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Determination of temperature-
dependent otolith oxygen stable
isotope fractionation on chum
salmon Oncorhynchus keta
based on rearing experiment

Yuxiao Gou1*, Tomihiko Higuchi2, Yuki Iino1,
Tsuyoshi Nagasaka3, Yuichi Shimizu3, Kotaro Shirai2

and Takashi Kitagawa1

1Otsuchi Coastal Research Center, The Atmosphere and Ocean Research Institute, The University
of Tokyo, Iwate, Japan, 2Atmosphere and Ocean Research Institute, The University of Tokyo,
Chiba, Japan, 3Iwate Fisheries Technology Center, Iwate, Japan
Reconstruction of water temperatures experienced by marine fishes using

otolith oxygen stable isotopes (d18O) as natural thermometers has been proven

to be a useful approach for estimating migration routes or movement patterns.

This method is based on the mechanism that the equilibrium fractionation of

d18Ootolith against ambient water exhibits a species-specific thermal sensitivity

during the process of otolith aragonitic CaCO3 precipitation. In this study, a

laboratory-controlled rearing experiment was conducted to determine the

temperature dependency of d18O fractionation on the anadromous fish

species, chum salmon (Oncorhynchus keta), of which the detailed migration

routes have not been elucidated yet. To test that temperature was the only

factor affecting d18Ootolith fractionation, this study ensured a relatively stable

rearing condition, evaluated the isotope composition of the rearing water, and

analyzed carbon isotope (d13Cotolith) to examine the potential effect of kinetic

and metabolic isotopic fractionations. The d18Ootolith fractionation equation on

chum salmon was thereby determined within a temperature range of 9–20°C

and was indistinguishable from the equation of synthetic aragonite; The

d13Cotolith was affected by both physiological processes and d13CDIC; In lower

temperatures settings, both oxygen and carbon isotopes depleted

simultaneously. This study suggests that the chum salmon species-specific

oxygen isotope fractionation equation could be used on reconstruction of

temperature history and also throw insights into understanding the

incorporation of oxygen and carbon sources during calcification process

for otoliths.

KEYWORDS

chum salmon, otolith, stable oxygen isotope, oxygen isotope fractionation,
temperature-dependence
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1 Introduction

Chum salmon Oncorhynchus keta is one of the most

abundant species in the North Pacific, and its overall

population has increased dramatically due to the success of

hatchery programs (Ruggerone and Irvine, 2018). However, in

many areas, especially in the southern stocks, the population of

chum salmon has decreased sharply over the last few decades,

though the continuance of hatchery enhancement programs

(Irvine et al., 2009; Abdul-Aziz et al., 2011; Healey, 2011;

Irvine and Fukuwaka, 2011; Ruggerone and Irvine, 2018). The

productivity of chum salmon is correlated with the capacity of

the North Pacific (Sanger, 1972), which can be affected by

climate change and high-density hatchery enhancement

(Beamish and Mahnken, 2001; Ruggerone and Nielsen, 2004;

Beamish, 2017; Schoen et al., 2017; Connors et al., 2020).

Furthermore, the mortality rates of juvenile chum salmon are

the highest after release (Fukuwaka and Suzuki, 2002), which

may be caused by the sharp decrease in available feed mass

evolved with the residence with high density of juvenile chum

salmon in the coastal area, modified by the limited utilization of

migration routes (Sanger, 1962). Thus, studies on chum

salmon’s early life migration ecology are required for the

management of artificial hatchery enhancement (Iino

et al., 2022).

As an anadromous fish species, chum salmon migrate to the

sea after their emergence from gravel beds in spawning rivers

and spend most of their life in the ocean (Perry et al., 1996). This

suggests that growth and survival depend more on the littoral

zone in estuaries than on the freshwater habitat (Seki, 1978;

Johnson et al., 1997). In Honshu, Japan, there are many small

coastal rivers that produce chum salmon, and the juveniles enter

the estuary within 24 h after release (Iwata, 1995). Generally,

Japanese juvenile chum salmon species migrate toward the

Okhotsk Sea after leaving coastal areas (Irie, 1990; Urawa

et al., 2004; Shubin and Akinicheva, 2016; Urawa et al., 2018),

and were expected to habitat at Sanriku coastal areas in Japan

within sea surface temperature (SST) of 9–13°C (Irie, 1990),

although detailed migration routes and actual temperature

histories have not yet been identified.

Electronic tagging technology is commonly used in fish

behavioral ecology studies (e.g. Tanaka et al., 2000; Kitagawa

et al., 2000; Kitagawa et al., 2004; Kitagawa et al., 2009). The

method has also been applied to adult chum salmon by using an

acoustic transmitter system to investigate natal homing behavior

on the Sanriku coast in North Japan (e.g. Tanaka et al., 2000;

Nobata et al., 2019). However, the methodology described above

is not suitable for juvenile chum salmon because the tagging

devices are too heavy for small juveniles to carry. Recently, the

implementation of methods to estimate fish movement in oceans

from biogeochemical information stored in fish otoliths (such as

water temperature and seawater stable oxygen isotope values,

Patterson, 1999; Høie et al., 2004a; Walther and Thorrold, 2009)
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has proven to be a useful indirect approach for describing the

thermal and geochemical conditions experienced by fish

(Campana, 1999; Campana and Thorrold, 2001; Høie et al.,

2004b; Tanner et al., 2013). It has been over half a century since

the precursory works of Urey (1947) and Epstein et al. (1951)

suggested that accurate determination of the oxygen stable

isotope (d18O) composition in mineral carbonates is a

powerful indicator of the ambient temperature at which the

carbonates formed, since the thermodynamic mechanisms of the

isotopic composition of minerals is reflected by both

mineralization temperature and ambient water isotopic

composition. A temperature dependence response also occurs

in carbonates, as they discriminate relatively lighter 16O from

ambient water at higher temperatures during the mineralization

process (Kim and O'Neil, 1997). Similarly, fish otoliths which are

metabolically inert acellular aragonite compounds in the inner

ear (Campana, 1999; Grønkjær, 2016), have proven to be

effective for reconstructing temperatures experienced by fish

(Jones and Campana, 2009; West et al., 2012; Willmes et al.,

2019; Hane et al., 2020). Using the daily deposition pattern of

otoliths, the temperature and water-d18O-isoscape allows

otoliths to be applied to fish migration and behavioral studies

(e.g., Sakamoto et al., 2019). Furthermore, since the dissolved

carbon in fish blood is physiologically controlled to regulate the

fluid pH, which fluctuate with diet digestion and metabolic

activities (Solomon et al., 2006), the carbon isotope

composition in fish otoliths can therefore be applied to

estimate individual field metabolic rate (Chung et al., 2019).

To utilize the otolith d18O composition as a thermometer,

the species-specific temperature dependent equation

representing the negative relationship of otolith isotopic

fractionation against ambient water temperature should be

initially identified (Darnaude et al., 2014). Previous studies

with several fish species used laboratory-controlled rearing

experiments under gradient temperatures to ensure that

temperature was the only factor influencing the deposition of

otolith d18O (d18Ootolith, e.g. Kitagawa et al., 2013; Sakamoto

et al., 2017). The relationships between fractionation of

d18Ootolith against water and temperature could then be

quantified based on well-established thermodynamic equations

(Kim and O'Neil, 1997) under the assumption that d18O in

mineral aragonite is precipitated in, or near, equilibrium;

however, it is still controversial that the temperature

dependency is species-specific or purely under thermodynamic

control (Patterson et al., 1993; Radtke et al., 1996; Thorrold et al.,

1997; Høie et al., 2004b; Walther and Thorrold, 2009; Kitagawa

et al., 2013; Sakamoto et al., 2017; Shirai et al., 2018b).

Several methods have been employed to reduce systematic

errors and evaluate the results in previous studies with otoliths,

including isotopic distinction of intra-fish paired sagittal otoliths

(Thorrold et al., 1997), high-precision otolith extraction

procedures (Sakamoto et al., 2017), isotope mass spectrometry

instrument calibration (von Leesen et al., 2021) and back-
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calculated temperature and in situ temperature correlation

(Willmes et al., 2019). The chum salmon Oncorhynchus keta, as

an anadromous fish, shift the habitat from freshwater to seawater

in early life stages (Salo, 1991; Johnson et al., 1997; Beamish,

2017), indicating the shift between isotopically distinct

environments (LeGrande and Schmidt, 2006; Oppo et al., 2007).

Thus, to accurately determine the relationship between otolith

isotopic fractionation and seawater, otolith portions reflecting the

freshwater life stages should be restricted from the extraction. This

study aims to determine the temperature dependence of otolith

oxygen isotopic fractionation against seawater on anadromous

chum salmon by adopting a laboratory-controlled gradient-

temperature rearing experiment. The accuracy of the results will

be promoted by the high precision extraction of otolith portions,

excluding the low d18Ootolith values during the freshwater period

induced by the uneven morphological structures, as well as by

testing for the attribution of the isotopic composition in seawater

on d18Ootolith.
2 Materials and methods

2.1 Laboratory-rearing experiment

Juvenile chum salmon were obtained and reared at the

Touni Salmon Masu Hatchery Enhancement Station, Iwate

Fishery Technology Center, Kamaishi, Japan. Individuals (300;

40–50 mm FL) hatched between March 1 and April 1, 2020 were

selected and transported into two 100 L tanks filled with

freshwater. On May 20, the otoliths of the juveniles were

marked with 10 ppm Alizarin Complexone solution (ALC) at

10.1–10.7°C for 1 d to record the start of the experiment (Saito

et al., 2007; Kasugai et al., 2013). After 1 week of temporary

rearing in freshwater, juveniles were transported to the

International Coastal Research Center (Current name: Otsuchi

Coastal Research Center), Atmosphere and Ocean Research

Institute, The University of Tokyo, Otsuchi Bay, Japan, and

reared for another 3 d at 12°C in a 500 L freshwater tank to

ensure recovery from transportation stress. The procedure above
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produced a mortality rate of 8.3% with the cost of 15 individuals

during ALC dyeing and 10 individuals during transportation.

After acclimation, another 500 L tank at 12°C was filled with

filtered seawater (salinity = 33.5) pumped from Otsuchi Bay for

1d seawater domestication. While the experienced temperatures

for wild individuals were 9–13°C (Irie, 1990) and the significant

lethality from constant exposure to 22°C (Hicks, 2000), the

following gradient-temperature acclimation was conducted

within a temperature range of 9–20°C (uppermost temperature

treatment was 2°C below upper incipient lethal temperature to

permit a high survival rate), and the temperature treatments

were arranged as 9, 12, 15, 18 and 20°C, implemented in five

tanks (2 in 150L and 3 in 80L because tanks in the same size were

unavailable). On June 1, 50 individuals each were randomly

selected and transferred into two 150 L (9 and 12°C) and three

80 L (15, 18, and 20°C) temperature gradient rearing tanks,

respectively (Figure 1). Water temperatures were elevated or

depressed by automatic heater-cooler units (AQUA Co., Ltd,

Tokyo, Japan, ARK802-301A-5) within 3.5 h after the juveniles

were transferred. The juvenile were then acclimated in 5

temperature groups for three months, a timescale represents

the approximate migration period from coastal zones to

Okhotsk Sea for wild juvenile chum salmon spawned in Iwate

prefecture (Urawa et al., 2018). Juvenile chum salmon were fed

twice a day with 4% body weight of formula pellets (Marubeni

Nissin Feed Co., Ltd, Tokyo, Japan; EPC4: water 12.7%, protein

42.6%, fat 6.9%, fiber 1.0%, ash 12.6%, nitrogen-free extract

24.2%, particle size 1.5 mm) and maintained under artificial light

with a 12:12 h light/dark regime. The seawater was aerated and

refreshed daily with an exchange rate of 10% tank volume of

fresh seawater during the 90 d experimental period (except for

the 18°C group that ended on the 83rd day evolved by

instrumental trouble of pump, and the fish were then

sacrificed, somatically measured and frozen at –20°C). Tanks

were capped with transparent covers to prevent evaporation of

seawater (80L tanks with original packing covers while 150L

tanks with hand-made PVC plate caps) and were sanitized at the

end of the 3rd, 7th, and 11th weeks with 100% seawater

exchange to reduce the isotopic effect of background
FIGURE 1

Flowchart of the rearing experiment in respective freshwater and seawater period. n: juvenile chum salmon individual number; ALC, alizarin complexone.
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respiration (e.g., bacterial oxygen consumption and algal

photosynthesis). The rearing experiment ended on August 30,

and the sampling strategies for seawater and fish were followed.
2.2 Sample strategy and otolith
sample preparation

Rearing seawater samples for isotopic analysis were collected

weekly from the first day of the gradient-temperature rearing

experiment. After recording the salinity and instant water

temperature, the seawater from each temperature group was

filtered with a 0.45 mm syringe filter and transferred into

separate 50 mL plastic vials. The water samples were then

stored at 4°C until oxygen isotopic analysis. Filtered seawater

for carbon isotopic analysis of dissolved inorganic carbon (DIC)

in each group was injected into 20 mL septum-sealed glass vials

to prevent air contamination. After samplings, the seawater

samples were sent by refrigerated courier to Atmosphere

Ocean Research Institute, The University of Tokyo, and the

oxygen and carbon isotopic analysis were conducted soon after.

Juveniles at the end of the rearing were used for

determination of d18Ootolith fractionation equation, but 6

individuals were randomly sampled from each tank every two

weeks (once a week at the beginning and the end of the

experiment) to record the somatic and otolith growth. The

fork length and body weight of individuals were measured to

calculate the feed pellet mass. Juveniles sampled at the end of the

rearing experiment were frozen at −20°C and defrosted for

sagittal otolith extraction using a lateral extraction method

(Wakefield et al., 2016) and nylon brushes were used to

remove any adhered material, whereby 42 otoliths in total: 11

at 9°C, 8 at 12°C, 9 at 15°C, 8 at 18°C, 6 at 20°C and one random

otolith, either left or right, from one individual were selected.

The otoliths were then maintained in an ultrasonic Milli-Q water

bath and dried at room temperature (23°C). Cleaned otoliths

were attached to glass slides with epoxy resin (Burnham

Petrographics LLC) and ground with 15 mm sandpaper

followed by a polishing procedure with 10 mm diamond films

until the otolith cores were observed clearly under a microscope

(10×). The ALC marks of the polished otoliths were identified

under a fluorescence microscope (30×, Olympus BX63 coupled

with a U-RFL-T fluorescence light source, Olympus, Tokyo,

Japan). Based on the fluorescence results, daily rings

corresponding to ALC marks were identified on the light

microscopic results using an otolith measurement system

(Ratoc System Engineering Co. Ltd., Tokyo, Japan)

(Figures 2A, B). To extract the newly deposited portion on the

otolith that reflected the seawater rearing period at respective

temperature group for isotope analysis, the growth ring

representing the day on which the temperature gradient

introduced was also identified on the light microscopic results

by counting 11 daily rings from the ALC mark to the otolith
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margin (7 d assimilating rearing after ALC treatment in

freshwater, 3 d stabilization rearing after transportation, and

1 d domestication rearing before seawater temperature gradients

were introduced, Figure 2C).

Otolith powder for isotope analysis was sampled using a

high-precision micro-drilling system (QuickPro, MicroSupport,

Shizuoka, Japan) coupled with video monitoring and analysis

software. Considering the variance of d18Oseawatervalues during 3

months rearing and the mix of the otolith powder representing

the freshwater rearing period, the newly deposited proportion on

the otolith was divided into three equivalent samples (hereafter

inner, middle, and edge) to improve the accuracy of the

estimation on d18O fractionation (Figures 2D–F). Another

sample was examined for alternatively selected otoliths from

each temperature group by drilling from the ALC mark to the

core (freshwater period), and the d18Ootolith values were

compared with those of the three samples collected from the

same otolith, to evaluate the effect of contamination from

freshwater period. To satisfy the instrumental detection limit

of the following isotope analysis, > 8 mg powder for each otolith

portion was collected into cleaned glass vials. This approach

allows for a reduction of the operation error by adjusting the

ALC mark, and the influence of freshwater can also be excluded

based on the three equivalent extractions method. Otolith

powder samples were then used for isotope analysis. The

carbon isotope values were also analyzed to examine the

potential effect of kinetic and metabolic isotopic fractionations.
2.3 Stable oxygen and carbon
isotope analysis

The d18O and d13C values of otolith powder samples and

d13C values of DIC (d13CDIC) in rearing seawater were measured

using an isotope ratio mass spectrometer (Delta V plus, Thermo

Fisher Scientific, Waltham, Massachusetts) equipped with an

automated carbonate reaction device (GasBench II, Thermo

Fisher Scientific) installed at the Atmosphere and Ocean

Research Institute, University of Tokyo. The traditional CO2

conversion technique was used, whereby the otolith powder and

DIC in seawater were extracted to CO2 by reacting with 100%

phosphoric acid at 72°C for carbonate and 25°C for DIC, after

flushing with pure helium. Equilibrated gaseous CO2 was then

transported with the helium flow to the mass spectrometer for

d18O-CO2 and d13C-CO2 determination. The detailed analytical

conditions for otoliths and DIC in seawater samples have been

reported previously (e.g., Shirai et al., 2018b; Zhao et al., 2019),

with modifications for small quantity of samples (see

Breitenbach and Bernasconi, 2011). The isotopic results used

delta notation standardized to the Vienna Pee Dee Belemnite (V-

PDB) scale based on NBS-19 values of −2.20‰ and 1.95‰ for

d18O and d13C, respectively. No correction was applied for the

acid fractionation factor between calcite and aragonite at the
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phosphoric acid-calcium carbonate reaction temperature of 72°

C (Kim et al., 2007; Shirai et al., 2018a). The standard deviation

of the external reproducibility of d18O and d13C analysis for

otoliths and d13C of DIC were better than 0.15‰, 0.12‰ and

0.14‰, respectively, based on the reproducibility of NBS-19.

The d18O values of the rearing seawater samples were

determined using a Picarro L2120-i analyzer at the

Atmosphere and Ocean Research Institute, University of

Tokyo. Before introduction into the analyzer, samples were

filtered using a membrane filter (j = 0.45mm) to reduce

suspended particles and prevent blocking of the sampling line.

Data are reported in delta notation and standardized against

Vienna Standard Mean OceanWater (VSMOW). The long-term

instrument reproducibility was ±0.08‰.
2.4 Statistical analysis

Two-factor permutational univariate analysis of variance

(ANOVA) was used to determine the differences in

d18Ootolithor d13Cotolith values among otolith portions and

temperature treatments. Two-sample t-test was used to

evaluate the means differences of otolith radius, somatic and
Frontiers in Marine Science 05
otolith growth rate, body mass among temperature treatments.

Linear regression analysis were used to assess the relationship

between otolith isotopes and temperatures, and non-linear

regression analysis was used to describe the best-fitted curve

for somatic growth. Analysis of covariance (ANCOVA) was used

to compare the slopes and intercepts calculated in this study

against synthetic aragonite. Partial correlation analysis was used

to determine whether the correlation between carbon and

oxygen fractionation remained after removing the effect of

temperature. All the statistical analysis and graphical plotting

were performed in OriginPro (ver. 2022, OriginLab

Corporation, USA).
3 Results

3.1 Rearing condition and somatic
growth

Variations in d18Oseawater, d13Cseawater, water temperature,

and seawater salinity during the rearing experiment are shown in

Figure 3. Covariation among the parameters was not evident.

Average salinity among 5 groups was 33.20 ± 0.17, and the large
B C

D E F

A

FIGURE 2

(A) Extraction portions surrounded by several red line segments out of the yellow ALC mark to the edge, and labeled as inner, middle, and edge
from the core to the edge of an alternative otolith used in this study. The white dotted square shows the images of the ALC mark correlated to
(B) and (C); (B) Orange ALC mark was observed under fluorescence microscope (× 20); (C) ALC mark was identified by a yellow line using light
microscopy at the same field of (B); (D–F) show the otoliths after the extraction procedure for edge, middle and inner portions, respectively, for
isotope analysis.
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fluctuation occurred in the inner otolith deposition period for 9

and 20°C groups, with standard deviations of 1.10 and 0.79,

respectively. In general, the rearing water of the 9 and 12°C

groups showed greater d18O depletion compared to the other

three groups. The 9°C group presented d18Oseawater fluctuations

fueled by standard deviations during the period at which the

inner and edge otolith portions deposited were larger than the
Frontiers in Marine Science 06
middle portion, with values of −0.56 ± 0.17‰ for the inner and

−0.70 ± 0.31‰ for the edge regions, compared with −0.67 ±

0.004‰ for the middle portion. Therefore, the middle portion of

otoliths reflected the most stable rearing period.

Juvenile chum salmon had an average primary weight of

1.69 g and the general somatic growth patterns for individuals in

the five temperature groups are shown in Figure 4. The final
B

A

FIGURE 3

(A) Variation of d18Oseawater values, salinity and temperatures of rearing water of five temperature groups during rearing experiment; (B) variation
of d13Cseawater values during rearing experiment. The dashed lines represent the average isotope values used in fractionation calculation.
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weights at the end of the rearing experiment for juveniles at 9°C

were significantly lower than those for the other four groups

(two-sample t-test, p< 0.001). The average otolith radius was

539.81 ± 38.47, 658.66 ± 54.45, 630.8 ± 55.34, 617.34 ± 62.52,

and 741.11 ± 56.76 mm, and otolith growth rate was 1.02 ± 0.42,

2.32 ± 0.60, 2.02 ± 0.61, 1.87 ± 0.69, and 3.23 ± 0.62 mm/d for the

9, 12, 15, 18 and 20°C groups, respectively. The average otolith

radius and precipitation rate for individuals in the 9°C group

were less than those of the other 4 groups (significant at 0.001

level for the 12, 15, and 20°C groups, two-sample t-test, p< 0.001;

significant at 0.05 level for the 18°C group, two-sample t-test,

0.05< p< 0.01).
3.2 Isotope composition of otoliths

The mean oxygen isotope value of otoliths (d18Ootolith) from

each temperature treatment varied from −0.91 ± 0.30 to 0.57 ±

0.46‰ (Table 1), and there was a significant difference among

the five temperature groups (one-way ANOVA, p< 0.001). The

d18Ootolith values of the inner otolith portions differed from those

of the middle portions (one-way ANOVA, p = 0.0012), and

differed significantly from those of the edge portions (one-way

ANOVA, p = 0.0009). There was no difference between the d18O
values of the middle and edge otolith portions (one-way

ANOVA, p = 0.919), indicating a mix of otolith portions

deposited in the freshwater period in the inner otolith

samples. The d18Ootolith and d13Cotolith values for extra otolith

represented the freshwater period was –3.65 ± 0.49 and –11.00 ±

0.35‰. By comparing the isotope values of inner portions with
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middle, it was indicated that only 4 out of 42 otolith samples

were not mixed with otolith portions formed during freshwater

period. The mix proportions ranged from 0.3% to 47.7% with an

average value of 15.1% for all the samples. The proportions

calculated by respective d18O and d13C were not statistically

different (one-way ANOVA, p = 0.73). Thus, the mix of otolith

portions deposited at freshwater period was assignable and the

data of the inner portion were excluded from the following

analysis. The d18O values of the middle and edge portions of the

otoliths among the five temperatures remained significantly

different after the exclusion (one-way ANOVA, p< 0.001).

Detailed otolith isotope values of individuals can be found in

Table S1. The d18Ootolith values of the edge and middle otolith

portions are shown in Figure 5. In the 9°C group, d18Ootolith

values ranged from −0.64 to 1.23‰, with the d18Ootolith edge

values generally lower than those of the middle portions (one-

way ANOVA, p< 0.05). The linear relationship between

d18Ootolith values of the five groups and water temperature can

be generally described as:

d18Ootolith, VPDB= −0:109 (± 0:010) � T  (°C) + 1:593 (± 0:159) 

(Equation 1)

The mean d13Cotolith values of each temperature group

ranged from –9.77 ± 0.25 to –8.18 ± 0.55‰, with significant

differences among the five groups (one-way ANOVA, p< 0.001).

Similarly, the d13Cotolith values of the inner portions were

significantly lower than those of the middle (paired-sample t-

test, p< 0.001), while the difference with the d13Cotolith values of

the edge portions was not significant (paired-sample t-test, p =

0.06). Paired d13Cotolith and d18Ootolithvalues were used in the

following analysis; therefore, the d13Cotolith values of the inner

portions were not included.

The d13Cotolith values of the middle and edge regions were

significantly different among the five temperature groups (one-

way ANOVA, p< 0.001). A plot of carbon isotopes versus

temperature showed a decrease in d13C with increasing

temperature (Figure 6), indicating a negative weak correlation

(Pearson’s r = −0.692, r2 = 0.472, p< 0.001). The deviations of

d13Cotolith from the DIC of seawater were also plotted against

temperature and little correlation identified (r2 = 0.05,

Figure S1).
3.3 Otolith oxygen isotope fractionation

The mean d18Oseawater values during each deposition period

were used to calculate the otolith oxygen isotope fractionation

for the middle and edge otolith portions. To achieve the

difference between otolith and seawater isotope values as

accurately as possible, the deviations of the d18Oseawater mean

values should be restrained within a relatively small range to

narrow the impact of seawater isotopic fluctuation. As described
FIGURE 4

Potential variation of body mass of juvenile chum salmon during
rearing experiment of five temperature groups. An alternate solid
point represents the body weight (g) of an individual sampled
randomly at the specified date.
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above, the d18Oseawater mean value during the edge otolith

portion deposited in the 9°C group fluctuated with a large

standard deviation, which may impact the accuracy of the

calculation. Therefore, the fractionation values of the edge

port ions were treated separate ly for the equat ion

determination. Detailed d18Oseawater and d13CDIC values can be

found in Table S2.

The oxygen isotope fractionation between otolith and

rearing seawater was expressed as approximately d18Ootolith,

VPDB − d18Oseawater, VSMOW (‰), or as 103 ln a converted by

a = 
1000 + d 18Ootolith, VPDB

1000 + d 18Oseawater, VSMOW

The conversion of d18Oseawater from V-SMOW to V-PDB

according to Coplen et al. (1983) was

d 18O(V�SMOW) = 1:03091 � d18O(V� PDB) + 30:91

(Equation 2)

The oxygen isotope fractionation was calculated based on

the d18Ootolith values of middle otolith portions in the 9°C

group and both the middle and edge portions in the 12, 15, 18,

and 20°C groups, and the mean d18Oseawater values during the

period in which the otolith portions precipitated (Figure 7).

The relationship between oxygen isotope fractionation of

otoliths and water temperature was fitted with the linear

regression model, resulting in a slope of −0.186 ± 0.010 and

an intercept of 3.219 ± 0.155 (Pearson’s r = −0.846, r2 = 0.713).

Although the slope did not differ (ANCOVA, p< 0.01), the
Frontiers in Marine Science 08
intercept was significantly different from that of the synthetic

aragonite determined by Kim et al. (2007) (ANCOVA, p >

0.05). However, within the temperature scale of this study

(1000/T (K) = 3.41–3.544), the difference in the reflected 103

lna value calculated by these two equations was not more

than 0.292.

Overall, the relationship between oxygen isotope

fractionation and water temperature at the 9–20°C scale for

the middle otoliths portion of juvenile chum salmon

Oncorhynchus keta, can be described as a linear regression

equation:

d18Ootolith,VPDB− d18Oseawater,VSMOW  

=−0:186 (± 0:010) � T (°C) 

+ 3:219 (± 0:155)  n = 72ð Þ
                              

Pearson0s r= −0:910, r2= 0:827,p< 0:001
� �

(Equation 3)

or expressed as a fractionation factor:

103  ln  a = 15:314 (± 0:850) 

� 103 T  −1(K) − 22:2788 (± 2:952) n = 72ð Þ
                    

Pearson0s r=−0:907, r2= 0:823,p< 0:001
� �

(Equation 4)

Based on the d18Ootolith values including middle and edge

otolith portions but only from the 12, 15, 18, and 20°C groups,

the fractionation equation was also calculated as
TABLE 1 Summary of oxygen and carbon isotope analysis results, including the numbers of otoliths used for isotopic analysis, mean d18O and d13C
values of each extracted portion of otoliths, mean d18Oseawater and d13CDIC values of rearing water and DIC corresponding to the period of otolith
precipitation, the oxygen isotope fractionation of otolith against rearing seawater and the carbon isotope fractionation of otolith against DIC.

Water
temperature
(°C)

Number
of

otoliths

Extracted
portions
of otoliths

d18Ootolith

(‰, VPDB)
d18Oseawater

(‰, VSMOW)

d13Cotolith
(‰,
VPDB)

d13CDIC
(‰, VPDB)

d18Ootolith

minus
d18Oseawater

(‰, VPDB)

d13Cotolith
minus d13CDIC
(‰, VPDB)

9 11 Inner
Middle
Edge

−0.25 ± 0.46
0.57 ± 0.46
0.22 ± 0.54

−0.56 ± 0.17
−0.67 ± 0.01
−0.70 ± 0.31

−8.64 ± 0.46
−8.18 ± 0.55
−8.60 ± 0.56

−3.86 ± 1.81
−3.70 ± 0.30
−4.77 ± 0.56

0.32 ± 0.46
1.24 ± 0.46
0.92 ± 0.54

−4.78 ± 0.46
−4.49 ± 0.55
−3.82 ± 0.56

12 8 Inner
Middle
Edge

−0.04 ± 0.48
0.48 ± 0.20
0.47 ± 0.10

−0.52 ± 0.17
−0.71 ± 0.08
−0.68 ± 0.17

−8.69 ± 0.40
−8.42 ± 0.29
−8.42 ± 0.28

−3.96 ± 1.58
−4.40 ± 0.38
−4.55 ± 0.88

0.47 ± 0.47
1.19 ± 0.20
1.15 ± 0.09

−4.72 ± 0.40
−4.02 ± 0.29
−3.87 ± 0.28

15 9 Inner
Middle
Edge

0.03 ± 0.22
0.17 ± 0.13
0.38 ± 0.12

−0.24 ± 0.08
−0.33 ± 0.11
−0.34 ± 0.06

−8.63 ± 0.27
−8.59 ± 0.20
−8.69 ± 0.19

−3.97 ± 1.94
−5.28 ± 0.82
−5.10 ± 0.33

0.27 ± 0.22
0.50 ± 0.13
0.72 ± 0.12

−4.66 ± 0.27
−3.31 ± 0.20
−3.59 ± 0.19

18 8 Inner
Middle
Edge

−0.91 ± 0.30
−0.51 ± 0.18
−0.43 ± 0.28

−0.33 ± 0.06
−0.28 ± 0.05
−0.31 ± 0.13

−9.45 ± 0.35
−9.29 ± 0.20
−9.19 ± 0.45

−4.19 ± 2.09
−4.80 ± 0.33
−4.17 ± 0.79

−0.58 ± 0.30
−0.23 ± 0.18
−0.12 ± 0.28

−5.26 ± 0.35
−4.49 ± 0.20
−5.02 ± 0.45

20 6 Inner
Middle
Edge

−0.87 ± 0.07
−0.87 ± 0.14
−0.79 ± 0.09

−0.08 ± 0.04
−0.08 ± 0.05
−0.28 ± 0.15

−9.77 ± 0.25
−9.54 ± 0.23
−9.22 ± 0.29

−4.63 ± 2.07
−5.17 ± 0.59
−4.89 ± 0.36

−0.79 ± 0.07
−0.79 ± 0.14
−0.50 ± 0.09

−5.14 ± 0.25
−4.37 ± 0.23
−4.34 ± 0.29

All the parameters are expressed as means ± SD.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1072068
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gou et al. 10.3389/fmars.2022.1072068
d 18Ootolith, VPDB− d18Oseawater, VSMOW 

=−0:246 (± 0:011) � T  (°C) 

+ 4:165 (± 0:172)  n = 61ð Þ
                                

Pearson0s r= −0:975, r2= 0:950,p< 0:001
� �

(Equation 5)

or

103 ln  a = 19:211 (± 0:733) � 103 T  −1(K) 

− 35:703 (± 2:538) n= 61ð Þ
                      

Pearson0sr=−0:960, r2= 0:921,p< 0:001
� �

(Equation 6)

There were no significant differences between these

two equations.
3.4 Relationship between carbon and
oxygen fractionation

To determine the involvement of kinetic and metabolic

fractionation, the fractionation of oxygen and carbon

calculated by middle and edge otolith portions for each group

was bi-plotted, as shown in Figure 8. No correlation was found

in 15, 18 and 20°C group (r2< 0.06), while weak correlation was

found in 9 and 12°C group (r2 = 0.25 and 0.43). And the

fractionation values variated in a wide range among the

5 groups.

The analytical result between the partial correlation of

oxygen isotope fractionation and carbon isotopes (txy,z = –
Frontiers in Marine Science 09
25.600) indicated that the carbon isotopes in the otoliths were

not strongly controlled by temperature. However, the depleted

values of d13C in the edge otolith portions of the 9°C group

showed co-variation with d18O, indicating that the carbon

isotopes could be used as indicators of the appearance of outliers.
4 Discussion

In this study, to evaluate the accuracy of the relationship

between otolith oxygen isotope fractionation and water

temperature using a rearing method, three parameters potentially

responsible were considered: operation error during otolith sample

extraction, invasion into freshwater deposition period for inner

extraction portions, and correlation with the carbon isotopes. The

mix of otolith proportions deposited during the freshwater period

was responsible for the depleted d18Ootolith values in the inner

otolith portions. In contrast to the period during which middle

otolith portions were deposited, the d18Oseawaterresults indicated

that the edge otolith portions were deposited under a relatively

unstable rearing environment; thus, the middle otolith d18Ootolith

values showed a strong correlation with temperature within a

narrow d18O range, except for the data from the 9°C group.

There were no significant differences between the

temperature-dependent oxygen isotope fractionation equations

calculated from the middle and edge otolith d18Ootolith values of

the 9–20°C groups (Equation 3, 4) and 12–20°C groups

(Equation 5, 6). The calculated slopes were not significantly

different from those of the synthetic aragonite determined by

Kim et al. (2007), and there was a low deviation in the intercepts.

The difference between middle and edge otolith fractionation

values was not significant in the 9°C group, and the general
FIGURE 5

Distribution of middle and edge portions of five temperature
groups. Solid circle represents one isotope value of otolith
powder sample.
FIGURE 6

Distribution of d13Cotolith values of middle and edge portions of
five temperature groups. Each isotopic value of otolith powder
sample is represented by a triangle.
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variation range within the group (1.652‰) was below or near

the index of other fish species (Godiksen et al., 2010; Kitagawa

et al., 2013; Sakamoto et al., 2017). Overall, the fractionation

equation for chum salmon was identified based on the d18Ootolith

values of the 9–20°C groups. The regression line of chum salmon

and inorganic aragonite intersects at the temperature of 16.7°C.

At temperature range of 16.7–20°C, for the same isotope

fractionation value, the difference of deduced temperatures by

these two equations would differ not more than 0.5°C. Similarly,

at temperature range of 9–16.7°C, the deduced temperatures

differs within 1°C. The calculated slope was lower than that of

Atlantic cod Gadus morhua (18.70 and 16.75, Radtke et al., 1996;
Frontiers in Marine Science 10
Høie et al., 2004b) and Atlantic croaker Micropogonias

undulatus (18.56, Thorrold et al., 1997), and considerably

lower than that of bluefin tuna Thunnus orientalis (24.28,

Kitagawa et al., 2013) (Figure 9). The difference in slopes

between the other salmonoids species Arctic char Salvelinus

alpinus (20.43, Godiksen et al., 2010) indicated the importance

to determine the otolith oxygen isotope fractionation equation

species-specifically.

For d18Oseawater in the 9 and 12°C groups in this study, the

values were significantly lower than the other three groups,

which is considered to be attributed to the effect of

condensation. Although 10% of the volume of the rearing

seawater was exchanged every day, set seawater temperatures

that were considerably lower than the set room temperature (23°

C), were susceptible to condensation (the 9 and 12°C groups). In

addition, the bigger tanks (150L) with larger water surface had a

higher risk of exposure to condensation, facilitating the mix of

condensation from the room atmosphere with low d18O values.

And cooler temperature of 9°C was considered to be influenced

by heavier condensation than 12°C group. Therefore, otolith

isotopic composition is susceptible to produce lower and

unstable values resulting in an underestimation of the isotopic

fractionation for these two groups. However, though the

potential fluctuation of d18Oseawater could be determined

(Figure 3), the depletion of d18Ootolith values for edge otolith

portions in 9°C group (Figure 5) may be contributed by the

occasional condensation with lower d18Oseawater values, which

was not captured by weekly seawater sampling.

Extremely low isotope fractionation values in some individuals

from the 9°C group were observed. Given that the condensation
FIGURE 7

Plot of otolith oxygen isotope fractionation values versus water
temperature. Open diamonds represent the fractionation values,
expressed in both d-T and lna-Kelvin T scales.
FIGURE 8

Plot of otolith isotope fractionation of d18O and d13C versus
seawater and DIC of five temperature groups, respectively.
Shallow spots represent the middle otolith portions.
FIGURE 9

Comparison of temperature-dependent oxygen stable isotope
fractionation equation calculated in this study with the published
equations for several fish otoliths and inorganic aragonite. The
length of each regression line represents the range of applicable
temperature.
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likely affects all individuals in the same tank, in the same manner,

the variability at an individual level should be attributed to other

controlling factors. The microscopic observation indicated that

there were no irregular morphological characteristics, for

example, the prevalence of vaterite on the otolith, discolorations,

or wrinkled structures (Figure S2). It should be noted that a weak

correlation between the oxygen and carbon fractionation was

observed for the 9°C group (see Figure 8), with a wide fluctuation

of the oxygen isotopes. In biogenetic carbonates, isotopic

disequilibrium is mainly attributed to metabolic and kinetic

isotope effects (McConnaughey, 1989a; Cohen and

McConnaughey, 2003; Daëron et al., 2019; Prada et al., 2019;

Huyghe et al., 2020), and it is difficult to discriminate between

them. Kinetic effects are more significant, resulting in the depletion

of heavier 13C and 18O simultaneously, rather than the

incorporation of metabolic CO2 alone. The lower d18O data in

the 9°C group was largely associated with lower d13C values, of

which pattern is similar to the typical fractionation pattern of

kinetic isotope fractionation (Kalish, 1991b; McConnaughey,

1989b), namely a positive correlation between d18O and d13C
(Figure S3). Regardless of the fractionation mechanism, the

simultaneous depletion remained in both oxygen and carbon

isotope fractionation in lower temperature settings indicated that

incorporating carbon and oxygen compounds originated from

other alternative sources that were isotopically different from

seawater, e.g. metabolically derived carbon (Kalish, 1991a; Chung

et al., 2019). Unfortunately, the data obtained in this study was not

enough to identify the ultimate mechanism of isotopic

heterogeneity between individuals from the same tank.

It is reported that when ambient water was colder than preferred

temperatures, endothermic fish species may conserve heat by

thermal inertia to maintain their body and brain temperatures

above the ambient temperature (Carey et al., 1984), e.g. Pacific

bluefin tuna (Kitagawa et al., 2001; Kitagawa et al., 2006; Kitagawa

et al., 2022). Then, the d18Ootolith may therefore reflect the

temperature of brain rather than the ambient water (Radtke et al.,

1996). Whereas chum salmon is an ectothermic fish species, of

which the somatic temperatures vary with ambient temperatures,

and the thermoregulation for wild individuals depends on behavioral

locomotion but physiological processes (Tanaka et al., 2000;

Azumaya and Ishida, 2005). Furthermore, 9 and 12°C treatments

in this study were located within the preferred temperature scale of

chum salmon (7–14.8°C, Hicks, 2000; Nagata et al., 2007). Hence,

the d18Ootolith values of chum salmon reflect temperatures of ambient

water, and physiological thermoregulation processes were not

susceptible for depleting the d18Ootolith in the cold water

treatments in this study. To discriminate the relevant mechanisms,

further studies under chemical scopes are needed, as for

physiological scopes, the preferred temperatures are expected to be

context-dependent (Clark et al., 2013; Norin et al., 2014).

Irrespective of the vital effects might be evolved, by

discriminating the factors in spite of temperature that affect

the isotope precipitation on otolith, the determined equation in
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this study was applicable for thermal history reconstruction on

chum salmon.
5 Conclusion

The temperature dependency of otolith oxygen isotope

fractionation in chum salmon was assessed based on a

temperature gradient rearing experiment. The isotopic analysis

results of the three equivalent otolith samples and rearing

seawater suggested that the inner otolith portions were mixed

with proportions deposited during the freshwater life stages; the

edge otolith portions were deposited from an isotopically unstable

environment and middle otolith portions were deposited from

relatively stable seawater, thus providing more convincing data.

The d18Ootolith values of middle otolith portions showed a strong

correlation with temperature within a narrow value scale, except

that the d18Ootolith values from 9°C group were distributed over a

wide range. The otolith oxygen isotope fractionation equations

based on the 9–20°C and 12–20°C groups were not statistically

different from each other, and there was no significant difference

with synthetic inorganic aragonite determined by Kim et al. (2007).

The correlation between the oxygen and carbon isotope

fractionation and the widely distributed d18Ootolith values in the 9°

C group were speculated to be the effect of humid condensation

(lower d18Oseawatervalues) or the kinetic isotope effect (lower

d18Ootolith values) alone or combined. The d18Ootolith values in the

9°C group had a relatively wide range compared with the other four

groups, but the variation range was near or below the indexes in the

studies on other species. Therefore, it was concluded that the chum

salmon otoliths in this study were deposited under an isotopic

quasi-equilibrium and the chum salmon species-specific otolith

oxygen isotope fractionation equation could be used on

reconstruction of temperature history.
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