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fusiforme holdfasts
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During the cultivation of Sargassum fusiforme, sexual reproduction of superior

strains can hinder the stable inheritance of their desirable traits and reduce their

economic benefits. However, vegetative reproduction of S. fusiforme holdfasts

has high potential for subculture. In this study, we investigated the effects of

different concentrations of a-naphthaleneacetic acid (NAA), gibberellin (GA3),

and 6-benzyladenine (BAP) on the growth and regeneration of S. fusiforme

holdfasts. Exogenous application of 1.5, 2 mg·L-1NAA, 1.5 mg·L-1 GA3 or 2, 3

mg·L-1BAP significantly promoted photosynthetic activity and the absorption

and utilization of nitrate nitrogen in S. fusiforme holdfasts, thus improving the

relative growth rate (RGR) and regeneration rate (RR) and shortening the time

for the regeneration of juveniles from S. fusiforme holdfasts to around the 6th

day. Among these, the RGR and RR at the end of the culture period with 1.5

mg·L-1 of NAA increased by 118.9% and 67.4%, respectively, compared with

those of the control group. However, treatment with 1.5 mg·L-1 GA3 increased

the RR of S. fusiforme holdfasts by 58.8% compared with that of the control

group. Under BAP treatment at 3 mg·L-1, the RR of S. fusiforme holdfasts

increased by 23.4% compared with that of the control group; its promoting

effect was thus weaker than that of NAA and GA3. When the concentration of

GA3 or BAP was too high (3 mg·L-1; 5 mg·L-1), the RR of the holdfasts decreased

by 46.5% and 42.8%, respectively compared with that of the control group.

Therefore, exogenous application of NAA at 1.5 mg·L-1, GA3 at 1.5 mg·L-1, and

BAP at 3 mg·L-1 can be used to induce regeneration of S. fusiforme holdfasts,

shorten the culture time of regenerated seedlings, and obtain more

regenerative seedlings, thereby improving economic efficiency.
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1 Introduction

Sargassum fusiforme (Harvey) Okamura (Sargassaceae,

Phaeophyta) is a perennial macroalga endemic to the

nearshore waters of the northwestern Pacific Ocean. Studies

have shown that fucoidan, an extract of S. fusiforme, can

improve metabolic disorders related to obesity and reduce

visceral fat accumulation; further, it is rich in amino acids and

trace elements, which have high nutritional and medicinal value

(Liu et al., 2021; Zuo et al., 2022). S. fusiforme is a dioecious plant

that can reproduce sexually or asexually. Sexual reproduction

occurs through the release and union of male and female

gametes from male and female plants, respectively with the

conspecifics then growing and developing into S. fusiforme

juveniles (Lin et al., 2021). In contrast to sexual reproduction,

asexual reproduction generally occurs during the late stage of

growth. When the seawater temperature rises, the leaves

gradually fall off, leaving only the holdfast; when the seawater

temperature drops, the holdfast regenerates juveniles (Yoshida

and Shimabukuro, 2017; Xu et al., 2022a). Moreover, it has been

reported that several Sargassum species, including Sargassum

fusiforme, regenerate juveniles through holdfast. These studies

also showed that S. fusiforme holdfast had higher tolerance to

high temperature and low nutrient conditions during summer

(Ito et al., 2009; Yatsuya et al., 2012; Loffler et al., 2018; Endo

et al., 2021). Although superior traits of juveniles can be stably

maintained through asexual propagation via holdfasts, the

number of seedlings produced by holdfasts is currently

limited. Therefore, a method to increase the regeneration rate

of holdfasts is urgently needed in S. fusiforme culture and is

important for increasing the source of S. fusiforme seedlings,

especially for stable multiplication of the germplasm of screened

desirable cultured strains.

Phytohormones are organic signaling molecules produced

by plants through their metabolism and can produce significant

physiological effects at low concentrations. The main widely

reported plant hormones include auxins, cytokinins, gibberellin,

abscisic acid, ethylene (Xiong et al., 2009; Iqbal et al., 2014;

Miyakawa and Tanokura, 2017; Waadt, 2020). Numerous

studies have shown that although seaweeds have a simple

morphology, they share many similarities with vascular plants.

Phytohormones control most of the growth and developmental

processes in vascular plants; they are also present in seaweeds

and may have similar functions in seaweeds (Stirk and Van

Staden, 2014). Plant growth regulators (PGRs), are organic

compounds that are synthetic (or naturally derived from

microorganisms) and have growth and developmental

regulatory effects similar to those of natural plant hormones

(Rademacher, 2015). Plant hormones such as auxin, gibberellin,

and cytokinin can be exogenously applied as PGRs to regulate

the growth and reproduction of plants and seaweeds (Duran-

Medina et al., 2017; Miyakawa and Tanokura, 2017; Song et al.,

2020; Hernandez-Garcia et al., 2021; Nedved et al., 2021; Jiksing
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et al., 2022). Chen et al. (2022) reported that exogenous

application of auxin can promote biomass production and

branching in Gracilariopsis lemaneiformis. Further, exogenous

addition of PGRs can direct regeneration and callus induction in

Sargassum polycystum C. Agardh (Muhamad et al., 2018).

Exogenous addition of PGRs may also have a corresponding

effect during the germination of S. fusiforme holdfasts.

a-Naphthaleneacetic acid (NAA), gibberellin (GA3), and 6-

benzyladenine (BAP) have been reported to promote the growth

of macro-green seaweed (Wei et al., 2020). However, the optimal

concentrations of the above mentioned PGRs to promote the

regeneration of S. fusiforme holdfasts remain unclear. Therefore,

it is crucial to determine the optimal concentrations of NAA,

BAP, and GA3 for promoting the regeneration of S. fusiforme

holdfasts. In this study, we exogenously administered PGRs to

investigate their effects on the physiological properties of S.

fusiforme holdfasts and the regenerated juveniles. This study has

practical significance for the breeding of holdfast seedlings of the

economic seaweed S. fusiforme and for the establishment of a

stable genetic culture method for superior strains.
2 Materials and methods

2.1 Sample collection and
experimental design

In this study, the residual holdfasts from the mature harvest

of S. fusiforme culture rafts in Dongtou District, Wenzhou City,

Zhejiang Province, were taken and brought back to the

laboratory at a low temperature. All S. fusiforme holdfasts were

collected from the cultured rafts for superior strains. After

washing the epiphytes and impurities on the holdfast surface

using seawater, it was soaked for 2 min in 0.38% NaClO and

0.5% KI (Kerrison et al., 2015; Xu et al., 2022a). The soaked

holdfast was washed thrice with sterilized seawater, followed by

adaptive cultivation for 3 h. Holdfasts under similar conditions

were selected for cultivation in groups. Except for the control

group, the exogenously applied hormone concentrations during

the culture were as follows: a-naphthaleneacetic acid (NAA):

0.5, 1, 1.5, 2.0, and 3.0 mg·L-1; gibberellin (GA3): 0.5, 1, 1.5, 2.0,

and 3.0 mg·L-1; and 6-benzyladenine (BAP): 1, 2, 3, and 5 mg·L-1

(Wei et al., 2020). Each group had three replicates, and each

replicated had three S. fusiforme holdfasts.
2.2 Determinations of the relative growth
rate and regeneration rate

The medium (29‰ seawater, 200 mmol·L-1 NaNO3, 20

mmol·L-1 NaH2PO4) was changed every three days (Zhang

et al., 2020); the holdfast was weighed, photographed, and

recorded for regeneration. The relative growth rate (RGR) and
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regeneration rate (RR) were calculated as follows:

RGR % ·d−1
� �

= ln Wt=W0ð Þ=t½ � � 100

RRð%Þ ¼ Number of swellings regenerated from holdfasts
Number of holdfasts

� �
� 100

where W0 is the initial weight of the holdfast, and Wt is the

weight after t days of incubation.
2.3 Determination of
photosynthetic activity

Chlorophyll fluorescence kinetics in S. fusiforme holdfasts

were determined using Junior-Pam (Walz, Effeltrich, Germany)

(Hong et al., 2021). After dark adaptation of the samples for

30 min, the electron transfer rate (rETR) was measured at eight

preset incremental light intensities in the range of 0–820

μmol·m-2·s-1 in the area near the tip of the filamentous

holdfasts of S. fusiforme, and a fast light curve (RLC) was

fitted according to Platt’s formula (Platt et al., 1980):

rETR mmol electrons �m�2 � s�1� �¼ rETRm · ð1� e�a·PAR=rETRmÞ · e�b·PAR=rETRm

where rETR is the relative electron transfer rate, rETRm is

the maximum relative electron transfer rate, a is the initial slope,

reflecting the efficiency of light energy utilization,and b is the

photoinhibition parameter.
2.4 Determinations of the maximum
net photosynthetic rate and dark
respiration rate

After weighing and recording, the holdfast was added to 200

mL of incubated seawater and rotated at a constant speed using a

magnetic stirrer at a constant temperature in a water bath (20°

C). The light intensity was adjusted to saturation light intensity

(400 μmol·m-2·s-1) using LED light, the samples were light-

adapted for 3–5 min, and the oxygen content was measured

every 30 s using an optical fiber dissolved oxygen meter (Pyro

Science FireSting O2, Germany). The above steps were repeated,

and maximum net photosynthetic rate (Pm) was obtained

after calculation.

Next, the LED lamp and magnetic stirrer were switched off,

the S. fusiforme holdfasts were placed in a light-proof state, and

acclimatized to dark conditions for 3–5 min. The magnetic

stirrer was turned on; after the reading was stabilized, the

readings were recorded using the same method described

above, and the dark respiration rate of holdfasts (Rd) were

calculated. Both the Pm and Rd were calculated in mmol O2·g
-

1Fw·h-1. The dissolved oxygen standard was calculated as per the

formula shown below (Henley, 1993):
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P ðmmol O2 · g
-1Fw · h-1Þ ¼ ðD · a · V · 0:0375Þ=Fw

Where D is the average value of the difference between the

measured values, a is the satiation dissolved oxygen constant at

each temperature, and V is the volume of the reaction fluid (mL).
2.5 Determination of the nitrate-nitrogen
uptake rate

The nitrate-nitrogen content in the culture medium before

absorption and after 24 h was determined in seawater samples

collected at the respective time points using the zinc-cadmium

reduction method (Sun et al., 2013). The rate of nitrate-nitrogen

uptake by S. fusiforme holdfasts in the culture solution was

expressed as the rate of reduction of nitrate-nitrogen per hour

(mmol NO3-·g-1·h-1). The calculation formula used is as follows:

Nitrate −N uptake rate(mmol   NO3− · g−1 · h1)

= (N0 −Nt)� V=M=t

where N0 is the initial nitrogen concentration of culture

solution, Nt is the final nitrogen concentration of culture

solution at the time of determination, V is the volume of

culture solution (L), M is the wet weight of S. fusiforme

holdfasts (g), and t is the incubation time (h).
2.6 Determination of nitrate
reductase activity

Nitrate reductase (NR) activity was measured according to

Corzo’s method (Corzo and Niell, 1991). Briefly, 0.1 g of S.

fusiforme holdfasts was mixed with 10 mL of reaction medium

[0.1 M NaH2PO4(buffer, pH 7.5), 0.5 mM EDTA, 0.1% (v/v)

propanol, 0.01 mM glucose, 50 mM NaNO3] and aerated with

N2 for 10 min, the reaction system was then scaled and

incubated for 30 min at 30°C in a dark environment. The

supernatant reaction solution (4 mL) was then mixed with 2

mL of 1% sulfonamide and 2 mL of 0.1% N-(1-naphthyl)-

ethylenediamine hydrochloride in a test tube and allowed to

for 15 min. Absorbance was then measured at 543 nm. The NR

activity of S. fusiforme holdfasts was expressed as mmol NO−1
2 ·g-

1Fw·h-1.
2.7 Determination of glutamine
synthetase activity

For determining the glutamine synthetase (GS) activity 0.1 g

of S. fusiforme holdfasts was mixed with 5 mL of extraction

buffer (pH 8.0) containing 50 mmol·L-1 Tris-HCl, 1 mmol·L-1

EDTA, 10 mmol·L-1 b-mercaptoethanol, 5 mmol·L-1
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dithiothreitol (DTT), 10.0 mmol·L-1 MgCl2·7 H2O, 6.6% of

po l yv iny lpo l ypy r ro l i done (PVPP) , 0 . 5 mmol ·L - 1

phenylmethylsulfonyl (PMSF), and 1 mmol·L-1 cysteine. This

was followed by centrifugation at 17000 × g for 20 min at 4°C.

The supernatant was collected and the absorbance value was

measured at 540 nm. g-Glutamyl isohydroxamic acid was used

to generate the standard curve. One unit of GS activity was

defined as the amount of enzyme required to catalyze the

production of 1 μmol of g-glutamyl isohydroxamic acid per

minute at 25°C (Setien et al., 2013).
2.8 Determination of glutamate
synthase activity

Approximately 0.1 g of S. fusiforme holdfasts was weighed

and finely ground with a small amount of quartz sand and 6 mL

of enzyme extract [10 mM Tris-HCl (pH 7.6), 1 mM MgCl2, 1

mM EDTA, and 1 mM mercaptoethanol]. The mixture was

centrifuged for 30 min (12000 × g, 4°C), 3 mL of the supernatant

enzyme reaction solution was collected, and the change in

absorbance was measured at 340 nm. One unit of glutamate

synthase (GS) activity was defined as consumption of 1 nmol

NADH in 1 min by 1 g of tissueand was expressed as nmol-

1·min-1·g-1 (Shah et al., 2017).
2.9 Determination of soluble
protein content

Soluble proteins in holdfasts were determined using the

Coomassie Brilliant Blue G-250 dye binding method (Kochert,

1978). Holdfasts (0.1 g) were added to 5 mL of phosphate buffer

(pH 6.8) and ground at low temperature. After centrifugation at

4°C and 4000 rpm for 10 min, 1 mL of supernatant was collected,

mixed with 4 mL of Coomassie Brilliant Blue G-250 staining

solution, and left for 3 min. The absorbance of the samples was

measured at 595 nm. A standard curve (bovine serum albumin

standard solution) was used to calculate the soluble protein (SP)

content (mg·g-1Fw) of S. fusiforme holdfasts.
2.10 Determination of
soluble carbohydrates

Glucose was used to generate the standard curve, and the

anthrone method was used for soluble carbohydrates

determination (Ershadi et al., 2015). Briefly, holdfasts (0.1 g)

were ground thoroughly, mixed well with 9 mL of distilled water

and 1 mL of magnesium carbonate suspension, and centrifuged

at 4°C for 10 min at 10000 rpm. The supernatant (1 mL) was

mixed well with 2 mL of distilled water and 10 mL of anthrone

reagent, placed in a boiling water bath at 100°C for 10 min, and
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cooled to 20°C. The absorbance was measured at 620 nm. The

soluble carbohydrate (SC) content (mg·g-1Fw) of the S. fusiforme

holdfasts was then calculated.
2.11 Statistical analysis

Statistical analysis was performed using SPSS statistical software.

Data are expressed as the mean ± standard deviation (mean ± SD),

and differences between the treatment and control groups were

analyzed using one-way analysis of variance (ANOVA) and

Tukey’s test. Statistical significance was set at p< 0.05.
3 Results

3.1 The regeneration of S.
fusiforme holdfasts

Figure 1 shows the morphological changes in S. fusiforme

holdfasts under different exogenous hormone treatments.

Compared with normally cultured S. fusiforme holdfasts,

exogenous addition of NAA at 1.5, 2 mg·L-1, GA3 at 1.5, 2

mg·L-1, or BAP at 2, 3 mg·L-1 could significantly shorten the

regeneration time of S. fusiforme holdfasts from around 12 days

to about 6 days. However, when the hormone concentration was

too low or too high, the rate of juvenile regeneration from

holdfasts was not significantly promoted. In fact, high hormone

concentrations had a significant inhibitory effect on the

regeneration of S. fusiforme holdfasts.
3.2 Growth and regeneration rates of S.
fusiforme holdfasts

All NAA concentrations in the range of 1.5, 2 mg·L-1

significantly increased the RGR of S. fusiforme holdfasts (p<

0.05); further, 1.5 mg·L-1 of NAA increased the RGR of holdfasts

by 118.9% at the end of the culture. In contrast, low concentrations

(0.5, 1 mg·L-1) of NAA did not have a significant effect on RGR by

the ninth day of incubation (p< 0.05; Figure 2A). As shown in

Figure 2B, the RGR of holdfasts was not significant (p< 0.05) when

incubated at or above 2 mg·L-1 GA3. Relative to the other GA3

concentrations, thehighestRGRwasobserved inholdfasts grownat

1.5 mg·L-1, with an increase of 54.2% over the control group (p<

0.05). BAP promoted the growth of holdfasts when its

concentration did not exceed 3 mg·L-1, and its promotion effect

was the most significant (p< 0.05) at 3 mg·L-1, with a 103.8%

increase in RGR. However, a high BAP concentration (5 mg·L-1)

inhibited the growth of S. fusiforme holdfasts after 12 days of

incubation (Figure 2C).

NAA at a concentration of 1.5 mg·L-1 had the most

significant (p< 0.05) promotion effect on the RR of S.
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fusiforme holdfasts, which was 167.4% compared to that of the

control (Figure 2D). At a GA3 concentration of 1.5 mg·L-1, the

RR of the holdfasts was 158.8% higher than that of the control

(p< 0.05; Figure 2E). In contrast, BAP at a concentration of 3
Frontiers in Marine Science 05
mg·L-1 had the most significant promotion effect on the RR of

holdfasts, increasing the RR by 123.4% relative to the control (p<

0.05; Figure 2F). However, high concentrations of GA3 and BAP

inhibited the regeneration of S. fusiforme holdfasts.
FIGURE 1

Morphological changes in Sargassum fusiforme holdfasts with different concentrations of three exogenous hormones applied for different
incubation periods.
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3.3 Effects of different concentrations of
exogenous hormone treatments on the
photosynthesis of S. fusiforme holdfasts

Exogenous addition of NAA significantly promoted the rETR

ofholdfasts compared to thatof the control, but thedifference in the

promotion effect between the different concentrations of NAAwas

not significant (p< 0.05; Figure 3A); however, the increase in

rETRm values of S. fusiforme holdfasts was greater at NAA

concentrations of 1.5 and 2 mg·L-1 at 26.1% and 26.3%

(Figure 3B). As shown in Figures 3C, D, the most significant

promotion of photosynthesis in holdfasts was observed when the

concentration of GA3 was 1.5 mg·L-1; and the rETRm values of S.

fusiformeholdfasts at this concentration increasedby40.6%relative

to that of the control (p< 0.05). Further, BAP at 2 mg·L-1

significantly promoted rETR in holdfasts, and the growth rate of

rETRm values of S. fusiforme holdfasts at this concentration was

50.1% (p< 0.05; Figures 3E, F).
3.4 Photosynthesis and respiration of S.
fusiforme holdfasts

Exogenous application of NAA significantly promoted the

Pm of holdfasts but had a lower effect on Rd; further, the
Frontiers in Marine Science 06
promotion effect was not significantly different among

concentrations (p< 0.05; Figure 4A). The promotion of the

saturated irradiance oxygen evolution was significant when the

GA3 concentration was 0.5, 1.5 mg·L-1, with the maximum

promotion effect observed at 1.5 mg·L-1. In contrast, the dark

respiration rate of holdfasts was significantly enhanced at GA3

concentrations of 0.5 mg·L-1 and 1.5 mg·L-1, with the strongest

respiration at 0.5 mg·L-1 (p< 0.05; Figure 4B). The Pm of holdfasts

significantly increasedwhen theBAPconcentrationwas2,3mg·L-1;

themaximum increasewas observed at a concentration of 3mg·L-1.

The effect of exogenous BAP application on dark respiration was

not significant compared to that in the control andwas only slightly

higher at 1 and 5 mg·L-1 compared to the other treatment groups

(p< 0.05; Figure 4C).
3.5 The uptake of nitrate-nitrogen by S.
fusiforme holdfasts

The ability of holdfasts to take up nitrate-N was significantly

enhanced when the NAA concentration was 0.5, 2 mg·L-1, and

the highest rate of nitrate-N uptake was observed at 1.5 mg·L-1

(p< 0.05; Figure 5A). Compared to that of the control, NR

activity was significantly higher when the NAA concentration

was at 1.5 mg·L-1 (p< 0.05; Figure 5D). The promotion of N uptake
A B

D E F

C

FIGURE 2

Effects of three exogenous hormones on the relative growth rate (RGR) and regeneration rate (RR) of Sargassum fusiforme holdfasts. (A–C):
relative growth rate; (D–F): regeneration rate.
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was not significant for low or high GA3 (0.5, 1 mg·L-1, 3 mg·L-1)

treatments and was the most significant only at 1.5 mg·L-1, which

showed an increase by 54.3% in the rate of uptake (p< 0.05;

Figure 5B). As shown in Figure 5E, the NR activity in S. fusiforme

holdfastsdidnot change significantly at 0.5mg·L-1ofGA3;when the

GA3 concentration reached1, 3mg·L-1NRactivitywas significantly

enhanced in holdfasts (p< 0.05). Exogenous application of BAP
Frontiers in Marine Science 07
significantly promoted the rate of nitrate-nitrogen uptake by

holdfasts, with the greatest uptake with the 2 mg·L-1 BAP

treatment, showing an increase by 57.3% compared to that of the

control (p< 0.05; Figure 5C). BAP treatment at 1, 3 mg·L-1

significantly enhanced the S. fusiforme holdfasts and the highest

NRactivitywasobservedwhen theBAPconcentrationwas 3mg·L-1

(p< 0.05) (Figure 5F).
A B

D

E F

C

FIGURE 3

Effects of three exogenous hormones on photosynthetic activities in Sargassum fusiforme holdfasts. (A, C, E): relative electron transfer rate
(rETR); (B, D, F): the maximum relative electron transfer rate (rETRm). Values are the mean ± standard deviation (n = 3). Different letters indicate
significant differences between different culture conditions (p < 0.05).
frontiersin.org

https://doi.org/10.3389/fmars.2022.1072391
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Luo et al. 10.3389/fmars.2022.1072391
3.6 The conversion of nitrogen by S.
fusiforme holdfasts

Exogenously applied NAA treatment significantly enhanced

GS activity in S. fusiforme holdfasts compared to that of the

control, with the strongest GS activity observed in holdfasts
Frontiers in Marine Science 08
treated with 1.5 mg·L-1 NAA (p< 0.05; Figure 6A). GOGAT

activity in the holdfasts was significantly enhanced when the

NAA concentration was 1, 1.5 mg·L-1 and 3 mg·L-1; the most

significant promotion of GOGAT was observed at 1.5 mg·L-1 (p<

0.05; Figure 6D). Different concentrations of GA3 showed

significant enhancement of GS activity, with the strongest
A B C

FIGURE 4

Effects of three exogenous hormones on the maximum net photosynthetic rate (Pm) and dark respiration rate (Rd) in Sargassum fusiforme
holdfasts (A, B). Values are the mean ± standard deviation (n = 3). Different letters indicate significant differences between different culture
conditions (p < 0.05).
A B

D E F

C

FIGURE 5

Effects of three exogenous hormones on the uptake and reduction of nitrate nitrogen by Sargassum fusiforme holdfasts. (A–C): uptake rate of
nitrate nitrogen by holdfasts under different culture conditions; (D–F): nitrate reductase activity in holdfasts under different culture conditions.
Values are the mean ± standard deviation (n = 3). Different letters indicate significant differences between different culture conditions (p < 0.05).
**indicates intergroup variability between different concentrations of exogenous hormones (**p < 0.01).
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enhancement observed at 1.5 mg·L-1 (p< 0.05; Figure 6B). GA3

significantly enhanced GOGAT activity at 1.5 mg·L-1 and 2

mg·L-1, and the most significant effect was observed at 1.5 mg·L-1

(p< 0.05; Figure 6E). The GS activity was significantly increased

when the BAP concentrations ranged from 1 to 3 mg·L-1, and the

strongest effect was observed at 2 mg·L-1 (p< 0.05; Figure 6C). As

shown in Figure 6F, GOGAT activity was significantly enhanced

by different concentrations of BAP, with the most significant (p<

0.05) promotion effect observed at a BAP concentration was 3

mg·L-1.
3.7 Soluble protein and carbohydrate
accumulation in S. fusiforme holdfasts

When the NAA concentration was greater than 0.5mg·L-1, the

SP content increased significantly in holdfasts, and it further

increased with increasing NAA concentration (p< 0.05;

Figure 7A). Exogenous application of NAA also significantly

increased the content of SC in S. fusiforme holdfasts compared

to that in the control, but the difference between different

concentrations was not significant (p< 0.05; Figure 7D).

Different concentrations of GA3 significantly increased the

content of SP and SC in holdfasts, with the highest SP and SC
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contents observed at the 1.5 mg·L-1 GA3 treatment (p< 0.05;

Figures 7B, E). BAP treatment significantly increased the SP

content in S. fusiforme holdfasts in a dose-dependent manner

(p< 0.05; Figure 7C). The SC content in holdfasts was significantly

increased at BAP concentrations of 2, 3 mg·L-1, with the highest

SC content observed at 3 mg·L-1 BAP (p< 0.05; Figure 7F).
4 Discussion

The type and content of PGRs remarkably affect the

photosynthetic rate and pigment content of seaweeds, and the

appropriate concentrations of phytohormones promote the

photosynthetic rate, carbonic anhydrase activity, and C/N ratio

of seaweeds (Wei et al., 2020). Light and growth factors regulate

each other to maintain a balance for normal plant growth (Xu

et al., 2018). In the present study, exogenous application of NAA

significantly enhanced photosynthesis in holdfasts, but the

difference between different concentrations examined in this

study was not significant.

After NO−
3 - N is absorbed by algae, it continues to be

reduced to NH+
4 - N by NR reduction and then enters the GS/

GOGAT cycle to synthesize nitrogenous compounds, such as

proteins and nucleic acids (Balotf et al., 2016; Liu et al., 2022). In
A B

D E F

C

FIGURE 6

Effects of three exogenous hormones on nitrogen assimilation by Sargassum fusiforme holdfasts. (A–C): glutamine synthetase (GS) activity in
holdfasts under different culture conditions; (D–F): glutamate synthase (GOGAT) activity in holdfasts under different culture conditions. Values
are the mean ± standard deviation (n = 3). Different letters indicate significant differences between different culture conditions (p < 0.05).
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this study, exogenous addition of NAA significantly promoted

the nitrogen uptake and transformation capacity of S. fusiforme

holdfasts with the maximum promoting effect observed at 1.5

mg·L-1. Compared with that of GOGAT, NAA had a more

significant enhancing effect on GS activity in holdfasts. This

indicates that NAA treatment at 0.5, 2 mg·L-1 significantly

promoted the rate of nitrate nitrogen uptake and the ability to

convert it to amino acids in S. fusiforme holdfasts, with

significant differences in the effects between concentrations

only observed in the results of GS activity assays. NO−
3 and

NAA help increase the uptake of N, P, K, and Ca2+ in some

higher plants, and exogenous application of NAA during tissue

culture is known to increase the activities of key enzymes in the

nitrogen assimilation pathway, including NR, GS, and GOGAT

(Srivastava and Dwivedi, 2003; Tavakoli Hasanaklou et al.,

2021). These conclusions are highly consistent with our

experimental results.

In this study, exogenous addition of GA3 promoted

photosynthesis in S. fusiforme holdfasts with maximum

promotion at a concentration of 1.5 mg·L-1. GA is involved in

light signal perception, such as photosensitive pigment pathways

during seed regeneration, photomorphogenesis during yellowing

and stem elongation, and photoperiodic regulation during

development (Wu et al., 2019; Hu et al., 2022). During S.
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fusi forme holdfast regenerat ion, GA3 may achieve

photosynthesis-promoting effects by regulating the

photoperiod and light sensitivity. In a previous study, addition

of 20 mMGA3 to the in vitromedium of Strelitzia reginae conidia

embryos increase nitrate reductase activity (Figueiredo et al.,

2021). In this study, exogenous application of 1.5 GA3 mg·L-1

significantly promoted the uptake and transformation of nitrate-

nitrogen by S. fusiforme holdfasts.

Exogenous addition of different BAP concentrations

increased the relative electron transfer rate of photosystem II

in S. fusiforme holdfasts. The photosynthesis of holdfasts was

sensitive to BAP concentration during the regulated process, and

its effect decreased with increasing or decreasing concentrations,

showing the most significant promotion effect at 2 mg·L-1.

Exogenous addition of cytokinin has been shown to modulate

the inhibitory effect of physical stress on the PSII operating

efficiency in maize leaves, thus improving gas exchange; further,

BAP-treated plants have higher FPSII and ETR than untreated

plants under stress conditions (Acidri et al., 2020; Wang et al.,

2022). Moreover, adenine-type cytokinins have been shown to

enhance the activities of carbon-metabolizing and nitrogen-

assimilating enzymes in Chlorella vulgaris (Piotrowska and

Czerpak, 2009). In the present study, exogenous application of

1–3 mg·L-1 BAP significantly enhanced the activity of nitrogen-
A B

D E F

C

FIGURE 7

Effects of three exogenous hormones on the accumulations of soluble protein and carbohydrate in Sargassum fusiforme holdfasts. (A–C):
soluble protein contents in the holdfasts under different culture conditions; (D–F): soluble carbohydrate contents in holdfasts under different
culture conditions. Values are mean ± standard deviation (n = 3). Different letters indicate significant differences between different culture
conditions (p < 0.05).
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assimilating enzymes in S. fusiforme holdfasts, suggesting that

cytokinins may have similar regulatory mechanisms in

macroalgae and microalgae.

In general, accumulation of soluble proteins in plants is

strongly influenced by nitrogen uptake and utilization (Chen

et al., 2017a; Chen et al., 2018; Tian et al., 2022). When the RR of

S. fusiformeholdfasts was higher, the synthesized SPwas usedmore

for the growth of regenerated seedlings, despite the fuller uptake

and utilization of nitrogen (Xu et al., 2022b). In the present study,

the SP content in holdfasts was related to enzymatic activity during

nitrogen conversion and utilization, as well as to the RR (juvenile

growth) of S. fusiforme holdfasts under these conditions. The SC

content was related to plant photosynthesis and respiration (Chen

et al., 2017b; Chen et al., 2019; Zhang et al., 2020). In this study, 5

mg·L-1 ofBAPenhanced thedark respirationofholdfasts, leading to

the depletion of carbohydrates accumulated by photosynthesis. In

contrast, the promotion of photosynthesis by other hormones and

concentrations in the holdfasts was more consistent with the

changes that increased the SC content.

Overall, appropriate concentrations of NAA, GA3, and BAP

could promote faster and greater regeneration of juveniles from S.

fusiforme holdfasts. Combined with other relevant physiological

indicators, the most suitable concentrations of NAA, GA3, and

BAP for holdfast regeneration were 1.5 mg·L-1, 1.5 mg·L-1, and 3

mg·L-1, respectively. Therefore, the above concentrations of

exogenous hormones can be added in practice in the early

stages of culture to shorten the culture time of juveniles’

regeneration and to obtain more regenerated juveniles for

improve the economic efficiency. Moreover, although the high

concentrations of GA3 and BAP inhibited the regeneration from S.

fusiforme holdfasts during the culture process, they did not

significantly inhibit the physiological activities of holdfasts by

the end of the culture. This property provides a new perspective

for regulating the propagation of S. fusiforme holdfasts.
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