
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Hong Song,
Zhejiang University, China

REVIEWED BY

Zhuang Zhou,
Beijing Institute of Technology,
Zhuhai, China
Peng Ren,
China University of Petroleum (East
China), China

*CORRESPONDENCE

Chang Liu
liuchang@bistu.edu.cn

SPECIALTY SECTION

This article was submitted to
Ocean Observation,
a section of the journal
Frontiers in Marine Science

RECEIVED 16 October 2022
ACCEPTED 10 November 2022

PUBLISHED 30 November 2022

CITATION

Hao Z, Qiu J, Zhang H, Ren G and
Liu C (2022) UMOTMA: Underwater
multiple object tracking
with memory aggregation.
Front. Mar. Sci. 9:1071618.
doi: 10.3389/fmars.2022.1071618

COPYRIGHT

© 2022 Hao, Qiu, Zhang, Ren and Liu.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 30 November 2022

DOI 10.3389/fmars.2022.1071618
UMOTMA: Underwater
multiple object tracking
with memory aggregation

Zhicheng Hao1, Jun Qiu1, Haimiao Zhang1,
Guangbo Ren2 and Chang Liu1*

1Institute of Applied Mathematics, Beijing Information Science and Technology University, Beijing,
China, 2First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, China
Underwater multi-object tracking (UMOT) is an important technology in

marine animal ethology. It is affected by complex factors such as scattering,

background interference, and occlusion, which makes it a challenging

computer vision task. As a result, the stable continuation of trajectories

among different targets has been the key to the tracking performance of

UMOT tasks. To solve such challenges, we propose an underwater multi-object

tracking algorithm based on memory aggregation (UMOTMA) to effectively

associate multiple frames with targets. First, we propose a long short-term

memory (LSTM)-based memory aggregation module (LSMAM) to enhance

memory utilization between multiple frames. Next, LSMAM embeds LSTM

into the transformer structure to save and aggregate features between

multiple frames. Then, an underwater image enhancement module ME is

introduced to process the original underwater images, which improves the

quality and visibility of the underwater images so that the model can extract

better features from the images. Finally, LSMAM and ME are integrated with a

backbone network to implement the entire algorithm framework, which can

fully utilize the historical information of the tracked targets. Experiments on the

UMOT datasets and the underwater fish school datasets show that UMOTMA

generally outperforms existing models and can maintain the stability of the

target trajectory while ensuring high-quality detection. The code is available

via Github.

KEYWORDS

artificial intelligence, underwater multiple object tracking, marine environment, long-
short term memory, vision transformer
1 Introduction

Multi-object tracking (MOT) is an important research topic in computer vision and

is the basis of many high-level visual semantic understanding tasks. Its primary purpose

is to locate multiple targets in image sequences and simultaneously track their trajectories

over time. Thus, the same target has unique identification information in the image
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sequence. In recent years, MOT has made considerable progress

and can be found everywhere in our lives, including autonomous

driving (Grigorescu et al., 2020), robot navigation (Luo et al.,

2021) and video surveillance (Sreenu and Durai, 2019).

With the powerful discriminative ability of deep neural

networks and the huge amount of available training data, the

performance of target detection algorithms has been

dramatically improved, which makes tracking-by-detection

(TBD) a mainstream paradigm in MOT (Wojke et al., 2017).

This method decomposes MOT into two subtasks: (1) detection,

which uses a detection network to obtain bounding boxes of

multiple targets in a single frame, and (2) association, which

matches the detected targets with existing trajectories through an

association network. However, MOT methods of the TBD

paradigm still have some problems. First, the quality of the

tracking results depends mainly on the detection results, which

weakens the role of the association link. Second, since the whole

tracking process is divided into two parts, the tracking speed of

the algorithm is generally slow, which makes it challenging to

meet the requirements of many application scenarios for real-

time performance.

With the maturity of multitask learning methods, the joint

detection and tracking (JDT) paradigm has started to attract

more attention (Wang et al., 2020; Wu et al., 2021). The JDT

paradigm optimizes the two abovementioned subtasks

simultaneously over a backbone network. The network can

output the results of object detection and the apparent features

of the object corresponding to each pixel in the feature map for

tracking simultaneously. This method greatly accelerates the

speed of MOT, and the frames per second (FPS) can reach the

real-time requirement during online tracking. However,

compared with the TBD model, the tracking performance of

the JDT model is not satisfactory. The feature extractor of JDT is

prone to ignore the inherent variability of target localization

information and identifying information in sharing embedding

learning. As a result, the tracking process of JDT copes with

different scale targets and occlusion situations poorly.

Although the above-mentioned MOT methods have been

greatly developed, they are all designed based on pedestrian

datasets and still face challenges when applied to underwater

MOT (UMOT) (Panetta et al., 2021). First, the background is

constant for most pedestrian MOT datasets. However, when

underwater tracking is performed, the background environment

can easily change drastically due to light interference or the

movement of water creatures. Second, when pedestrian MOT is

performed, the characteristics of most of the tracked targets are

more pronounced, and a priori knowledge can improve the

tracking accuracy. Third, when the tracking scene is switched to

underwater, it is difficult for these methods to achieve good

results due to the complexity of the motion of underwater

creatures and the ambiguity of their characteristics.

A new memory aggregation module is propose to enhance

the ability of track algorithms to correlate objects between
Frontiers in Marine Science 02
frames in a complex underwater environment and reduce false

tracking and missed tracking due to underwater environment

changes. Considering both a convolutional neural network

(CNN) (Liu et al., 2022b) and a transformer, improvement of

the receptive field is comprehensive with deeper model depth. In

contrast, for time series data, the gain from the vast

improvement of the receptive field is limited. Meanwhile,

more and more experiments (Tolstikhin et al., 2021) have

proved that the self-attention layer does not seem to be the

reason for the excellent results of the transformer. Therefore, we

propose a long short-term memory (LSTM)-based memory

aggregation module for historical memory fusion, named

LSMAM. The overall structure of the LSMAM module follows

the transformer architecture, but an LSTM-based layer replaces

the multi-head attention layer. For the characteristics of complex

changes in underwater scenes, we use a bi-directional long short-

term memory 2D (BiLSTM2D) network Tatsunami and Taki,

2022) as a replacement. This network structure can reduce the

length of sequences and produce spatially meaningful sensory

fields. In short, this paper proposes an underwater MOT

algorithm based on the LSMAM called UMOTMA. Our

model is an online end-to-end tracking network with a

transformer encoding and decoding structure in the main

framework. The model integrates the memory module into the

tracking process to fully use the location and temporal

information contained in the target history information. We

introduce this model in detail in Section 3.

The contributions of our proposed UMOTMA can be

summarized as follows:
- We propose LSMAM, a BiLSTM2D-based memory

aggregation module that is expected to improve the

correlation between multiple video frames. The

module’s architecture follows that of a transformer,

replacing the multi-headed attention layer with

BiLSTM2D to enhance the modelâ€™s ability to build

long temporal sequences.

- To address the problems of blurred underwater scenes and

drastic environmental changes, a new end-to-end

underwater MOT algorithm called UMOTMA is

proposed, which integrates the LSMAM into the

tracking process to improve the stability and

continuity of target trajectories. The main framework

of UMOTMA adopts the transformer encoder-decoder

structure. In addition, it integrates an underwater image

enhancement module and a memory module into the

tracking process to enhance the tracking capability of

the model in the complex underwater environment.

- Extensive experiments demonstrate that our method

effectively improves the performance of underwater

MOT, and ablation experiments show that the

memory aggregation module proposed in this paper

effectively improves the tracking accuracy of the
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Fron
algorithm. In addition, comparative experiments are

also conducted on the MOT17 datasets to demonstrate

the performance and generalization ability of the

method in different scenarios.
The remainder of this paper is organized as follows. Section

2 reviews the related work, and Section 3 describes the proposed

method. Section 4 presents the experimental results. Section 5

discusses the results, and Section 6 draws the conclusions.
2 Relate work

2.1 Multi-object tracking

Existing MOT work is divided into two main categories: the

first is the TBD paradigm, which divides MOT into two separate

tasks, i.e., detection and association. The object bounding boxes

are first predicted by high-performance detectors in a video

frame, and then the appearance and motion features of the target

are extracted by a feature extraction module; these features are

then used to perform similarity value calculations. In data

association, the targets are divided into different groups, and

the association problem is solved by a matching algorithm to

maintain the maximum global similarity while requiring the

targets to achieve the one-to-one association constraint. In 2016,

(Bewley et al., 2016) proposed Simple Online and Realtime

Tracking (SORT), a simple algorithm framework with a fast

operation speed, which has attracted widespread attention since

its introduction. However, the algorithm has poor resistance to

occlusion and cannot perform longer-term stable tracking. After

that, (Wojke et al., 2017) further proposed Deep SORT, which

uses a more reliable association metric and association method

based on SORT. It can effectively track for a long time and

largely reduce identity transformation in the tracking process.

Due to the rapid update of detection algorithms, more and

more methods are beginning to utilize powerful detectors to

obtain higher tracking performance. The You Only Look Once

(YOLO) series of algorithms (Redmon et al., 2016; Redmon and

Farhadi, 2018; Wang et al., 2022) has become the most popular

detector because of its simplicity, efficiency, and ease of

deployment. These detectors have also been adopted in a large

number of methods (Chu et al., 2021; Zhang et al., 2021a; Liang

et al., 2022). Most of these methods use the detection results

from a single image directly for tracking.

The second class, JDT, integrates the detection and tracking

modules into a single network for multitask learning to

accomplish target detection and tracking simultaneously.

(Wang et al., 2020) proposed the Joint Detection and

Embedding (JDE) module, which utilizes DarkNet’s YOLOv3

framework by adding a re-identification (ReID) branch parallel

to the detection branch. The feature vector of the center point of

the positive anchor frame is extracted as the apparent feature
tiers in Marine Science 03
vector of the target in the feature map output from this branch.

(Zhang et al., 2021b) proposed FairMOT, which is based on JDE

and which chooses to perform feature extraction at the center of

the estimated object. This avoids the problem that the features

extracted in a coarse anchor frame may not be aligned with the

center of the target, and effectively improves the performance of

the tracking algorithm.
2.2 Vision transformer-based MOT

In recent years, vision transformers have been successfully

applied to image recognition and video analysis with good

results; as such, many works have sought to use apply them to

MOT. TrackFormer (Meinhardt et al., 2022) and MOTR (Zeng

et al., 2021) input the image into a CNN backbone network first

to extract features and then input the extracted features into a

transformer encoder. Finally, the output of the encoder and an

autoregressive tracking query are used as input to the

transformer decoder to perform object detection and

association simultaneously. TransCenter (Xu et al., 2021) and

Transtrack (Sun et al., 2020) only use transformers as a feature

extractor. Their overall structure is based on encoding–decoding

to pass the tracking features and learn the aggregated embedding

of each object. MeMOT (Cai et al., 2022) was designed as an

online tracking algorithm that performs object detection and

data association under a common framework. It is capable of

linking objects after a long time span, which is realized by storing

the identity embeddings of the tracked objects in a large

spatiotemporal memory, and by adaptively referencing and

aggregating useful information from the memory as needed.

Global Tracking Transformers (GTR) (Zhou et al., 2022)global is

a global MOT network structure based on transformers, which

uses them to encode all target features in the input video

sequence and assigns the targets to different trajectories using

trajectory queries.

The above works explored the different mechanisms of

representing target states as dynamic embeddings. However,

compared to CNN models, transformers are not yet sufficiently

mature for modeling long-term spatio-temporal observations

and adaptive feature aggregation.
2.3 Underwater image enhancement

Underwater image enhancement aims to improve the quality

and visibility of underwater images and facilitate the acquisition

of more information from the images. Contrast limited adaptive

histogram equalization (CLAHE) (Reza et al., 2004) is a

traditional and fast method for image enhancement. However,

this method may suffer from color distortions. Fusion methods

(Ancuti et al., 2012) are another classical approach for image

enhancement that consider multiple enhancement techniques to
frontiersin.org

https://doi.org/10.3389/fmars.2022.1071618
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hao et al. 10.3389/fmars.2022.1071618
improve the quality of underwater images. In recent years, deep

learning has developed rapidly and many scholars have explored

the use of neural network models to improve underwater image

enhancement. To avoid the requirement of paired training data,

(Zhu et al., 2017) proposed the weakly supervised underwater

color correction network UCycleGAN. Based on this, (Fabbri

et al., 2018) proposed the underwater generative adversarial

network with gradient penalty (UGAN-GP) to deal with the

underwater color distortion problem, which uses UCycleGAN to

generate a paired data sets for supervised training and combines

the Wasserstein GAN-GP loss function to avoid model collapse.

(Li et al., 2021)underwater proposed the underwater image

enhancement network Ucolor, which uses medium

transmission-guided multicolor space embedding. This

network enriches the diversity of feature representations by

incorporating features from different color spaces into a

unified structure. It achieved excellent performance in

experiments in various environments.
3 Materials and methods

Given a sequence of video frames I = {I0, I1, I2,..., IT}, suppose

there are M trajectories in frame t−1 and N detection targets in

frame t. The goal of MOT is to complete matching between

trajectories and detection targets by constructing the associated

information between them and finally getting the trajectory of

each detection target in the current frame. In this paper, we

propose an end-to-end tracking algorithm to learn target

detection and association jointly, called UMOTMA. The

overall structure of the model is shown in Figure 1, which

contains four main parts: (1) an underwater image
Frontiers in Marine Science 04
enhancement module ME. We use CLAHE, UGAN-GP, and

Ucolor to implement the enhancement module, and compare

their effects on tracking through experiments (Section 4). (2) A

feature extraction module MF. We use a transformer-based

encoder to extract the features of the input frames. (3) A

memory aggregation module LSMAM. For the memory stored

in the memory buffer, LSMAM will compress it and produce an

aggregated representation. (4) A feature association and update

moduleMA. The aggregated representation output by LSMAM is

stitched with the features output by MF as the candidate

embedding for prediction. The candidate embeddings are

updated using the transformer decoder, and then the new

objects and tracking objects are predicted based on the

updated embeddings to get the final trajectory and detection

features. Finally, the history information is updated based on the

results obtained from the current frame, and tracking is

continued in the next frame.
3.1 Underwater image enhancement
module ME

The underwater image enhancement module ME takes as

input the original image captured by the underwater camera.

Since underwater scenes are generally turbid, the main purpose of

the enhancement module is to reduce color distortion effects and

improve visibility. In order to choose the optimal enhancement

algorithm for MOT, this paper uses CLAHE, UGAN-GP, and

Ucolor as the enhancement module, where CLAHE adopts the

default parameters of OpenCV, and UGAN-GP and Ucolor adopt

the network model and parameters provided by the original

authors. Details of the implementation are described in Section 4.
FIGURE 1

The overall structure of the UMOTMA.
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3.2 Feature extraction module MF

TheMFmodule is built using a transformer-based encoder for

the purpose of extracting features from the images. For

underwater MOT, the input to MF is generated by the

underwater image enhancement module, ME, and for the MOT

of pedestrians, the original image is fed directly toMF. The overall

framework of MF is similar to that of MOTR (Zeng et al., 2021),

where the feature map is first obtained from the input frame by a

CNN, and then the feature map is fed into the transformer-based

encoder, which uses the same deformable DETR (Zhu et al., 2020)

structure asMOTR, and finally outputs the current frame features.
3.3 LSTM-based memory aggregation
module: LSMAM

In order to reduce the length of the module and aggregate as

much memory as possible while maintaining efficiency, we

propose an LSTM-based memory aggregation module

LSMAM, whose structure is shown in Figure 2. The overall

structure of LSMAM is based on the transformer structure, in

which the self-attentive layer is replaced by an LSTM-based layer

called BiLSTM (Graves and Schmidhuber, 2005). In addition, we

referred to the literature (Tatsunami and Taki, 2022) to improve

the BiLSTM, finally deciding to using a structure similar to the

vision permutator (ViP) (Hou et al., 2022), which reduces the

length of the sequence, improves the accuracy and efficiency, and

produces spatially meaningful sensory fields. BiLSTM consists of

two layers that are replaced by combining spatial information

with memory-saving memory parameters to reduce the memory

cost by mixing the LSTM with memory-saving parameters. The

output process is shown as follows
Frontiers in Marine Science 05
~hfor = LSTMfor(~x), (1)

h
 
back = LSTM

back
(x
 
), (2)

~hback = rearrange (h
 

back), (3)

h = concat ð~hfor,~hback) : (4)

where ~x represents the input sequence, x
 

represents the

corresponding reverse sequence, and ~hfor and h
 
back are the

outputs obtained by processing ~x and x
 

the corresponding

LSTMs, respectively. Here h
 
back, are the outputs ~hback

rearranged in the original order, so ~hback and ~hfor are oriented

in the same direction, and finally the two are spliced to obtain h.

To parallelize the vertical and horizontal axes, LSMAM

introduces two BiLSTMs for parallel processing in the left/

right and top/bottom directions, named the horizontal

BiLSTM and the vertical BiLSTM, respectively. For input

X∈RH×W×C , H represents the number of sequences in the

vertical direction, W represents the number of sequences in

the horizontal direction, and C is the channel’s dimension. All

sequences in the horizontal direction Xw∈RH×C,w=0,1,2,⋯W are

input into the vertical BiLSTM, sharing the weights and hidden

dimension D, and finally the output in the horizontal direction

is obtained.

Similarly, all the sequences in the vertical direction

Xh∈RW×C,h=0,1,2,⋯H are input into the horizontal BiLSTM to

obtain the outputs. These processes are formulated as follows

Outputhor   = BiLSTM ðXw),w = 0, 1, 2,⋯,W , (5)

Outputver   = BiLSTM ðXh), h = 0, 1, 2,⋯,H : (6)
FIGURE 2

The memory aggregation module LSMAM.
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We combine the horizontal and vertical results separately to

obtain Over and Ohor, and then concatenated Over and Ohor to

obtain the final result O

O = concat(Over , Ohor) (7)

Note that Over and Ohor have the same hidden dimension

RW×H×2C, which is determined by the hyperparameter of

BiLSTM. Accordingly, vector O has dimensions of RW×H×4C.
3.4 Feature association and update
module MA

The overall structure of theMA module is shown in Figure 3.

It consists of multiple stacked transformer decoders, which take

the image feature extracted by MF and the output of LSMAM as

the common input, where the output of LSMAM is used as the

query of the decoder and the output ofMF is used as the key and

value of the decoder. The decoding process produces the

tracking result which contains two parts: bounding box

prediction and trajectory ID prediction. For the initial frame,

we generate a blank embedding to be used as historical

information for feature association. In addition, to align the

dimensionality of the final output, we pad each output

embedding so that they can be fed to the memory aggregation

module with the same dimensionality.
Frontiers in Marine Science 06
4 Results

4.1 Datasets

To evaluate the MOT performance of UMOTMA fully, we

evaluated our model on three benchmark datasets: the UMOT

datasets (Zhang et al., 2020), the underwater fish school datasets

(Liu et al., 2022a) and MOT17 (Milan et al., 2016). MOT17 is a

representative datasets of MOT Challenge, which contains seven

training subsets and seven validation subsets. All of the data are

collected from the real world and labeled. The the underwater

fish school datasets is a recent datasets that the images were all

extracted from the observation video of a marine pasture over

one year. The UMOT datasets contains four parts, which

correspond to the original data set and the data set processed

with CLAHE, UGAN-GP, and Fusion. Considering the size of

the overall datasets, we chose to remove the Fusion data set and

add the Ucolor data set instead.
4.2 Evaluation metrics

We used the same evaluation metrics as MOT Challenge to

evaluate our model, where the specific metrics used include the

high-order tracking accuracy (HOTA), MOT accuracy (MOTA),

identity switching (IDs), recognition score (IDF1), false positives

(FP), and false negatives (FN). Among them, MOTA is the most

widely used metric and can closely represent human visual

assessment; a better MOTA indicates that the proposed

method has the ability to balance various factors. HOTA

comprehensively evaluates the performance of detection and

data association. IDF1 focuses more on association performance,

where a higher IDF1 score indicates that the images of an object

are mostly mapped to the same identity. FP and FN are defined,

respectively, as the number of incorrect targets and the number

of missed correct targets. It should be noted that since HOTA is

a recently proposed evaluation metric, some authors have not

provided this metric during their comparisons.
4.3 Implementation details

We implemented our proposed method in PyTorch 1.11.

Our model was trained from scratch with a computer running

Ubuntu 20.04 LTS. The entire training process was deployed on

two NVIDIA RTX 3090 GPUs with memory of 48 GB. The

gradient optimization method was AdamW with batch size of

12. All learning rates were initialized to 2×10-4 and decreased to

2×10-5 during the training epochs. The GFLOPs of the model is

53.1×106 and the Parameters is 2×1011. The model was initially

trained on the UMOT datasets and the underwater fish school

datasets with 100 epochs, and then fine-tuned using 60 epochs. It
FIGURE 3

The Feature association and update module MA.
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took 48 hours in total. The initial training on MOT17 consisted

of 60 epochs, and fine-tuning used 40 epochs. The total training

time was about 36 hours. The fine-tuning started with an initial

learning rate, which decreased after 10 epochs. Depending on

the nature of the trajectory tracking, the total number of tracks

per frame varied. In order to stack the results of multiple frames

into a batch, we complemented each frame result with blank

trace results to align the lengths of the trace results of all frames.
4.4 Comparison with state-of-the-art
methods on the UMOT datasets

Table 1 shows the results of the method proposed in this

paper relative to the other tracking methods, including

DeepSORT (Wojke et al., 2017), CenterTrack (Zhou et al.,

2020), TrackFormer (Meinhardt et al., 2022), GSDT (Wang

et al., 2021), and MOTR (Zeng et al., 2021) on the UMOT

datasets. Since some of these methods have not been previously

applied to the UMOT datasets; so, to be fair, we re-implemented

these methods on the experimental equipment and obtained

their results for the UMOT datasets. Each metric has an arrow

next to it, with “↑” indicating that the higher the metric is, the

better, and “↓” indicating that the lower it is, the better.

As can be seen in Table 1, UMOTMA achieves excellent

results of 52.3% and 61.1% in terms of the MOTA and IDF1

metrics for the UMOT datasets for underwater scenes, 8.2% and

7.7% better than the second-placed method, respectively. In

addition to MOTA and IDF1, other metrics applied to

UMOTMA also reflect some improvements relative to the

other methods. However, our proposed method does not

perform the best in terms of FP and IDs, probably because the

extracted features of the false detection targets are very similar to

those of the correct targets, which in turn lead to false detections

and incorrect associations. The excellent results of MOTA and

IDF1 show that our model has good tracking performance and

can maintain a stable continuation of the tracking trajectory.

This is mainly due to our incorporation of the memory

aggregation module, which enables feature extraction of

historical information through aggregation of past frame
Frontiers in Marine Science 07
tracking results and improves the accuracy of the associated

trajectories with current frame targets. Figure 4 shows some of

the results of our underwater tracking.
4.5 Comparison with state-of-the-art
methods on the underwater
fish school datasets

Recently, the underwater fish school datasets is introduced

to provides a better choice to verify the underwater multi-object

tracking performance. We further conduct the experiments on

the underwater fish school datasets and perform the

performance comparison with state-of-the-art methods in

Table 2. It shows that UMOTMA achieves much better

performance on the underwater fish school datasets. Our

method gets a much higher MOTA score, surpassing JDE by

2.3%. For the IDF1 metric, our method also achieves much

better performance than JDE (81.1% vs. 72.2%). While for the

IDs metric, UMOTMA is inferior to some state-of-the-art

methods. It means that UMOTMA performs well on temporal

motion learning while the tracking performance is not that

stable. The large improvements on MOTA are mainly from

the memory aggregation network.
4.6 Ablation studies

4.6.1 UMOTMA components
In this subsection, we research the effectiveness of the different

components in UMOTMA, including the underwater

enhancement module (ME), and the memory aggregation

module (LSMAM). The experiment results are shown in

Table 3. Baseline represents only using the feature extraction

module (MF), and association module (MA), without usingMEand

LSMAM, whose results are relatively poor. Baseline + MEmeans

the underwater image enhancementmodule has been added to the

baseline model. The underwater image enhancement method can

improve tracking performance by increasing image visibility, so

the tracking effect is effectively improved by adding ME, as
TABLE 1 Comparison of the methods on the UMOT test set.

Methods IDF1↑ MOTA↑ IDs↓ FP↓ FN↓

DeepSORT 44.7 26.2 18 312 2837

GSDT 52.2 39.4 30 430 3045

CenterTrack 50.6 42.4 15 914 3101

TrackFormer 53.4 44.1 34 583 3294

MOTR 52.7 42.6 18 483 3516

UMOTMA 61.1 52.3 28 499 2809
frontiers
In each column, the best result is in bold.
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indicated by the MOTA index, which has increased by 2.2%.

However, due to the increased image visibility, the information

captured by the model during feature extraction increases

substantially, resulting in a surge of IDs during the association

process, which affects the tracking stability of the model.

UMOTMA indicates the further addition of the LSMAM to

Baseline + ME. In terms of metrics, the addition of LSMAM

increases the MOTA metric by 3.8%, IDF1 by 5.9%, and ID by a
Frontiers in Marine Science 08
factor of 7. The reason it achieves such good results is that

LSMAM allows the model to use more historical information to

match trajectories with current frame features, effectively reducing

the fluctuations of tracking trajectories due to ID, reducing the IDs

to a certain extent, and improving the tracking effect.
4.6.2 The influence of different LSTMs
on tracking

LSTM is a classical neural network, and there are many

variants based on it. To investigate the effect of different LSTMs

on the model tracking effect, we used BiLSTM and BiLSTM2D to

replace LSTM in the LSMAM module separately. The results of

the ablation experiments are shown in Table 4. Compared with

the baseline LSTM only, the tracking accuracy of the network

with both the BiLSTM and BiLSTM2D structures has

significantly improved. The MOTA metric increases by 4.8%

and 7.0%, respectively, and the IDF1 metric increases by 3.1%

and 8.7%, respectively. The FP and FN metrics also improve to

different degrees. These results show that the memory module
TABLE 2 Comparison of the methods on the underwater fish school
test set.

Methods IDF1↑ MOTA↑ ‘ IDs↓

SORT 75.4 71.6 342

DeepSORT 77.4 75.4 301

JDE 72.2 76.1 453

Bytetrack 79.3 77.6 249

UMOTMA 81.1 78.4 277
In each column, the best result is in bold.
FIGURE 4

Some examples of tracking results produced by our proposed UMOTMA.
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with BiLSTM2D has a significant improvement on the tracking

accuracy of the model, and by using a bi-directional 2D

structure, the module can perform better aggregation of the

information contained in the time series data.

4.6.3 Comparison of underwater image
enhancement modules

Underwater image enhancement is a fundamental task in the

field of computer vision, and many excellent works have

subsequently emerged (Reza et al., 2004; Ancuti et al., 2012;

Fabbri et al., 2018; Li et al., 2021). In order to study the

enhancement effect of enhancement methods for underwater

MOT, we used different algorithms to build enhancement

modules and evaluate the amount of enhancement imparted

by the different modules via experiments. The experimental

results are shown in Table 5. From Table 5, we can see that all

three image enhancement algorithms have a certain degree of

improvement in terms of the MOTA metric, but the IDs metric

indicates there are different degrees of degradation, among

which UGAN-GP causes the most serious amount of

degradation. Figure 5 shows the images produced by the

different enhancement modules. Through a comparison of the

images, we can find that the image contrast improvement

brought by the UGAN-GP algorithm is the highest, which

directly changes the color of the image background, thus

causing a significant decrease in the ID index. The Ucolor

processed image is more consistent with the original image in

terms of color, and therefore produced the best IDs metric value.
4.7 The performance on pedestrian
datasets

To evaluate the tracking capability of our method

UMOTMA in different scenarios, we conducted experiments
Frontiers in Marine Science 09
on the MOT17 datasets and compared the results with those

obtained with the other tracking methods. Table 6 lists the

metric results of our proposed method UMOTMA against those

of the other state-of-the-art MOT methods. It can be seen that

UMOTMA obtains competitive tracking accuracy on the

MOT17 datasets, achieving the best results for the HOTA,

MOTA, IDF1, and FN metrics, and the second-best IDs

metric value.

In general, the experimental results for the datasets in the

two scenarios show that the method proposed in this paper has

obvious advantages in terms of comprehensive performance and

tracking accuracy, and performs well in different scenarios. In

particular, the results achieved by UMOTMA in the underwater

scenario are significantly higher than those of the other

existing methods.
5 Discussion

The main purpose of MOT is to assign IDs to detected targets

and keep the IDs of the same targets unchanged in the subsequent

frames. Most previous works were performed based on pedestrian

datasets. However, for underwater scenes, unfavorable conditions

such as occlusion, background interference, and motion blurring

appear more frequently, so it becomes extremely difficult to keep

the tracking stable when performing MOT in underwater

environments. In this paper, we propose a new end-to-end

MOT algorithm called UMOTMA. The main advantage of

UMOTMA over other methods is the introduction of a depth

LSTM-based memory aggregation module (LSMAM), which

enhances the model in terms of correlation features by fully

aggregating the information contained in past frames to

maintain stable tracking in complex environments. The

experimental results on the UMOT datasets and the underwater

fish school datasets showed that our proposed UMOTMA has
TABLE 4 Ablation study about different LSTM.

Methods IDF1↑ MOTA↑ IDs↓ FP↓ FN↓

LSMAM(LSTM) 52.4 45.3 19 813 2999

LSMAM(BiLSTM) 55.1 49.3 26 485 3078

LSMAM(BiLSTM2D) 61.1 52.3 28 499 2809
frontiers
In each column, the best result is in bold.
TABLE 3 Ablation study on UMOT datasets.

Methods IDF1↑ MOTA↑ IDs↓ FP↓ FN↓

Baseline 54.7 46.3 10 577 3170

Baseline + ME 55.2 48.5 35 532 3035

UMOTMA 61.1 52.3 28 499 2809
In each column, the best result is in bold.
in.org

https://doi.org/10.3389/fmars.2022.1071618
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hao et al. 10.3389/fmars.2022.1071618
A B

D

E F

G H

C

FIGURE 5

Visualization of the results generated by the different enhancement modules.
TABLE 5 Comparison of the different enhancement module.

Enhancement IDF1↑ MOTA↑ IDs↓ FP↓ FN↓

Origin 51.9 46.7 12 484 3011

CLAHE 55.5 49.1 28 482 3060

UGAN-GP 48.3 49.6 34 312 2837

Ucolor 61.1 52.3 28 499 2809
Frontiers in Marine Science
 10
 frontiers
In each column, the best result is in bold.
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excellent performance in underwaterMOT, and several evaluation

metrics reached optimal performance, which proves the

effectiveness of the proposed method.

In order to explore the roles that LSMAM performs in the

tracking process further, we conducted extensive ablation

experiments. The results are shown in Table 3. After adding

the LSMAMmodule, the MOTA and IDF1 metrics of the model

increased respectively by 3.8% and 5.9%, and the IDs decreased

by a factor of 7, indicating that the memory aggregation module

proposed in this paper effectively improves the tracking accuracy

of the model. However, We also found that the underwater

image enhancement module and the memory aggregation

module increase the calculation volume of the model, which

leads to slow inference speed of the model and makes it difficult

to satisfy some underwater scenarios for real-time MOT.

Therefore, it will be an important direction of subsequent

work to optimize the model inference speed.
6 Conclusions

This paper proposed a novel deep LSTM-based end-to-end

underwater MOT model named UMOTMA. We introduced a

memory aggregation module to guide the matching

association link between past frame trajectories and current

frame features. In the memory aggregation module, we use

LSTM for memory aggregation instead of a CNN or

transformer, as employed in conventional approaches, which

effectively improves the algorithmâ€™s utilization of target

information in past frames. Experimental results on the

UMOT datasets and the underwater fish school datasets

showed that our proposed UMOTMA achieves optimal

results in terms of several MOT metrics, and it was

significantly better than the second-best method. The

experimental results for the MOT17 datasets also showed

that our method has a tracking accuracy comparable to

other state-of-the-art MOT methods for pedestrian scenes.
Frontiers in Marine Science 11
In addition, we conducted an extensive ablation study to

demonstrate the contribution of each component of the

proposed MOT framework to the tracking process and

briefly discussed the impact of different image enhancement

modules on MOT in underwater environments.

In general, our proposed method has good generality and

can be adapted to both surface and underwater application

scenarios. Especially in the latter, UMOTMA shows

exceptionally competitive performance. In the future, we will

use our model for MOT of critical underwater scenarios and

exploration of marine biological activities.
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