroshio intrusion and the baroclinic instability of

background current, it is obvious that the differences are higher in

the central basin, where mesoscale eddies frequently appear.

Although influenced by these factors, the CNNTL model

demonstrated remarkable performances not only in the temporal

trend but also the spatial distribution, indicating that it has

sufficient capacity for monthly scale extended predictions.

Moreover, the latitude and longitude section results showed that

this model can capture the eddy evolutionary accurately. Although

the CNNTL model improves the skill of the extended SSTA and

SSHA predictions, it can be further improved for applications in the

near future. First, the model can be used as a more advanced method

to predict monthly scale SSTAs and SSHAs, such as by applying the

self-attention mechanism. Second, more factors can be included to

more accurately forecast SSTAs and SSHAs and to explore its

stability under extreme weather conditions.
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