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Algae are widely distributed and have a considerable impact on water quality.

Harmful algae can degrade water quality and be detrimental to aquaculture,

while beneficial algae are widely used. The accuracy and speed of existing

intelligent algae detection methods are available, but the size of parameters of

models is large, the equipment requirements are high, the deployment costs

are high, and there is still little research on lightweight detectionmethods in the

area of algae detection. In this paper, we propose an improved Algae-YOLO

object detection approach, which is based on ShuffleNetV2 as the YOLO

backbone network to reduce the parameter space, adapting the ECA

attention mechanism to improve detection accuracy, and redesigning the

neck structure replacing the neck structure with ghost convolution module

for reducing the size of parameters, finally the method achieved the

comparable accuracy. Experiments showed that the Algal-YOLO approach in

this paper reduces the size of parameters by 82.3%, and the computation

(FLOPs) is decreased from 16G to 2.9G with less loss of accuracy, and mAP by

only 0.007 when compared to the original YOLOv5s. With high accuracy, the

smaller model size are achieved, which reduces the equipment cost during

actual deployment and helps to promote the practical application of

algae detection.
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Introduction

Algae are large and intricate biomes found in the ocean and

rivers, and theyhave a substantial impact on thenatural environment

and water quality. Harmful algal blooms (HABs) can wreak in the

water environment, affecting water quality and biological survival, as

well as easily resulting in the lossordeathoforganisms inaquaculture

zones.HABscancovera largeareaof thewater surface ina short time,

blocking sunlight and thus affecting plant photosynthesis. In

addition, algal blooms consume a large amount of oxygen in the

water body, releasing undesirable gases and toxic substances and

damaging the seawater and river water environment, which is not

conducive to aquatic organism survival. Microalgae can also act as

clean energy sources and purify wastewater, and some algae can be

used as food for humans. The various uses of microalgae contribute

significantly to reducing the greenhouse effect, saving energy and

protecting the environment. Therefore, deploying algae monitoring

systems to manage the abundance and types of algal populations in

the water environment is necessary for aquaculture and the

water environment.

One of the most frequent conventional techniques for

detecting algal cells is manual microscopy using a microscope,

which is not only time-consuming but also requires specialized

knowledge of algae. As processing power has increased, computer

vision has evolved, and support vector machines (SVMs) are

increasingly employed for algal detection. For example, Xu Y (Xu

et al., 2014), Babu M J (Babu et al., 2016) and Shan S (Shan et al.,

2020) investigated the use of SVM in forecasting red tide, while

Tao J (Tao et al., 2010) and Göröcs Z (Göröcs et al., 2018)

combined a support vector machine with flow cytometry, and its

accuracy reached 90%. Artificial neural networks (ANNs) have a

better solution to this problem with significantly less manual

involvement and generally higher accuracy. Mosleh M A A

(Mosleh et al., 2012) and Park J (Park et al., 2019) used artificial

neural networks for algal feature extraction with 93% accuracy,

while Medina E (Medina et al., 2017) and Schaap A (Schaap et al.,

2012) compared convolutional neural networks with MLP and

discriminant analysis classification methods in artificial neural

networks and found that convolutional neural networks possess

greater performance.

Deep learning research has advanced with the development of

computer image processing technology. Ning Wang et.al (Wang

et al., 2022) alsoprove thatdeep learningcansolve a series ofmarine

problems. In these years, Two-stage object detection approaches

have swiftly progressed from R-CNN (Girshick et al., 2014) to

FastRCNN (Girshick, 2015) and FasterRCNN (Ren et al., 2015),

withadvances inmodeldesignandadditional increases indetection

speed and accuracy, although their speed is not yet sufficient for

real-time detection. In algae research, Samantaray A (Samantaray

et al., 2018) proposed a computer vision system based on deep

learning for algae monitoring with a wide range of applicable

platforms but only 82% accuracy. Cho S (Cho et al., 2021) and

Deglint J L (Deglint et al., 2019) explored the potential application
Frontiers in Marine Science 02
ofdeep learningon algae in conjunctionwith3Dprinting andother

devices with sufficient accuracy, but its cost is high. Hayashi K

(Hayashi et al., 2018) investigated the detection of cell division in

algae and separated mitosis from interphase division with a 92%

degree of accuracy. The mean average precision (mAP) was

between 74% and 81% in the deep learning framework proposed

by Qian P (Qian et al., 2020). Ruiz-Santaquiteria J (Ruiz-

Santaquiteria et al., 2020) compared instance segmentation with

semantic segmentation for diatoms versus nondiatoms and found

instance segmentation to be more accurate by 85%. The preceding

study is significantly weak in detection speed and detection

accuracy, as well as identification that is quick and accurate.

One-stage object detection approaches emphasize the speed of

recognition. YOLO (Redmon et al., 2016) was the first one-stage

object detection method, which is quicker than the two-stage

approach but with the loss of precision and has undergone

iterative development with several variants. Using YOLOv3 for

algae detection, Park J (Park et al., 2021) obtained a mAP of 81 for

five algal species. Tingkai Chen et.al (Chen et al., 2021) proposed

one-stage CNN detector-based benthonic organisms detection

scheme, which used the generalized intersection over union

(GIoU) for localizing benthonic organisms easily. Cao M (Cao

et al., 2021) used MobileNet to enhance the backbone network of

YOLOv3, hence reducing the weight of the model. Ali S (Ali et al.,

2022) investigated YOLOv3, YOLOv4, and YOLOv5 and

demonstrated that YOLOv5 produced the best outcomes. Park J

(Park et al., 2022) studied YOLOv3, YOLOv3-small, YOLOv4 and

YOLOv4-tiny, and thefindings showed that themicro (tiny)model

was superior in termsofdetectionspeedandprecision.Basedon the

algae detection advancements for YOLOv3, YOLOv4, and

YOLOv5, the YOLO framework may possibly be used for algae

detection, and the tinymodel is enhanced with YOLOv5; however,

there is a dearth of study on the improved approaches for algae

identification in lightweight YOLOv5.

Based on the current status of the research literature, the

research on algae has been constantly developing. From

the improvement in traditional manual detection methods to the

application of traditional computer vision, it can be seen that

research on algae detection is constantly increasing. After the

emergence of artificial intelligence technology, a large number of

deep learning approaches have been used for algae detection, which

is enough to prove the importance of microalgae detection.

However, the aforementioned neural network technique for

detecting algae has complex deep neural network architecture and

a large number of parameters, which require high computational

power and high deployment costs in a realistic setting, and there are

no lightweight solutions for YOLOv5 algae identification. From the

standpointof research images, themajorityof studyobjects arehigh-

magnification microscopic images of algae, and there is a dearth of

research on low-magnification microscopic photographs of algae.

Although the pictures of algae at high magnification are clear, the

number of cells in the field of view ismuch smaller than that of low-

magnification microscopy. Furthermore, the high-magnification
frontiersin.org
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microscope ismore costly. In the low-magnificationmicrographs of

algae, the cells are closely packed and difficult to identify with the

naked eye, and low-magnification microscopes is cheaper.

Due to the high cost of high magnification microscopy

acquisition, we used low magnification microscopy to acquire

algae microscopic images to reduce the cost in the data

collection. For the practical deployment of algae detection, we

propose a lightweight algae object detection network, named

Algae-YOLO, based on YOLOv5, by replacing original backbone

network with lightweight module of ShuffleNetV2, thereby

significantly reducing the model size and computation, and by

adding an ECA attention mechanism to ShuffleNetV2, the

detection accuracy significantly improves without increasing

computational cost. In the neck structure, a lightweight

structure combined with ghost convolution is designed, and

the depth of the network and the width of the feature layer input

are increased to ensure the balance between model accuracy and

computational effort, allowing for low-cost deployment while

achieving accuracy comparable to that of YOLOv5s.
Related work

Low-magnification microscopic image
acquisition of algae

Microalgae strains (laboratory grown) of Chlorella sp. and

Isochrysis sp. samples were photographed in full color using a

Leica DM4 B digital microscope with a low-magnification. Sixty

images of each of the two kinds of low-magnification algae were

gathered, the number of algae in each sample photograph was

between 100-200, and local pictures of the samples are shown

in Figure 1.
Data preprocessing

The original algal microscopic photos were few, their data

were in TIF format with 1920*1200 resolution, and the algal

dispersion was dense and abundant. To minimize the difficulty

of time-consuming manual annotation, data preprocessing was

performed to obtain algal independent cells, and then the dataset

was automatically constructed utilizing independent cells.

In the original image preprocessing, the image was read by

OpenCV and then threshold and grayed out using a binarization

method. The image was then stretched and eroded to complete

the algae morphology, contour detection was conducted, and the

set of algae border coordinates was located and saved as a

distinct cell image.

After obtaining the independent cells, they were randomly

pasted into blank pictures, and the location data were processed

according to the YOLO dataset format. Figure 2 depicts the

resulting photos of Chlorella sp., Isochrysis sp., and a mixture of
Frontiers in Marine Science 03
both. Some portions of the illustration are exhibited with local

magnification for observational ease.
Data enhancement

Considering the issue of algal cell occlusion in microscopic

images, this study employs the mask technique to produce a

training dataset of algal occlusion images. The previous work

created distinct photographs of Chlorella sp. and Isochrysis sp.;

therefore, the masking technique may be utilized to generate
A

B

FIGURE 1

(A) Chlorella sp (B) Isochrysis sp.Image of the local microscopic
digital sample.
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masked data images during the production of dataset images.

The main process is to paste the first algal cell at random onto a

blank image and then superimpose the second algal cell on top of

the first, with the overlap area between the two set at 20%. An

illustration of masked image data is shown in Figure 3.

To improve the generalization performance of the dataset,

this research darkens the processed algae dataset photos and uses
Frontiers in Marine Science 04
them to replicate algae microscopic images in low-light

circumstances. Its darkened image is shown in Figure 4.

2,000 photographs of Chlorella sp., 2,000 images of Isochrysis

sp., 3,000 images of mixed algae, and 3,000 images of masked

images were generated for this study. The dataset contains a total

of 10,000 images, and the ratio of the training set, validation set,

and test set is 8:1:1. In the process of the picture input model,
A

B

C

FIGURE 2

(A) Image of Chlorella sp. (B) Isochrysis sp. image (C) Mixed image of Chlorella sp. and Isochrysis sp. Example images of the algae dataset.
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mosaic data enhancement is also activated, and four images are

stitched together by random cropping and scaling so that the

actual number of images involved in training is increased and

the sample set is more diverse.
Method introduction

YOLOv5

Since its release in 2020, YOLOv5 has been one of the most

popular object detection approaches by combining the latest

research in a variety of fields with other approaches to make

YOLO lighter and more efficient. YOLOv5 is composed of a

backbone network (Backbone), a neck structure (Neck) and a

prediction head (Head). Figure 5 depicts the backbone network

structural diagram, which comprises focus, CSP1, CSP2, SPPF,

and other structures.

After focus segmentation, the input image data are sent to

the backbone network for feature extraction, processed by spatial
Frontiers in Marine Science 05
pyramid pooling-fast (SPPF), sent to the neck structure for

the feature fusion operation, and finally predicted and output

in the prediction head. Figure 6 illustrates the overall

YOLOv5 flowchart.
Attention Module

Efficient channel attention (ECA) is a novel lightweight

attention mechanism (Hayashi et al., 2018). Compared to SE

attention, ECA is effective at modifying feature weights while

avoiding frequent dimensionality reduction operations. ECA

acquires the interaction information of each channel and its k

neighbors with a fast 1D convolution with convolution kernel k

after global average pooling, where the convolution kernel k is

proportionate to the number of channel dimensions to adaptive

acquisition, the relationship between k and c is as follows:

k ¼ jðCÞ ¼ log2 (C)
g

+
b
g

����
����
odd

(1)
A

B

FIGURE 3

(A) Inter-Chlorella occlusion images (B) Inter-Isochrysis occlusion image. Masked image example.
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where g and b are taken to be 2 and 1 respectively, and |t|odd
means the oddest number closest to |t|. To achieve the parameter

complexity of tillage, the weights of all channels are shared. In

this calculation, the wk array containing K*C parameters is

utilized to learn the attention, and the weight wi of channel yi
is calculated by considering only the interaction information
Frontiers in Marine Science 06
between yi and its k neighbors, which is expressed as:

wi = s o
k

j=1
wj
iy

j
i

 !
, yji     ∈ Wk

i (2)

whereWk
i denotes the set of k neighboring channels of yi and s is

the sigmoid activation function. The information interaction is
FIGURE 4

Example of darkened Isochrysis sp. image.
A

B DC

FIGURE 5

(A) SPPF Structure (B) Focus structure (C) CSPBlock1_x Structure (D) CSPBlock2_x StructureImages of Focus, CSP1, CSP2, and SPPF structures.
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followed by weight sharing, which is given by:

wi = s o
k

j=1
wjyji

 !
, yji     ∈ Wk

i (3)

The entire calculation procedure is dependent on the fast 1D

convolution with k convolution kernels (adaptive size of k) in the

ECA structure, which is denoted by:

w = s (C1Dk(y)) (4)

where C1D is the fast 1D convolution. This cross-channel

information interaction attention may effectively increase the

effectiveness of attention without introducing additional
Frontiers in Marine Science 07
computing factors. The overall structure of ECA is shown

in Figure 7.
ShuffleNetV2

The ShuffleNetV2 network is based on the ShuffleNet network,

and the network building blocks of V1 are modified in accordance

with the four guidelines for designing efficient networks to reduce

thememory access cost (MemoryAccessCost, MAC) of the network

convolution process. Figure 8 depicts the structures of the two new

ShuffleNetV2 units. In ShuffleNetV2 cell 1, the feature map of the

input C-channel number is divided into two copies, C1 and C2, and
FIGURE 7

ECA overall structure diagram.
FIGURE 6

YOLOv5 Structure.
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the feature map of the C1 channel number is not modified, while

the feature map of the C2 channel number is passed through three

convolution layers with the same input and output channels,

including two 1X1 ordinary convolutions (Conv2D) and one 3X3

depth-separate convolution (DWConv). After the two branches are

completed, the Concat operation is executed to concatenate the

channels, which are fused into an initial C-channel featuremap, and

interact with the information data via channel blending. In

ShuffleNetV2 cell 2, the input C-channel count feature map is no

longer subjected to the channel division operation and is instead

divided into two separate convolution operations. The same Concat

operation is used after the convolution operation, and the 2C-

channel count feature map is output after channel blending so that

the network width is increased with fewer parameters added.
GhostConv module

GhostConv is a type of convolution proposed by the

GhostNet neural network that employs fewer parameters to

obtain more target features during computation. GhostConv is

separated into two portions of normal convolution at the

beginning of the convolution procedure. To build a portion of

the feature map, the first step is a small amount of convolution

using a convolution kernel with fewer channels than standard

convolution. The objective of this convolution is to integrate the

features, generalize and condense the input feature map, and

generate a new feature map. The second step is to execute a

reduced computational operation on the feature map obtained in

the first stage using deep separable convolution to build further

feature maps. The two created feature maps are then stitched

together using the Concat technique to create the ghost feature
Frontiers in Marine Science 08
map. An example of the ghost convolution process is shown

in Figure 9.
Improvement

ShuffleNetV2-ECA backbone network

The original backbone network (Backbone) component of

YOLOv5 employs CSPDarknet53, which offers excellent feature

extraction capabilities but cannot be implemented in a

lightweight and cost-effective way due to its complicated

network design. Therefore, this study chooses the lightweight

network structure ShuffleNetV2 and enhances it based on its

design principles, and all improvements in the paper are based

on YOLOv5s.

In this study, ShuffleNet modules are constructed utilizing

ShuffleNetV2 units 1 and 2 as a lightweight ShuffleNet backbone

network for YOLOv5. To improve the feature extraction

capability of the backbone network, ECA attention is

combined with ShuffleNetV2 unit 1 and unit 2 to form

ShuffleECA module 1 and module 2, respectively, which

further improves the cross-channel capability and feature

extraction capability with only a small number of parameters

involved. ShuffleECA module 1 and module 2 are shown

in Figure 10.

Using the ShuffleECA module, the ShuffleNetV2-ECA

backbone network is then established. Table 1 displays the

network structure of its upgraded backbone. ShuffleECA

module_1 indicates that the layer is ShuffleECA module 1,

whereas ShuffleECA module_2 indicates that ShuffleECA

module 2 is in use. The three parameters in the argument
A B

FIGURE 8

(A) ShuffleNetV2 Unit1 (B) ShuffleNetV2 Unit2.
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represent the number of input channels, the number of output

channels, and the step size. Parameters indicate the number of

layer structure parameters.

After the feature map is input to the backbone network, the

original YOLOv5 first performs the focus module, and after

multiple slicing together in the way of channel expansion, which

creates more memory overhead and violates the ShuffleNetV2

design principle, the focus is replaced with a convolutional

kernel of 3*3 ordinary convolution with a BN layer, activation

function, and maximum pooling convolutional combination,

i.e., Conv_BN_Relu_Maxpool in Table 1, to keep the network

light and efficient while reducing the degree of network

fragmentation. In addition, the primary function of the SPPF

structure at the end of the original backbone network is to

expand the network perceptual field through the use of multiple
Frontiers in Marine Science 09
maximum pooling operations for enhanced feature extraction.

However, since the algal object targets studied in this paper are

tiny, such operations not only create a greater computational

burden but also increase the possibility of losing algal targets, so

it was decided to remove the SPPF structure from the improved

ShuffleNetV2-ECA backbone network.
Lightweight YOLOv5Neck

To further lower the computing needs of the model

deployment, a lighter GhostBottleneck module is built in the

neck section by adapting the GhostNet architecture.

GhostBottleneck comprises two types of GhostConv and

residual structures: GhostConv1 comprises GhostConv and
A B

FIGURE 10

(A) ShuffleECA Module 1 (B) ShuffleECA Module 2. ShuffleECA Module.
FIGURE 9

Ghost convolution process.
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BN layers and activation functions, whereas GhostConv2

consists of only GhostConv and BN layers and can

successfully extract image feature information in a lighter

structure. The structure diagram of the three is shown in

Figure 11. The CSPBlock2 structure of the whole neck

component is replaced with GhostBottleneck, and the

conventional convolutional CBL (Conv+BN+LeakRelu) is

replaced with GhostConv1, resulting in a network with

increased feature fusion that is lightweight and efficient.
Improved lightweight algae-YOLO

YOLOv5 is divided into five models: n, s, m, l and x. The

structure remains the same while the model depth and channel

width increase in order, with YOLOv5m corresponding to values

of 0.67 and 0.75. In the YAML file, the ratio of the input model

depth to the channel width of the feature layer is changed from

0.33 vs. 0.5 to 0.67 vs. 0.75, which increases the number of

runtime parameters but improves operational precision. The

total network architecture is shown in Figure 12.
Frontiers in Marine Science 10
The algae target images are input from the ShuffleECA

backbone network after one convolutional kernel size of 3*3

ordinary convolution, BN layer normalization, activation

function and maximum pooling and thus sent into the two

stacked ShuffleECA modules, where N in the figure represents

the number of ShuffleECA module repetitions on the right side,

which are required to pass into the neck. Greater repetitions of

the three ShuffleECA modules are present in the improved

feature network. In the neck structure, GhostBottleneck

substitutes the original CSPBlock_2, and GhostConv_1

replaces the original regular convolution process.
Experiment and evaluation

Evaluation metrics

To evaluate the model, research compares a variety of

assessment measures. The mAP is the most commonly used

evaluation metric in the field of object detection and is calculated

from P (Precision) and R (Recall), with P and R being calculated as:
FIGURE 11

GhostBottleneck module.
TABLE 1 ShuffleNetV2-ECA Backbone Network Structure Table.

Serial Number N Module Parameters Argument

0 1 Conv_BN_Relu_Maxpool 464 [3, 16, 2]

1 1 ShuffleECA Module_2 2,768 [16, 64, 2]

2 3 ShuffleECA Module_1 2,528 [64, 64, 1]

3 1 ShuffleECA Module_2 14,080 [64, 128, 2]

4 7 ShuffleECA Module_1 18,304 [128, 128, 1]

5 1 ShuffleECA Module_2 52,736 [128, 256, 2]

6 3 ShuffleECA Module_1 34,688 [256, 256, 1]
fr
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P  ¼  
TP

TP + FP
� 100% (5)

R   =  
TP

TP + FN
� 100% (6)

where TP is the number of algal targets accurately recognized, FP

represents the number of erroneous detections, and FN

represents the number of targets that went unnoticed. The

mAP is calculated using Equations (7) and (8), where n is the

number of algal categories. The mAP is derived from P and R

after computing the AP (average precision) of each category.

AP   =
Z 1

0
P(R)dR (7)

mAP  =
1
no

n

i=1
APi (8)
Data comparison

Multiple object detection models are selected for comparison to

confirm the benefits of the approaches described in this study.

MobileNetV3 and GhostNet are both classic lightweight networks

that have been frequently used in lightweight improvements and are

good objects for comparison; therefore, this paper implements the

backbone network replacement improvement of MobileNetV3 and

GhostNet based on YOLOv5s, namely, MobileNet-YOLOv5s and

GhostNet-YOLOv5s, respectively. In addition, the traditional

approaches YOLOv4 and SSD are also chosen, and then the

improved Algae-YOLO is added for training comparison, with all

other hyper parameters remaining unaltered throughout the

training process.
Frontiers in Marine Science 11
In this paper, the approach runs on Windows 10, the CPU is

an Intel i5-12600KF, the GPU is GTX3060, the training

framework is PyTorch version 1.7.1, the BatchSize is 16, and

each approach is trained with 150 epochs. The Binary Cross-

Entropy loss function is used to calculate the loss of category

probabilities and target confidence scores during the training

process, and CIOU Loss is used as the loss of the bounding box

regression. After training completed, the data-enhanced test set

is used to test and assess each model in turn. After training, each

model is tested and assessed using the data-enhanced test set,

and then the key evaluation parameters for each model are

created, as shown in Table 2.

In Table 2, the model size is displayed. The mAP0.5 is the

mAP size when the threshold is set to 0.5, whereas mAP0.5:0.95

is the average of all threshold values between 0.5 and 0.95. GPU

Memory specifies the size of the video memory necessary to run

the model. The deployment cost of a graphics card is

proportional to the video memory size. Weigh shows the size

of the model-generated parameter file. FLOPs represent the

number of floating point operations per second, while the

lower the value is, the less computations are performed per

second and the fewer resources are used. FPS (frames per

second) is the detection speed of the model. In this paper, we

investigate FPS on CPU devices.

In Table 2, the indices of SSD and YOLOv4 are not

dominant, and the sizes of MobileNet-YOLOv5s and

GhostNet-YOLOv5s, which are improved and compared,

have decreased by approximately half compared with the

original YOLOv5s. However, the size in the improved Algae-

YOLO approach in this paper has decreased by 82.3%

compared with YOLOv5s, which is the lowest among all

approaches. In terms of GPU Memory utilization during

training runs, Algae-YOLO is only 0.37 G higher than
FIGURE 12

Algae-YOLO overall network structure.
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GhostNet-YOLOv5s and 2.81 G lower than YOLOv5s; hence,

the dependence of Algae-YOLO on memory capacity is

significantly smaller than that of the original YOLOv5s. On

FLOPs, the improved approach Algae-YOLO is just 2.9G,

making it the most efficient of all models and requiring the

fewest calculations per second. Finally, in terms of FPS metrics,

Algae-YOLO performs second best.
Ablation study

Ablation experiments are required to demonstrate the

efficacy of the approach improvements. The original version of

YOLOv5s is labeled as Model 0, YOLOv5s with ShuffleNetV2 as

the backbone network labelled as Model 1, ShuffleNetV2-ECA-

YOLOv5s with improved ECA attention labelled as Model 2,

replaced the neck network on top of ShuffleNetV2-ECA labelled

as Model 3, adjusted the depth and width of the model directly

on top of ShuffleNetV2-ECA labelled as Model 4, and adjusted

the network depth and feature layer channel width on top of

Model 3 labelled as Model 5.Table 3 reveals the results of the

ablation trials.

In Table 3, after replacing the backbone network with

ShuffleNetV2 in Model 1, the model size of the network

decreased significantly, from seven million to eighty-four

million, and after adding the ECA attention mechanism, the

sizes increased by only 30 from Model 1 to Model 2, which is

almost negligible, but its mAP0.5 increased by 0.007 and the
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mAP0.5:0.95 increased by 0.025. It is demonstrated that ECA

attention has a positive effect on increasing the network’s

precision. Model 3 employs a lighter neck structure based on

Model 2, and the FLOPs are lowered by an additional 0.6 G;

however, it also results in a 0.002 accuracy loss. The network

model is light, but its accuracy is too low, which impairs the

detection results. The mAP value of Model 5(Algae-YOLO) is

0.981, which is closer to Model 0 and has 2.9 GFLOPs, which

means that the number of operations per second is much smaller

than that of Model 0, i.e., with less computational overhead than

Model 0 and Model 5 has a closer operational accuracy,

indicating that the model proposed in this paper has good

performance in terms of computation. The Algae-YOLO

approach investigated is proven to have an optimal balance

between computational overhead and precision. Based on the

comparison between Model 4 and Model 5, it can be deduced

that an increase in network depth and breadth as a result of

improvements to ShuffleNet and ECA will result in a

considerable increase in size of network parameters, as well as

FLOPs, memory utilization, and weight file size. However, the

mAP of Model 4 is enhanced by 0.1 compared to Model 5.

Because of the dramatic increase in parameters, carrying out

such a procedure is completely unnecessary. It also illustrates the

need for making the neck section lightweight before expanding

the network depth and channel width. In the model

improvement, the FPS of Model 5 (AlgaeYOLO) decreased

compared to Model 1, but it was still higher than that of

Model 0 (YOLOv5s).
TABLE 3 Datasheet of ablation experiment results.

Network Parameters (M) mAP
0.5

mAP
0.5:0.95

GPUMemory Weight FLOPs FPS On CPU

Model 0 7,01 0.988 0.859 6.73G 14.3 MB 16.0 G 14.49

Model 1 0.84 0.970 0.743 2.43G 1.9 MB 1.8 G 29.41

Model 2 0.84 0.977 0.768 2.55G 2.0MB 1.8 G 27.77

Model 3 0.49 0.975 0.756 2.43G 1.3 MB 1.2 G 27.02

Model 4 3.00 0.982 0.80 4.22G 6.3MB 5.2G 19.80

Model 5 1,23 0.981 0.79 3.92G 2.8 MB 2.9 G 19.61
TABLE 2 Comparison of the parameters of the improved approach with other approachs.

Network Parameters (M) mAP
0.5

mAP
0.5:0.95

GPU Memory Weight FLOPs FPS On CPU

YOLO5s 7.01 0.988 0.859 6.73G 14.3MB 16.0G 14.49

MobileNetYOLOv5s 3.54 0.982 0.799 4.83G 7.4MB 6.3G 20

GhostNetYOLOv5s 3.67 0.986 0.84 3.55G 7.7MB 8.0G 15.15

YOLOv4 64.36 0.955 0.738 9.6G 244MB 30.17G 5.64

SSD 26.15 0.856 0.631 6.6G 91.1MB 31.39G 3.92

Algae_
YOLO

1.23 0.981 0.79 3.92G 2.8MB 2.9G 19.61
The bold values i indicates that some performance of AlgaeYOLO is better.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1070638
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2022.1070638
Conclusion

In this research, to address the current algae detection problems,

we propose a lightweight Algae-YOLO object detection network

employing low-magnification microscopy images. The approach

exhibits comparable detection accuracy while drastically decreasing

computational overhead, reduces the computational cost, and serves

as a benchmark for algal lightweight detection and deployment. The

improved Algae-YOLO object detection approach reduces the

detection accuracy in low-magnification microscopic images by

0.007 compared to the original YOLOv5s, assuming that

parameter size is decreased by 82.3%, the GPU memory footprint

is reduced by 2.81G, and the FLOPs are decreased by 13.1 GFLOPs.

Ablation experiments demonstrate that the introduction of ECA

attention considerably increases the network accuracy while

essentially little increase in network size and improves detection

accuracy. Some parameters increased due to the modified model

depth and channel width, but they are significantly smaller than size

ofYOLOv5, and itsmAPalso increased.Overall, the improvedmodel

provides a tradeoff between parameters size and detection accuracy

and can achieve good performance when deployed in low-cost

devices, which is advantageous for mobile and embedded system

platform deployment in aquatic work, as well as for reducing the

incidence of harmful algae in aquaculture.

There is a wide variety of algal species, and the current study

does not cover a broad enough sample, requiring further expansion

of the training data. In future research, the species of single-celled

algae might be enlarged even more, which will help improve the

classification of different phyla and orders of algae.
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